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ON A CORRECTNESS CLASS OF THE BESSEL TYPE
DIFFERENTIAL OPERATOR Sμ

W. Y. LEE

We have found a correctness class of the Bessel type
differential operator Sμ = d2/dx2-(4μ2- l)/4x2 among smooth
functions using the Hankel transform and linear mapping
theory. It is left as an open problem to find its correctness class
among nonsmooth functions satisfying certain boundary con-
ditions.

1. Preliminary, This is a continuation of our previous paper
[10]. In [10] we investigated a uniqueness class of the Cauchy problem
of the differential operator Sμ = d2/dx2- (4μ 2 - l)/4x2, and left out a
question on the genus of Sμ. In this paper we answer the question
(Lemma 2.2); in fact the genus turned out to be less than that of the
differential operator id/dx, disproving our previous conjecture ([10]). We
also find a correctness class of the same operator Sμ, using the same
notations as in [9] or [10]. Let us start with the definitions of the spaces
BμJ» Hβ

μ,a and Y2;,b.

DEFINITION 1.1. For any real numbers μ and b > 0, the space Bμb

consists of smooth functions φ such that φ(x) = 0 for x > b and satisfies
the inequalities

yU<P)= sup \(χ-ιD)k(χ-*+inφ(x))\<*>, fc=0,l,2,

DEFINITION 1.2. For any real numbers μ, a > 0 and β >0, the
space H^a consists of smooth functions on 0 < x < °° for which the
inequalities

= sup \xk(x'ιDy(x"{lί+m)φ(x))\^ CAkBqkkaqqβ

0<x«»

fc, q= 0,1,2,

are satisfied where kka = 1, qqβ = 1 for fc, q = 0 and the constants C, A
and B depend on the testing function φ.

DEFINITION 1.3. For any real numbers μ, r > 0 and b > 0, Φ E Y\\h

if z~(M+1/2)Φ(z) is an even entire function for which the inequalities
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vtfXΦ) = sup |e- i > w 2 '(z2*-' ι-1 / 2Φ(z)| < oo Ik = 0,1,2,
z=x + ιy

are satisfied. Here z~(μ+1/2)Φ(z) is understood to be a principal value.

The topology of the spaces Bμb, Hβ

μ,a and Y2

μ\b are generated by the
seminorms {γ£k}£=0, {8E,}M=O and {v%lr}ΐ=0 respectively. It is easy to see
that all three spaces are Frechet spaces.

From the definitions, we immediately have:

L E M M A 1 . 1 . // b x < b 2 , a λ < a 2 a n d β λ < β 2 , w e h a v e B μbϊ C B μb2,
2;MCY2;M.

Suppose φ belongs to the Zemanian space Hμ. Utilizing [9; p. 337],
the space H^a is characterized by the following inequalities.

LEMMA 1.2. φ GίfJ j α // and only if φ satisfies the following ine-
qualities.

\D«{χ-»-ιl2φ{x))\ ^ QB V * exp(- a'xll2\ q = 0,1,2,

where a' is a positive constant less than a = ae~ιAλla.

Let hμ for μ ^ - 1/2 be the conventional Hankel transform defined
by ([17; p. 561])

[hμφ(x)](y)= ί φ(x)Vx~yJβ(xy)dx
JO

where Jμ(x) is the Bessel function of the first kind. Then we restate the
following theorem from [10]:

THEOREM 1.1. For any real numbers μ ^ -1/2 and r >0, the
Hankel transform hμ is an isomorphism from the space Bμ,b onto the space

2. Parabolic systems. I. M. Gelfand and G. E. Shidov ([3;
pp. 105-164]) investigated a correctness class of parabolic equations of
the differential operator / d/dx such that

(2.2) uo(x) = u(x,0)
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where u(x, t) is an m x 1 column vector, P(ξ) is an m x m matrix in £
with constant coefficients, all the eigenvalues of P(ξ) are even powers of
ξ9 x = (JCI, ,Jtm)ε Rm and ί E Λ . The Fourier transform of the
system (2.1)-(2.2) yields

(2.1)'

(22)' uo(ξ)=ύ(ξ,O)

where ξ = σ + iη. The formal solution of the system (2.1)'—(2.2)' is
given by

Let p0 and h be the reduced order and the parabolicity index respectively
of the system (2.1)'-(2.2)'. Then according to [3; p. 41 and p. 114], the
following inequalities hold:

