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UNIFORM ALGEBRAS SPANNED BY HARTOGS SERIES

T. W. GAMELIN

Let A be a uniform algebra on a compact space X, and let R
be an upper semi-continuous function from X to [0, oo). Let

and let B be the uniform algebra on Y generated by polynomials
in ζ with coefficients in A. The maximal ideal space MB of B
then has the form

MB ={(φ,ζ)EMAxC: \ζ\ ^ R(φ)}

for some function R on MA. We will give several characteriza-
tions of R in terms of R. One description involves Hartogs
functions, another involves Jensen measures. We will also treat
the problem of characterizing the continuous functions on MB

which lie in the algebrβ B.

1. Introduction. Let D be a domain of holomorphy in Cn,
and let R be a lower semi-continuous function from D to (0, + oo]. Let
G be the domain in Cπ+1 described by

A holomorphic function f on G can be expanded in a Hartogs series

/ ( ) Σ ί W

where each f} is a holomorphic function on D. For fixed z, the radius of
convergence Rf(z) of the series is given by

log Rf(z) = limsup
7

The upper semi-continuous regularization Sf of - log Rf is a plurisubhar-
monic function on D which is dominated by - log R. The domain

Gf = {(z,ζ):zED9\ζ\<e-W}

is then a domain of holomorphy containing G, and / extends holomorphi-
cally to Gf. It is not hard to conclude that the interior G of the
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intersection of the G/? f holomorphic on G, is the envelope of holomor-
phy of G; that is, G is a domain of holomorphy to which all holomorphic
functions on G extend analytically. Furthermore, if S is the lower
plurisubharmonic envelope of - log J?, then

G={(z9ζ):zeD9\ζ\<e-s"}.

For details, see [9].
There is a roughly equivalent theorem which describes the polyno-

mial hull of a compact subset of Cn+1 which is "circled" in one of the
variables. Indeed, let K be a compact subset of Cn+1 = C"xC with the
property that if (z,ζo)EK, then (z,ζ)EK for all ζEC satisfying
\ζ\ = \ζo\. Let / be the projection of K on Cn, and define the upper
semi-continuous function R on / by

= sup{\ζ\:(z,ζ)eκ}, z<=J.

Let J and K be the polynomial hulls of / and K in C" and C"+1

respectively. Evidently K includes / x {0}, while / coincides with the
projection of K into C . Furthermore, it is clear that K has the form

K = {(z,ζ):z<ΞJ,\ζ\^R(z)}

for some upper semi-continuous function R on /. The problem is to
describe R in terms of R. The solution can be obtained easily from the
results described above concerning envelopes of holomorphy of Hartogs
domains. The function - log R is the upper envelope of the family of
real-valued functions on J which extend plurisubharmonically to some
neighborhood of /, and which are dominated by - log R on J. We wish
to extend this latter result to the context of uniform algebras. Section 2
is devoted to the formulation of the basic result. The proof is given in
§§3 and 4.

The remainder of the paper is aimed at obtaining a Mergelyan-type
theorem for compact subsets of C2 which are circled in one variable. In
§§5 and 6, the problem is reduced to a weighted approximation problem
for analytic functions of one complex variable. In §7, the weighted
approximation problem is solved in certain special cases.

Notations and conventions. We rely on [5] for standard notation
and background material. The set of real numbers is denoted by R, the
complex numbers by C, and the (strictly) positive integers by Z+. The
space of continuous complex-valued functions on a topological space S is
denoted by C(S), while the subspace of real-valued continuous functions
on S is denoted by CR (S). The supremum norm over S is denoted by
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||/fls=sup{|/(s)|: sGS}.

All measures are regular complex Borel measures.
In §2 through 4 it will be convenient to focus on the function Q

related to R by

0 = -logtf, JR = <Γ°,

it being understood that -logO= + °° and e~°° = 0. The function cor-
responding to R is given by

Q = -logΛ, R = e-°.

