UNIQUENESS THEOREMS FOR TAUT SUBMANIFOLDS

Michael Freedman

1. Introduction and statements of theorems. Given two closed smooth manifolds, how do you tell if they are diffeomorphic? If you start out with a homotopy equivalence, Browder-Novikoff Theory breaks the problem up into: (1) finding all self-equivalences, (2) finding a normal bordism, and (3) the surgery obstruction on the normal bordism. In applications, however, one may encounter manifolds suspected of being diffeomorphic, where no obvious homotopy equivalence is present.

We describe such a situation: Let \int_{M}^{ζ} be a simply connected, finite, simplicial complex with linear bundle. Let $K_{t}^{2 n} \xrightarrow{f_{i}} M, i=0$ or $1, n \geqq 3$, be normal maps from closed smooth manifolds, i.e. $f_{i}^{*}(\zeta)=\nu\left(K_{i}\right)$: Suppose that f_{1} and f_{2} are normally bordant, f_{i} is n-connected, and that $B_{n}\left(K_{0}\right)=B_{n}\left(K_{1}\right) . B_{n}$ here denotes the n-th Betti number. It follows from Poincaré's Duality and the universal coefficient theorem that K_{0} and K_{1} have isomorphic integral homology groups, but a map inducing this isomorphism is lacking. However,

Theorem 1. If n is odd, K_{0} and K_{1} are diffeomorphic.
Theorem 2. If n is even, but not 2 , and the intersection pairings on
$\left(\operatorname{Ker} f_{0}: H_{n}\left(K_{0} ; Z\right) \rightarrow H_{n}(M ; Z)\right) /$ torsion and
$\left(\operatorname{Ker} f_{1}: H_{n}\left(K_{1} ; Z\right) \rightarrow H_{n}(M ; Z)\right) /$ torsion
are isometric and nonsingular, then K_{0} and K_{1} are diffeomorphic.
Corollary 1. If $M^{2 n+2}$ is a compact, simply connected, smooth $2 n+2$-manifold, n odd, and $K_{0}^{2 n} \xrightarrow{i_{0}} M^{2 n+2}$ and $K_{1}^{2 n} \xrightarrow{t_{1}} M^{2 n+2}$ are $n-$ connected inclusions of closed submanifolds with $i_{0} \cdot\left[K_{0}\right]=$ $i_{1} \cdot\left[K_{1}\right] \in H_{2 n}\left(M^{2 n+2} ; Z\right)$, then if $B_{n}\left(K_{0}\right)=B_{n}\left(K_{1}\right), K_{0}$ is diffeomorphic to K_{1}.

Corollary 2. Assume $M^{2 n+2}$ is a simply connected smooth $2 n+2$ manifold, n even $(n \neq 2)$, with $H_{n}(M ; Z)=0$. If i_{0} and i_{1} are as above, then if the intersection pairings on $H_{n}\left(K_{0} ; Z\right) /$ torsion and $H_{n}\left(K_{1} ; Z\right)$ /torsion are isometric, K_{1} is diffeomorphic to K_{2}.

REMARK 1. The above corollaries are specialized by replacing the
connectivity assumptions with the assumption that the submanifolds are taut (definition: $\pi_{i}(M$-neighborhood $\left.(K), \partial)=0, i \leqq n\right)$.

Remark 2. It follows from Corollary 1 and [2] that if n is odd and $\pi_{1}\left(M^{2 n+2}\right)=0$, every homology class $X \in H_{2 n}\left(M^{2 n+2} ; Z\right)$ is represented by a simplest submanifold with an n-connected inclusion map, K^{0}, and every other submanifold with an n-connected inclusion map is diffeomorphic to $K^{t}=K^{0} \underbrace{\# S^{n} \times S^{n} \times \# \cdots \# S^{n} \times S^{n}}_{t \text {-copies }}, t \geqq 0$.