(2.3) \\exp(tP(ξ))\\^

(2.4) ||

where Cu C2, a and b are positive constants. Let p be the genus of the
given system. Then in a domain defined by

(2.5) | η | : § B 1 ( l + |σ|)>, p^ί-(po-h)

the inequality

(2.6) | |exp(fP(f)) | |^C 3 exp(-6' ί |σ | f c )

is satisfied where b' is arbitrarily close to b. Utilizing [2; p. 217], the
inequalities (2.3) and (2.6) lead us to

(2.7)

where a! is a constant ^Bλ(a + b).
Let Sμ for μ g - 1/2 be the Bessel type differential operator defined

by Sμ = d2/dx2- (4μ 2 - l)/4x2, and consider the Cauchy problem of the
system (2.1)-(2.2) with id/dx replaced by Sμ:

(2.8) ^ ψ 1 = P{Sμ)u{xj)
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(2.9) Wo(*)= U(X,O).

Since P is an even polynomial, the system (2.1)-(2.2) is parabolic if and
only if the system (2.8)-(2.9) is parabolic.

The Hankel transform of the system (2.8)-(2.9) gives ([20; p. 139])

(2.9)' U0(ξ)= U(ξ,0)

where [/(£, ί) = (hμu(x, t))(ξ). Obviously the formal solution of
(2.8)'-(2.9)' is given by

(2.10)

An inspection of (2.3), (2.4), (2.5) and (2.10) show us

LEMMA 2.1. The reduced order and the parabolicity index of the
system (2.8)-(2.9) are 2p0 and 2h respectively.

Let p ' be the genus of the system (2.8)'-(2.9)'. Then from the
inequalities (2.5) and (2.6), we get

LEMMA 2.2. 1 ~2(p0- h)^ p ' < p ^ 1.

Since po^h ([3; p. 116]), it follows that p ' > 0 if and only if
pQ- h < 111. Now we shall prove the main theorem.

THEOREM 2.1. For any real numbers μ ^ - 1/2 and d > 0, let uo(x)
belong to the space Bμd. IfP is an even polynomial, and if the genus p' of
the system (2.8)'-(2.9)' is positive, then the correctness class of the system
(2.8)-(2.9) belongs to the space B M + f l 0 for any 0 S t S T, where ao= a'T,
and a1 is a positive constant to be determined.

Proof. Since the formal solution of the Hankel transformed system
(2.8)'-(2.9)' of (2.8)-(2.9) is given according to (2.10) by

U(ξ,t) =

let us first estimate the norm of e x p ( ί P ( - ξ2)).

Since the reduced order and the parabolicity index of the system
(2.8);-(2.9)' is 2p0 and 2ft respectively from Lemma 2.1, we get from the
inequalities (2.3) and (2.4) that
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(2.11) |exp(ίP(-a)ll ̂

(2.12) | |exp(rP(-σ 2 )) | |=§ C,exp(-6f | σ | 2 " ) .

Since the genus p ' of the system (2.8)'-(2.9)' is positive, an applica-
tion of [3; p. 115] and the inequality (2.6) reveal that

(2.13) | | e x p ( ί P ( - £ 2 ) ) N C2zxp{-b>t\σ\2h)

where b' differs from b by an arbitrarily small number. Utilizing [2; p.
217], the inequalities (2.11), (2.12) and (2.13) lead us to

\\txp(tP(-ξ2))\\^ C3εxp(-b't\σ\2h+a't\η\2p^')

(2.14) ^ Cϊεxp(a't\η\2"»')

where a'> a depends on ft, C and C2. Let ao= a'T and let r>
po/pf. Then the inequality (2.14) shows that exp(tP(- ξ2)) belongs to
the space £~(μ+1/2) Y2

μ\ao. Since every testing function in Y\\d is of a form
ξμ+mφ(ξ), where Φ is an even entire function from Definition 1.3, and
since U0(ξ) = hμu0(x) belongs to the space Y2

μ\d if uo(x)EBμd from
Theorem 1.1, it follows that U(ξ, t) = cxp(tP(-ξ2)U0(ξ)) belongs to the
space Y2

μ[d+ao from Lemma 1.1. Consequently, u(x, t) = h~μU(ξ, t) belongs
to the space B μyd+ao by virtue of Theorem 1.1. Continuous dependence
of the solution on the initial function uo(x) follows from the fact of
uniform convergence of the inverse Hankel transform h~μ

ιU(ξ,t) with
respect to t. This proves the theorem.