2. Formulation of the theorem. Let X be a compact
space, and let A be a uniform algebra on X. The maximal ideal space
MA of A is a compact space which contains X as a closed
subspace. The functions in A will be regarded as continuous functions
on MA.

Recall that a probability measure σ on X is a Jensen measure for
φEMA if

Jr, fEA.

The existence of Jensen measures for each φ E MA was first established
by E. Bishop [1]. The Jensen measures for φ form a convex, weak-star
compact set of probability measures on X. The Jensen measures on X
for φ can be characterized as those measures σ on X such that σ(X) = 1,

and f log I/I dσ g 0 for all / G A satisfying \f(φ)\ = 1.

The family of Hartogs functions on MA is the smallest family dX of
functions from MA to [-°°, + 0 0 ) with the following two properties:

(2.1) ^ ^ E $* for all m E Z+ and all / E A.

(2.2) If {wn}̂ =1 is a sequence in Sίf which is bounded above, and
w = limsupn_*oowm then H ' G I

Each Hartogs function is a Borel function which is bounded above.
As an example, let X be a compact subset of Cn, and let A = P(X)

be the uniform algebra on X generated by the analytic polynomials. A
theorem of H. Bremermann [2, 7] then implies that any function on X
which extends to be plurisubharmonic in a neighborhood of the polyno-
mial hull X of X is a Hartogs function. For related material on Hartogs
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functions, there is the work of N. Sibony [7, 8]. The following lemma, in
the case that X is a compact subset of C and w extends subharmonically
to a neighborhood of X, has been proved by B. Cole [3].

LEMMA 2.1. If w is a Hartogs function on MA, and if σ is a Jensen

measure on X for φ, then w(φ)^ I wdσ.

Proof On account of the definition of the family of Hartogs
functions, it suffices to show that if {wn}*=i is a sequence of Borel

functions on MA such that wn ^ b <°c while wn(φ)^ wndσ, then the

function w = lim sup wn satisfies w(φ)^l wdσ. The latter assertion

follows immediately from Fatou's Lemma.

Now let O be a lower semi-continuous function from X to ( - <», +
oo]. Let Y be the compact subset of X x C defined by

(2.3) Y = { ( * , ζ)GXxC:\ζ\^ β ' O ( x ) }.

Let B be the uniform closure in C(Y) of the functions of the form

m

(2.4) F(x,ζ) = Σf,(χ)ζ', (*,ί)ey,

where /0, ,/m E A. Every complex-valued homomorphism Φ of B is
then determined uniquely by its action on A and its value on the
coordinate function ζ. In other words, MB can be identified with certain
pairs (φ, £ o ) E M Λ x C , where φ is the restriction of Φ to Λ, and
ζ0 = Φ(£). I n fact> Λ^B coincides with the Bo-convex hull of Y in
MA x C, where £ 0 is the algebra of polynomials of the form

(2.5) i
; = 0

Since Y is invariant under the rotations (JC, ζ)->(x,eiθζ), 0^ θ ^2ττ,
the space MB is also invariant under the rotations. Consequently MB

includes the entire circle {(φ, eiθζ0);0^ θ ^2π} just as soon as it contains
one point (φ, ζ0) of the circle. Now the polynomials (2.5) depend
analytically on the parameter ζ of the disc {(φ, ζ):\ζ\ < \ζo\}. From the
maximum modulus principle, we conclude that the entire disc belongs to
the Bo-convex hull of Y just as soon as one point of its boundary circle
lies in the B0-convex hull. It follows that MB has the form
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(2.6) M B = {(φ, ζ)EMAxC:\ζ\^

for some lower semi-continuous function Q from MA to ( —°°, + 0 0 ] . A
description of Q in terms of Q is given by the following theorem.

THEOREM 2.2. Let Q be a lower semi-continuous function from X to
(-oo? -f oo]. Define Y, B and Q as above, so that MB is given by
(2.6). Then for φ G ΛfA, Q(ψ) is equal to each of the following.