THEOREM 3. If $\pi_{1}\left(M^{2 n+2}\right)=0$, and if K_{0} and K_{1} are submanifolds representing $X \in H_{2 n}\left(M^{2 n+2} ; Z\right)$ with n-connected inclusion maps, then there are integers j, k such that $K_{0} \# S^{n} \times S^{n} \# \cdots \# S^{n} \times S^{n}$ is diffeomor-

$$
\overbrace{j \text {-copies }}
$$

phic to $K_{1} \underbrace{\# S^{n} \times S^{n} \# \cdots \# S^{n} \times S^{n}}_{k \text {-copies }}$.
2. Proofs. (All coefficients will be integral unless stated.) Thm $1 \Rightarrow$ Cor 1 and Thm $2 \Rightarrow$ Cor 2 : Let N be a very large integer. $i: C P^{N-1} \rightarrow C P^{N}$ is an isomorphism on $H_{2}(; Z)$ so there is a unique 2-plane bundle $\int_{C P^{N}}^{\zeta}$ extending $\nu_{C P^{N-1} \rightarrow C P^{N}}$. Since $i_{1} \cdot\left[K_{1}\right]=i_{2} \cdot\left[K_{2}\right]$, there is a homotopy $h: M \times I \rightarrow C P^{N}$ with $h_{0}^{-1}\left(C P^{N-1}\right)=K_{0}$ and $h_{1}^{-1}\left(C P^{N-1}\right)=$ $K_{1} . \quad h^{*}(\zeta)$ extends $\nu_{K_{0} \times 0 \rightarrow M \times 0}$ and $\nu_{K_{1} \times 1 \rightarrow M \times 1}$. Furthermore, the inclusions $K_{0} \times\left. 0 \rightarrow\right|_{M \times 0} ^{\nu(M) \oplus h^{*}(5)}$ and $K_{1} \times\left. 1 \rightarrow\right|_{M \times 1} ^{\nu(M) \oplus h^{*}(5)}$ are normal maps and if h is transverse to $C P^{N-1}, h^{-1}\left(C P^{N-1}\right)$ provides a normal bordism. This together with the hypothesis of Corollary 1 (or Corollary 2) is the hypothesis of Theorem 1 (or Theorem 2). Corollary 1 (or Corollary 2) follows.

Proof of Theorem 1. Let $L, \partial L=K_{0} \cup-K_{1}$, be a normal bordism. By Theorem 1.2 [4] we may assume $f: L \rightarrow M$ is n connected. It follows that $H_{*}\left(L, K_{0}\right)=0$ for $* \neq n, n+1$. Our plan is to perform some normal n-surgery on interior (L) to produce L^{\prime} with $H_{n}\left(L^{\prime}, K_{0}\right)=0$ (this will leave $H_{*}\left(L, K_{0}\right)$ unchanged $* \leqq n-1$). By duality and U.C.T. $H_{*}\left(L^{\prime}, K_{0}\right)=0$, and $L \stackrel{\text { diff }}{\cong} K_{0} \times I \Rightarrow K_{1} \stackrel{\text { diff }}{\cong} K_{0}$ by the h-cobordism theorem.

Let $i_{0}: K_{0} \rightarrow L$ and $i_{1}: K_{1} \rightarrow L$ be the inclusions. Consider the following commutative diagram:

Since f_{0} factors through i_{0}, $\operatorname{coker}\left(f_{0_{n+1}}\right) \xrightarrow{\text { id. }} \operatorname{coker}\left(f_{n+1}\right)$ is epi. There is a short exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{coker}\left(f_{n+1}\right) / \operatorname{coker}\left(f_{0_{n+1}}\right) \rightarrow \frac{H_{n+1}(M, L)}{\text { II }} \text { (I) } \\
& 0
\end{aligned}
$$

so there is a natural isomorphism

We will consider the two modules identified.
Duality and the U.C.T. show $H_{n}\left(L, K_{0}\right)$ and $H_{n}\left(L, K_{1}\right)$ are isomorphic. So we have a noncommutative diagram:

We need an algebraic fact about such diagrams.
Lemma 1. If F is a field, there are elements $a_{1}, \cdots, a_{k} \in A$, such that $\left\{\pi_{\epsilon}\left(a_{1}\right) \otimes 1, \cdots, \pi_{\epsilon}\left(a_{k}\right) \otimes 1\right\}$ is a basis for $C_{\epsilon} \otimes_{Z} F, \epsilon=0$ or 1 .