REMARK. Since T is any positive real number, the correctness class
of the system (2.8)-(2.9) approaches to the Zemanian space Hμ as
T—>°°, because the space B^d approaches to the Zemanian space Hμ as
an inductive limit space ([19] and [20]) as d-><*>.

Suppose the system (2.8)-(2.9) is petrowsky-parabolic such that real
parts of the eigenvalues of P are bounded by a negative constant for
\σ\ = 1. Then po = p = h ([3; pp. 112-113]) where p is the order of the
polynomial F, and so p ' = l. Consequently, the inequality (2.14) is
satisfied for any a' > d. Thus we have

THEOREM 2.2. For the petrowsky-parabolic system (2.8)-(2.9), sup-
pose the initial function uo(x) belongs to the space Bμd. Then for any
small e > 0 , the correctness class of the system (2.8)-(2.9) belongs to the
space βμ,d(i+€τ) for any T > 0 .
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Now let us consider for the case of negative genus. In this case
according to [2; p. 210] and [3; p. 123], dm/dσm txp(tp(- σ2)) is
majorized for Re ξ = σ by

(2.15)
dσ Γ exp(fP(-σ 2 )) ^ CBkk^-'''2h)exp(-b't\a\2h).

Since every testing function in the space H^a is of a form xμ+mφ^(x),
where φ, is a smooth function on 0 < x < ° ° , Lemma 1.2 and the
inequality (2.15) show us that e x p ( ί P ( - σ 2 ) ) e xH>ί+m) H%<;£H\ Let Φ
belong to the space Y2μ,b\z=χ (restriction to the real axis). Then

sup \x2k(exp(tP(- σ2)))(χ-(»+mΦ(x))\
-oo<χ<oe

g sup | e x p ( ί P ( - σ 2 ) ) | sup |jc2k(x ( ^ + 1 / 2 ) Φ(JC))| < oo,

where the last inequality is a consequence of (2.15) and Definition
1.3. It follows that e x p ( ί P ( - σ2)) is a multiplier in the space Y2

μ,b\ξ=σ for
any r > 0, b > 0. Consequently, if the initial function uo(x) belongs to the
space Bμ,b for any b > 0, then l/(σ, t) = e x p ( ί P ( - σ2))[/0(σ) belongs to
the space Y2^b\ξ=σ and therefore u(x, t) = Λ^C/(σ, t) belongs to the same
space Bμh as uQ(x) does. Continuous dependence of the solution on the
initial function uo(x) is evident since Λ~'ί7(σ, t) is uniformly convergent
with respect to L Thus we have proved

THEOREM 2.3. Suppose the genus p' of the system (2.8)/-(2.9)/ is
negative. If the initial function uo(x) belongs to the space Bμtb for any
b>0, then the correctness class of the system (2.8)-(2.9) belongs to the
same space Bμh for O^t^T, where T = (2h/b'e)A 1/2\

3. Hyperbolic systems. Consider a system of partial dif-
ferential equations with constant coefficients

(3.1)

(3.2) MO(X)=M(X,O)

where u(x, t) is an m x 1 column vector, Sμ = D\- ( 4 μ 2 - 1)/4JC2 as
before, and P(ξ) = (Pjk(ξ)) is an m x m matrix whose eigenvalues λ,(£)
(j = 1,2, , 5) are even powers of ξ. Let the system (3.1) be hyperbolic
with Sμ replaced by / d/dx. Then for Λ(£) = max7 Re λ7 (ξ) (ξ = σ 4- IT),
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Λ(σ) =ί C.

The Hankel transform of the system (3.1)—(3.2) yields

(3.iy p(

(3.2)' U0(ξ)= U(ξ,0).

Let λ;(f)(/ = l,2, ,s ')be the eigenvalues of P ( - £ 2 ) and let A'(ξ)
maxiS/gs. Re λ \{ξ). Then

A'(σ) ^ C .