(2.7) s u p | l2£itt£ll . m e Z + , / £ A,

(2.8) sup{w(φ): w is α Hartogs function on MA, w < Q on X}

(2.9) inf I Qdσ: σ w α Jensen measure on X for φ\ .

In particular, the quantities defined by (2.7), (2.8) and (2.9) are
equal. The equality of (2.7) and (2.9) in the case that Q is continuous
has been established by D. A. Edwards [4].

Note that the inequality (2.7) ^ (2.8) follows from the definition of
Hartogs function, while the inequaltiy (2.8) ^ (2.9) follows from Lemma
2.1. In §3 we will establish the equality of (2.7) and (2.9) in the abstract
setting considered by Edwards. The proof of Theorem 2.2 will be given
in §4.

Finally, observe that if X is a compact subset of C", and A = P(X),
then (2.7)-(2.9) can be replaced by the supremum of w(φ), over all
functions w which extend to be plurisubharmonic in a neighborhood of
the polynomial hull X of X, and which satisfy w < Q on X.

3. The envelope condition for Kf- measures. Let W be
a family of upper semi-continuous functions from X to [ - oo, + oo)? which
has the following properties:

(3.1) I f m E Z + and υ9weW, then (υ + w)/m G W.

(3.2) 0 G W

(3.3) If w G W, then sup{w(jc): x G X } ^ 0 .

A probability measure σ on X is a ^-measure if

all wEW.

Let SI be the family of real-valued continuous functions q on X which
satisfy q ̂  w for some w EW. Then
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(3.iy SI is a convex cone,

(3.2)' SI includes the positive functions, and

(3.3)' - 1 £ Ά.

Since every w E W is the lower envelope of functions in % a probability

measure σ on X is a ^-measure if and only if I qdσ^O for all q E <2.

Consequently the set of ^-measures is a weak-star compact convex
subset of the space of measures on X.

The following theorem has been proved, in the case that Q is
continuous, by Edwards [4]. In particular, the Edwards Theorem shows
that there exist ^-measures on X.

THEOREM 3.1. Let Q be a lower semi-continuous function from Xto
( —°°, +oo]. Then the following quantities are equal:

(3.4) sup{c E R: w +c <Q for some w EW}

(3.5) inf I I Qdσ: σ is a W-measure\ .

Proof. Note first that (3.4)^(3.5) for all Q. Indeed, if w E W

satisfies w + c < Q, and if σ is a ^-measure, then c ^ I (w + c)dσ S

Qdσ.

To establish the reverse inequality, we suppose first that Q is
continuous. Rather than invoke the Edwards Theorem, we give a proof
which is based on the standard proof of the existence of Jensen measures.

Suppose that c < (3.5), that is, that

(3.6) c < Qdσ

for all ^-measures σ. Let τ be any nonzero measure on X such that

ί qdr^O for all q E SI. Then (3.2)' shows that r ^ O , so that σ =

τ/τ(X) is a ^-measure, and by (3.6) I (Q - c)dτ>0. This shows that

there is no half-space in CR (X) which contains both SI and c - Q. The
cone generated by Si and c - Q must then coincide with CR(X). In
particular, there exist a ^ 0 and <jES such that -1 = a(c - Q) + q.
Since - 1 £ S, α > 0. Hence Q - c = (1 + q)/a belongs to i>, and Q >
w + c for some w EW. That shows that c ^ (3.4). If follows that
(3.4) = (3.5).
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Next suppose that Q is lower semi-continuous and bounded. Then
(3.4) coincides with the quantity

sup [sup{c: w + c < v for some w E W}]
VELCR,V<Q

Using Edwards' Theorem, we find that this coincides with

(3.7) sup inf I υdσ: σ is a ^-measure \
V<=CR,V<Q L I J J J

The boundedness of Q allows us to apply the version of the Minimax
Theorem given in [5, p. 40]. Interchanging the orders of the supremum
and infimum in (3.7), we find that (3.7) is equal to (3.5). That proves the
theorem in this case.