Proof. By induction. $\operatorname{dim}_{F}\left(C_{0} \otimes_{Z} F\right)=\operatorname{dim}_{F}\left(C_{1} \otimes_{z} F\right)$. Suppose $a_{1} \cdots a_{j}$ are already chosen so that $\pi_{\epsilon}\left(a_{1}\right) \otimes 1, \cdots, \pi_{\epsilon}\left(a_{j}\right) \otimes 1$ are independent. Let the spans of these vectors be $\operatorname{span}_{j, 0}$ and $\operatorname{span}_{i, 1}$. If these spans are proper subspaces of $C_{0} \otimes_{z} F$ and $C_{1} \otimes_{z} f$, then $\pi_{\epsilon}^{-1}\left(\right.$ span $\left._{j, \epsilon}\right)$ are proper subspaces of $A \otimes_{z} F$. Let a_{l+1} be any element of A such that $a_{l+1} \otimes 1 \in\left(A \otimes_{z} F-\left(\cup_{\epsilon=0,1} \pi_{\epsilon}^{-1}\left(\operatorname{span}_{j, \epsilon}\right)\right)\right) \neq \varnothing$.

In order to compute the effect on $H_{n}\left(L, K_{0}\right)$ of normal n-surgeries along L, we use a diagram adapted from Lemma IV.3.2 [1]. (At this
point it may be helpful for the reader to review the proof that the odd dimensional simply connected surgery obstruction vanishes, see Ch. IV, $\S 3$ of [1]. This argument is originally due to J. Milnor and M. Kervaire, see [3].)

Lemma 2. If L^{\prime} results from a normal surgery on $S^{n} \hookrightarrow L,\left[S^{n}\right]=$ $x \in \operatorname{ker} f_{n}$, we have the following diagram:
(*)

$$
\begin{aligned}
& \begin{array}{c}
H_{n}\left(L^{\prime}, K_{0}\right) \\
\downarrow \\
0
\end{array}
\end{aligned}
$$

with: (1) $\pi_{0}(x)=x_{0}=i_{*} d\left(\lambda^{\prime}\right)$, where λ^{\prime} is the appropriate generator above. (2) The map $\theta: H_{n+1}\left(L, K_{0}\right) \rightarrow Z$ is given by intersection with $\pi_{1}(x) \in H_{n}\left(L, K_{1}\right)$.

Proof. (1) See Lemma IV.3.2 [1].
(2) $\theta: H_{n+1}\left(L, K_{0}\right) \rightarrow Z$ may be thought of as:

$$
H_{n+1}\left(L / K_{0}\right) \xrightarrow{j} H_{n+1}\left(L / K_{0}, L_{0} / K_{0}\right) \xrightarrow{\mathrm{exc}^{-1}} \underbrace{H_{n+1}\left(S^{n} \times D^{n+1}, S^{n} \times S^{n}\right) \xrightarrow{U(~)} Z}_{\bar{j}}
$$

where the last map is evaluation of the Thom class $U \in$ $H^{n+1}\left(S^{n} \times D^{n+1}, S^{n} \times S^{n}\right)$. Let $\quad a \in H_{n+1}\left(L / K_{0}\right) . \quad j^{*}\left(\operatorname{exc}^{-1} U\right)(a)=$ $U(\bar{J} * a)=\theta(a)$.

$j^{*}\left(\operatorname{exc}^{-1} U\right) \cap\left[L, K_{0} \cup K_{1}\right]=\pi_{1}(x) \in H_{n}\left(L, K_{1}\right)$, so

$$
\theta(a)=j^{*}\left(\operatorname{exc}^{-1} U\right)(a)=\pi_{1}(x) \cdot(a)
$$