Thus a proof similar to that of Theorems 2.1 or 2.2 leads us to

THEOREM 3.1. For μ ^ - 1/2, /eί the initial data uo(x) belong to the
space B^b for any b>0. Then the correctness class of the hyperbolic
system (3.1)—(3.2) belongs to the same space Bμb for 0 ^'t ^ T where T is
any positive real number.

4. Petrowsky-correct system. Consider a system of differ-
ential equations

(4.1)

(4.2) iι o(*)= w(*,0)

where M, P and Sμ are given as in §3. Suppose the system (4.1)-(4.2) is
Petrowsky-correct with 5μ replaced by id/dx. Let Λ and Λ' be defined as
before. Then

Λ(σ) ^ C , Re ξ = σ

and

Λ;(σ) g C , Re ξ = σ.

An argument similar to the proof of Theorem 2.1 yields

THEOREM 4.1. For any rea/ numbers μ S -1/2 and 6 > 0 , /eί ίΛe
inΐria/ daίa uo(x) belong to the space Bμ,b. If the genus ρf of the system
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(3.1)'-(3.2)' is positive, then for all 0 ̂  f ^ T, T > 0, ί/ie correctness class of
the system (4.1)-(4.2) belongs to the space Bμ,b+bΎ where b' is arbitrarily
near to b.

REMARK. Since | |exp(ίP( - f ))|| S B( l + | σ \2)h'exp(b't | r |
where hf is the correctness exponent of (3.1)'—(3.2)' and p0 is the reduced
order of P(ξ), we have to choose r>po/ρf so that U0(ξ)*+
exp(ίP(- ξ2))U0(ξ) be a continuous linear mapping from Y2

μ[b into

Suppose now the genus p ' is nonpositive. Then for Re ξ = σ,

dk

dx
exp(ίP(-σ2))

where rk ^ h' + p'fc, /ι' is given as before. Then the following theorem is
a direct consequence of Theorem 2.3.

THEOREM 4.2. For any real numbers μ ^ - 1/2 and b > 0, /eί Λe
ίnitiα/ data uo(x) belong to the space Bμ,b. If the genus of the system
(3.1)'—(3.2)' is nonpositive, the correctness class of the system (4.1)-(4.2)
belongs to the same space B^hfor all 0 ̂  t ^ T where Tis any positive real
number.

5. Conc lud ing r e m a r k s . So far we showed that for given
smooth initial data with compact support a correctness class of the
differential operator Sμ with constant coefficients consists of smooth
functions having compact support for any given O ^ ί g T . In the case of
the differential operator i d/dx, Gelfand and Shilov ([3]) found a
correctness class among nonsmooth functions via Fourier transforms and
convolutions. Ineed their correctness class for small t consists of ordinary
functions of exponential type for parabolic and Petrowsky-correct system
or k times differentiate functions without any conditions at infinity for
hyperbolic system. It is thus an open problem to find a correctness class
of the differential operator Sμ among nonsmooth functions. The problem
is equivalent to find conditions on the space of Hankel transformable
functions with sutiable boundary conditions so that convolutions be
allowable. As an example we were not able to identify the space of the
convolution

^ f ; i £ j ) f o Γ

in the proof of Theorem 2.2.
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Motivated by Schoenberg ([11]), Hirschman, Jr. ([6]) first introduced
# -convolution defined by

= Γ Γ f(χ)g(y)D(t,χ,y)dv(x)dv(y)
Jo Jo

where / and g are 1/(0, ^-functions with respect to the Radon measure
dx, y >0,

D(t, x, y) = 23-5/2[Γ(γ + ll2)]\txy)-2^[T{y)7rι'ψ[M,U *, y)]2y~2

and Δ(ί, JC, y) is the area of the triangle whose sides are ί, x and y if such a
triangle exists otherwise is zero. With his definition of Hankel trans-
form Λ given by

= Γ f(χ)g(χt)du(x)
Jo

where

he then showed that the # -convolution is a counterpart of the *-
convolution for the Fourier transform. Further he proved that if /,
/Λ E L ι(0,oo)? f and /Λ are inverse to each other under the Hankel
transform (5.1). Later on Haimo ([5]) showed that the space of # -
convolutionable functions is an algebra with L^norm and thus the
assumption that /Λ E L j(0, oo) is superfluous. Unfortunately their theories
may not be applicable to our case since χ~(μ+m) does not belong to
L^O,00) with respect to dv. It is not known that every function in

J is LMntegrable with respect to dv.
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