For the general case, define Qa = min(Q, a), so that Qa is bounded,
and Qa increases t o O a s α - ^ + o o . Define a function Qa on the set of
^-measures by

I= I Qadσ, σ a ^-measure.

Since Qa is a lower semi-continuous function on X, Qa is a lower

semi-continuous function on the compact space of ^-measures. Further-

more, Qa(cr) increases to O(σ) = Qdσ as a —> 4- oo. Now a variant of

Dini's Theorem asserts that if {hn} is any monotone increasing sequence
of lower semi-continuous functions on a compact space, and h = lim /ιn,
then \nίhn increases to inf ft. Applying this theorem to the Oα, we
conclude that

(3.8) inf{Qα(σ): σ a ^-measure}

increases to (3.5). According to the result already established, (3.8)
coincides with

(3.9) sup{c: w + c < Qa for some w E W).

Since (3.9) increases to (3.4) as a —> + oo? (3.4) = (3.5). That completes the
proof of Theorem 3.1.

Now return to the uniform algebra A on X, and fix φ E MA.
Consider the family W of upper semi-continuous functions defined by
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If log \fλIlmλ and log|/ 2 |/m 2 belong to W, and m £ΞZ+, then

m L wti m2 J mm1m2

also belongs to ̂  Hence (3.1) is valid, and (3.2) and (3.3) are also easy
to check. In this case, the condition that σ be a ^-measure is
equivalent to the condition that σ be a Jensen measure for φ. Theorem
3.1 then shows that (2.9) coincides with

(3.10)sup (c: 3 m G Z+ and g G A with \g(φ)\ = 1 and ^ i J j J + c < Q J

If g is as in (3.10), then the function / = gecίm satisfies log|/(φ)|/m = c
and

m m

We conclude that (3.10) coincides with (2.7), so that (2.7) is equal to
(2.9). The equality of (2.7), (2.8) and (2.9) is thereby established.

4. Completion of the proof of Theorem 2.2. The first
lemma shows that (2.9)^ Q(φ).

\

LEMMA 4.1. There exists a Jensen measure σ on X for ψ such that

Proof. Let r be a Jensen measure on Y for the point (φ, e όiφ)) G
MB with respect to the algebra B. Let π denote the natural projection
of MB onto MΛ? and let σ = ττ*τ denote the projection of τ onto
X. Then σ is a Jensen measure on X for φ with respect to the algebra
A. Applying Jensen's inquality to the function ζ G B, we obtain

^j log\ζ\dτ(x,ζ)

% - j Q(x)dτ(xyζ)

= -j Q(x)dσ(x).
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That does it.

To complete the proof of Theorem 2.2, it suffices to show that
O(φ) = (2.8). We will establish this inequality in the case that Q is
bounded, and then we will approach the unbounded case by means of a
limit argument.

Suppose then that Q is bounded. Choose b > 0 such that e~° ̂
b > 0 on X. Then MB includes X x Δ6, where Δb is the open disc
{\ζ\<b}.

Let F E:B. For each x E X, F(x, f) depends analytically on ζ E
Δb. Consequently F has a Hartogs expansion

(4-1) F{x,ζ) = ±f,{x)ζi,
7=0

where

(4.2) | £ ( x ) | ^ & - ' | | F | | .

This estimate shows that the coefficient functions fj depend continuously
on F E B in the norm of uniform convergence. Since polynomials in ζ
with coefficients in A are dense in B, all of the fa lie in A.

For φ E MA, let RF(φ) be the radius of convergence of the Hartogs
series

(4-3) F(φ,ζ)=±fι(<P)ζ'
7=0

The analyticity of F in the disc {(φ,ζ): |£ |^ ίΓ ό ( φ ) } , implies
e~όiφ\ so that

On the other hand, if - log RF(φ)^ a for all F E B, then each F E B has
an analytic continuation to the disc {(<p, £): | f | < e~a}, and O(φ) = a- We
conclude that

(4.4) Q(φ) = sup{- log i?F

Now the expression for the radius of convergence of (4.3) is

(4.5) - logRP(φ) = lim sup loSl/ffr)l .

The estimate (4.2) shows that the functions log|^ |// are uniformly
bounded above on MA. Consequently (4.5) shows that -logi?F is a
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Hartogs function on MA. Furthermore, since the functions in B are
analytic on the discs {x} x {(ζ | < e~o(x)}y x E X, we have

-\ogRF(x)^Q(x), xEX.

These facts, together with (4.4), show that Q(φ)^(2.S). We conclude
that Theorem 2.2 is valid whenever Q is bounded.

Now let O be an arbitrary lower semi-continuous function on
X. For k E Z + define Qk = min(Q, /c). Let Yfc be the compact subset
of X x C determined by Qfc, let Bk be the associated uniform algebra on
Yfc, and let Qk be the associated function on MA determined by Qk.

Suppose that (<p, £) E MBk for all fc. Then |F(φ, ̂ ) | - li^lln for all
polynomials F in ζ with coefficients in A. Since the Yk decrease to Y,
we obtain \F(φ,ζ)\^\\F\\γ for all such F. Hence (φ9ζ)GMB. It
follows that MBk decreases to MB as k —»oo5 and consequently Q*
increases to O as fc->».

By the result already obtained, Qk{ψ) is equal to

(4.6). supp^M ; m e Z + , / e Λ ) ^ < Qk on

Now (4.6) increases to (2.7) as fc-» +°o. It follows that O(φ) = (2.7).
That completes the proof of Theorem 2.2.

5. The Hartogs series expansion. Suppose FE C(Y) is
such that F(JC, ζ) depends analytically on ζ in each disc

Ax ={(x,ζ):\ζ\<R(x)}, xEX.

The Hartogs series expansion of F is the power series

where the coefficients /; are functions on {R > 0} given by

(5 i)

Define F0(JC, ζ) = F(x, 0), and for / = 1 define

(ζ'f,{x), R(x)>0
(5.2) F,(x,ζ)=\

[ 0, R(x) = 0.
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The Hartogs series for F then takes the form

/=0

LEMMA 5.1. Let F and the F} be as above. Then each F} is
continuous on Y, and

(5-3) \\F, \\Y^\\F\\Y.

Proof. The statement is evidently true for Fo, so we assume that
/.= 1. From (5.1) we obtain

Since \ζ\^R(x),

|F,(x, 01 s

this for all (x,ζ)EY satisfying R(x)>0. The estimate is trivial if
R(x) = 0. That establishes (5.3). Furthermore, the expression

F(x,ζ)-F(x,0)

yields the estimate

(5.4)

Now suppose (xα, ζa) is a net in Y which converges to
(JCOJ ζo)- There are various cases to consider.

Suppose first that ζ0 £ 0. Then there is c> 0 such that | ζa \ ^ c > 0
eventually. Then also R(xa) = c > 0. In view of the continuity of F, the
expression

(5.5)

shows that F}(xa7 ζa) converges to F}(JC0, ζo)- That proves the continuity
of Fj at any point (JC0, ζo) ̂  Y for which ζ0 ̂  0.

Now suppose ζ0 = 0. Then Fy(jc0, ζo)= 0, so we must show that

(5.6)
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Passing to a subnet, we can assume that one of the following conditions
holds:

(5.7) R(xa) = 0 for all α,

(5.8) R(xa)>0, and lim R (xa) = 0,

(5.9) R(xa)^c>0 for all a.

If (5.7) is valid, then JF)(jcβ, ζa) = 0 by definition, so that (5.6) is true. If
(5.8) is valid, then the continuity of F implies that the oscillation of F on
the disc {(xa9ζ): \ζ\^R(xa)} tends to zero. The estimate (5.4) then
yields (5.6). If (5.9) is valid, then (5.5) and the continuity of F show that
limaFj(xa, ζa) = Fy(jc0,0) = 0. In any event, we obtain (5.6), as required.

Now we seek conditions on F which place F in the algebra B
spanned by the monomials ζ'fh where /; E A. The first observation is as
follows.

THEOREM 5.2. Suppose FEC(Y) is such that for each xEX,
F(JC, ζ) depends analytically on ζin the disc {\ζ\ < R(x)}. LetF~ΣFj be
the Hartogs expansion of F. Then F E B if and only if F; E B for all

/so.

Proof. Suppose Fj E B for all / ̂  0. Let {Gn} be the sequence of
Cesaro means of the partial sums of the series Σ Fr Then Gn E JB,
\\Gn || y = | | F | | y , and Gn converges uniformly to F on each slice

{(*, ζ): I ζ I ̂  JR(x)} of Y. By Lebesgue's Theorem, ί Gndη ^ ί Fdη

for each measure η on Y. In particular, if η is a measure on Y
orthogonal to J5, then η is also orthogonal to F. By the Hahn-Banach
Theorem, FEB.

The converse follows immediately from Lemma 5.1, which shows
that the terms F ; of the Hartogs expansion of F depend continuously on
F, in the norm of uniform convergence. A reformulation of this is as
follows.

THEOREM 5.3. Fix / ^ O . Suppose F E C(Y) has the form
F(x,ζ)=ζ}f(x) for some (not necessarily continuous) function f on
X. Then F E B if and only if there is a sequence {fn} in A such that
\fn(x) — f(x)\R(xy converges to zero uniformly on X as n-»°°.

Proof. Suppose FEB. Let {Fn} be a sequence of polynomials in ζ
with coefficients in A such that \\Fn - F | | y - * 0 . Let fnEA be the
coefficient of ζι in the expression for Fn. By Lemma 5.1, || ζ'/„ - F\\γ —• 0,
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and consequently \fn(x)~f(x)\R(xy converges uniformly on X to
zero. The converse is trivial.

6. A problem concerning weighted approximation.
Theorem 5.3 leads to the following weighted approximation
problem. Let g be a complex-valued function such that

(6.1) g is defined on the subset {JR >0} of X,

(6.2) for each € > 0, the restriction of g to the compact set
{jR =̂  e} is continuous, and

(6.3) g(x)R(x)-»0 as !?(*)-» 0.

It is easy to see that the conditions (6.1), (6.2) and (6.3) are necessary and
sufficient in order that ζg extend continuously to Y. The question of
whether ζg belongs to B can be rephrased as follows. Which functions g
satisfying (6.1), (6.2) and (6.3) are such that gR can be approximated
uniformly on X by functions of the form /R, f E A ?

A reasonable description of functions in B would lead to a solution
of the weighted approximation problem. Conversely, suppose that one
could solve the approximation problem for all admissible weight func-
tions. Applying the solutions to the weights JR7, / ̂  1, one would obtain a
description of each term F} of the Hartogs expansion of a function F in B,
and hence a characterization of the functions in J5.

As an example, let X be a compact subset of the complex plane C
which does not separate C, and let A be the algebra P(X) of uniform
limits on X of analytic polynomials. Then Y is a compact subset of C2,
and B = P(Y). The polynomial hull Ϋ of Y is then given by

Ϋ = {(z,ζ):zeX,\ζ\ϊ*R(z)}9

where - log R is the upper envelope of the functions subharmonic in a
neighborhood of X which are dominated by - log R on X.

The natural analogue of Mergelyan's Theorem would assert that
P(Ϋ) coincides with the algebra of continuous functions F on Ϋ such
that F is analytic on the interior of Ϋ, and such that for each z G X,
F(z, ζ) depends analytically on ζ on the disc {\ζ\ < R(z)}. The prob-
lem in weighted approximation which is equivalent to this Mergelyan-
type theorem is the following. If g satisfies the conditions (6.1), (6.2)
and (6.3) with respect to the weight R, and if g is analytic on the interior
of the set {R >0}, then can gi? be approximated uniformly on X by
functions of the form /R, when / is an analytic polynomial?

The answer to these problems is affirmative, for weights JR which are
zero on the interior of X. Rather than treat the problem in this
generality, we restrict our attention in the next section to a special case.
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7. The case X = a Δ , A = JP(Δ). Let Δ be the open unit
disc in the complex plane. In this section, we consider the case in which
X is the unit circle <9Δ, and A is the disc algebra P(Δ). JΓhen MA = Δ,
while - log R is the upper envelope of the functions on Δ which extend
to be subharmonic in a neighborhood of Δ. Since every boundary point
of Δ is regular, and since - log JR is lower semi-continuous, we obtain

f-logi?(z), zEdΔ
(7.1) -\ogR(z)=\ f

[-J \ogR(ξ)dμz(a zEΔ,

where μz is the Poisson measure on dΔ for z EΔ. If log JR ^ Lι{dθ), we
interpret R (z) = 0. The polynomial hull Ϋ of Y in C2 is then given by

(7.2) y = { ( z , 0 ^ C 2 : | z | ^ l , |f |=gj?(z)}.

We wish to describe the algebra B = P(Y). We begin by considering
the space B1 of measures on Y which are orthogonal to B.

Let Π denote the projection of Y onto <9Δ given by Π(z, £) = z. If η
is a measure on Y, then Π*η is the measure on <9Δ defined on functions h
on <9Δ by

ί ΛdΠ*τj = f (Λ Π)dτj.

LEMMA 7.1. Le/ η be a measure on Y which is an extreme point of
the unit ball of B\ Then either Π*( 1171) <̂  dθ, or else there exists z0 E 5Δ
such that η is supported on the set ΐl'ι({z0}).

Proof Let £ be a subset of dΔ of zero length. By the
Rudin-Carleson Theorem, E is a peak interpolation set for A. Conse-
quently IΓ^JE) is a peak set for E. By Glicksberg's Theorem, the
restriction of η to ΓΓ^JE) lies in Bλ. Since the measure η is assumed to
be an extreme point of the unit ball of B1, we conclude that η is carried
either by IΓ^f?) or by Y\Π~1(£). It follows that either η has zero mass on
IΓ!(JE) for all closed subsets E of <9Δ which have zero length, or there is a
point z 0 E d Δ such that η is carried by IΓ^Zo}). In the former case,
Π*([ T7 \)< dθ. This proves the lemma.

LEMMA 7.2. Let j g 1, and let g be a function defined on {R > 0},
such that ζ'g E C{Y). Suppose that there is a sequence {gn} in P(Δ) such
that gnR

} converges to gR' in L2(dθ). Then ζjg E B.

Proof For simplicity, we assume that / = 1. Also, we can assume
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that I gR | ^ 1 , and that gmR converges a.e. (dθ) to gR. From the
inequality

log + |α | ^\a-b\, a,beC,\b\^ 1,

we obtain

g+|gn£ \dθ^f\gnR-gR\dθ-+O.

Since the functions log+ |gni?| are upper semi-continuous, there exist
smooth functions un on dΔ such that

(7.3) un > log+1 g nR I,

and

Let *wn be the conjugate harmonic function of un, normalized to vanish
at 0, and set

(7.4) / n = e x p [ - ( W n + / * M n ) ] e P ( Δ ) .

Since un converges to 0 in L\dθ), *un converges to 0 in Lp(dθ) for
0 < p < l . Passing to a subsequence, we can therefore assume that fn

converges to 1 a.e. (dθ).
Now consider the functions ζfngn E B. From (7.3) and (7.4) we

obtain \fngn \R g 1 on dΔ, so that

(7.5)

Furthermore,

(7.6) fngnR-*gR a.e. (dβ).

Let η be an extreme point of the unit ball of B1. If Π*(| η \)< dθ,
then (7.6) shows that ζfngn converges to ζg a.e. (dη). Furthermore, the

convergence is bounded, by (7.5). Since I ζfngndη = 0, also ζgdη = 0 .

On the other hand, if η is carried by a set of the form IΓ^Zo}), then

I ζfdη = 0, becuase ζg is a constant multiple of ζ on IΓ^Zo})-

By Lemma 7.1, I ζfdη = 0 for all extreme points 17 of the unit ball of

B1. It follows that ζg G B. This concludes the proof.
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THEOREM 7.3. Suppose that logRg. L\dθ). Then the polynomial
hull of Y is given by

Ϋ= YU{(z,0): z<ΞA}.

Furthermore, P(Ϋ) consists of precisely those functions F E C(Ϋ) such
that F(z, 0) depends analytically on z EΔ, while for each z E <9Δ, F(z, ζ)
depends analytically on ζ in the disc {\ζ\ <R(z)}.

Proof The description of Ϋ follows from (7.1) and (7.2). Further-
more, each function in P(Ϋ) has the specified properties of analyticity.

Conversely, suppose FEίC(Ϋ) is analytic on the discs described
above. Let F ~ Σ JFJ be the Hartogs expansion of F. Then each JFJ has
the same properties of analyticity as does F. By Theorem 5.2, it suffices
to show that each F} belongs to B. Now F0(z, ζ) = F(z, 0) lies in the disc
algebra P(Δ), so we can restrict our attention to the F} for / ^ 1.

Fix / g 1. Write F^z, ζ) = ζ'g(z% where g is defined on {JR > 0}.
By a result related to Beurling's Theorem, the nonintergrability of log JR
implies that the subspace of L2(dθ) generated by znRj, n ^ 0 , has the
form χEL2(dθ) where χE is the characteristic function of the set {R >
0}. In particular, there exist analytic polynomials gn such that gnR

J

converges to gRJ in L2(dθ). By Lemma 7.2, ζ'gER. The proof is
complete.

THEOREM 7.4. Suppose that logjR E Lι(dθ). Then the polynomial
hull Ϋ of Y is given by (7.1) and (7.2). Furthermore, P(Ϋ) consists of
precisely those functions F E C(Ϋ) such that Fis analytic on the interior of
Y, while for each z E dΔ, F(z, ζ) depends analytically on ζ in the disc
{\ζ\<R(z)}.

Proof Again the problem boils down to showing that if F E C(Ϋ)
has the form F(z, ζ) = ζjg(z), where / ^ 1 and g is analytic on Δ, then
F E P(Ϋ). For simplicity, we treat only the case / = 1.

Suppose then that F E C(Ϋ) is of the form

where g is defined on the set {JR > 0}, and g is analytic on Δ. We can
assume that

Let h be an outer function in /ί°°(Δ) = H°°(dθ) which satisfies

\h(eiθ)\ = R(eιθ) a.e. (dθ).
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Then

\h{z)\ = R(z\ zGΔ.

Consequently

\h(z)g(z)\£l, zEΔ,

so that hg E H°°(Δ).
We claim that the radial boundary values of h(z)g(z) coincide with

h(eιθ)g(eiθ) for almost all eiθ E 3Δ. Indeed, suppose ew EdΔ is such
that h has a radial boundary value h(eiθ) at eiθ, and h(eiθ)/0. Then
#(/•£'*) = I h(reiθ)\ ^ e > 0 for r sufficiently near 1. Since the restriction
of g to the set {R ̂  e} is continuous, we conclude that g(reiθ) tends to
g (eiθ) as r increase to 1. Hence /ι (e w )g (e w) is the radial boundary value
of hg at eι\ and the claim is established.

Now hg E H°°(dθ). By Beurling's Theorem, there is a sequence of
analytic polynomials {gn} such that gnh converges to hg in L2(dθ). By
Lemma 7.2, £g E J3. The proof is complete.

As mentioned earlier, the results and proofs in this section carry
over to the case in which X = dK, where K is a compact subset of the
complex plane with connected complement, and A = P(K).
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