where \cdot denotes algebraic intersection.
Lemma 3. If we set $y=i_{*}^{\prime} d(\lambda)$, then:
(1) $H_{n}\left(L^{\prime}, K_{0}\right) /\langle y\rangle \cong H_{n}\left(L, K_{0}\right) /\left\langle x_{0}\right\rangle,\langle \rangle$ means 'subgroup generated by'".
(2) Suppose $\left(x_{0}\right)$ has finite order s, then for some $t \in Z s d^{\prime}\left(\lambda^{\prime}\right)+$ $t d(\lambda)=0$. Order $(y)=\infty$ iff $t=0$. Order $y=t$ iff $t \neq 0$.
(3) If n is even (as in Theorem 2), $t=0$.
(4) If n is odd (as in Theorem 1), L^{\prime} is not uniquely determined, and may be varied to L_{m}^{\prime} by changing the framing of the surgery along x by m times the generator of $\operatorname{ker}\left(\pi_{n}(S O(n+1)) \rightarrow \pi_{n}(S O)\right) \cong Z$. So t is a function of L_{m}^{\prime}. We have the relation: $t\left(L_{m}^{\prime}\right)=t\left(L^{\prime}\right)+2 m s$.

Proof. These facts correspond to Lemmas 3.2, 3.5, 3.8 and 3.11 respectively in Chapter IV of [1].

Lemma 4. $\left.L^{2 n} \rightarrow\right|_{M} ^{\xi}$ is normally bordant rel ∂ to L^{\prime} satisfying $H_{*}\left(L^{\prime}, K_{0}\right)=0, * \leqq n-1$ and $H_{n}\left(L^{\prime}, K_{0}\right)=$ torsion. (This lemma holds for n even or odd.)

Proof. In Lemma 1 set $F=Q$, normal surgery on the classes $\left\{a_{1}, \cdots, a_{k}\right\}$ affords the desired L^{\prime}. More precisely, assume $\operatorname{Rank}_{Z}\left(H_{n}\left(L, K_{0}\right)\right)>0$. By setting $F=Q$ and $a_{1}=x$ in Lemma $1, \pi_{0}(x)=$ x_{0} and $\pi_{1}(x)=x_{1}$ are infinite order. Therefore, by diagram ($\left.*\right)\left\langle x_{0}\right\rangle=Z$ and $\langle y\rangle=$ torsion. Let L^{\prime} result from surgery on x. Now (1) of Lemma 3 implies $\operatorname{Rank}_{Z}\left(H_{n}\left(L^{\prime}, K_{0}\right)\right)=\operatorname{Rand}_{Z}\left(H_{n}\left(L, K_{0}\right)\right)-1$. Proceed inductively.

REmark 3. It may not be possible to do the preceding construction without increasing the order of torsion $\left(H_{n}\left(L, K_{0}\right)\right)$. The reason is that there are diagrams, for example:

so that $\exists x \in Z+Z$ with $\pi_{\epsilon}(x)$ generating a free summand. So unlike the classical case, killing the free part may increase the torsion!

Lemma 4^{\prime}. Given a prime, $p,\left.L^{2 n} \rightarrow\right|_{M} ^{\xi}$ is normally bordant rel ∂ to L^{\prime} such that $H_{*}\left(L^{\prime}, K_{0}\right)=0, * \leqq n-1$, and $H_{n}\left(L^{\prime}, K_{0}\right) \otimes Z_{p}=0$. (This lemma holds for n even or odd.)

Proof. Assume L satisfies the conclusion of Lemma 4. In Lemma 1 set $F=Z_{p}$ and $a_{1}=x$. Now consider diagram ($*$) with Z_{p} coefficient. The mod p reductions $\left(\pi_{0}(x)\right)_{p}=\left(x_{0}\right)_{p} \in H_{n}\left(L, K_{0} ; Z_{p}\right)$ and $\left(\pi_{1}(x)\right)_{p}=$ $\left(x_{1}\right)_{p} \in H_{n}\left(L, K_{1} ; Z_{p}\right)$ are nonzero. d is the zero map so by (1) of Lemma 3:

$$
\operatorname{Rank}_{Z_{p}}\left(H_{n}\left(L, K_{0} ; Z_{p}\right)\right)=\operatorname{Rank}_{z_{p}}\left(H_{n}\left(L^{\prime}, K_{0}\right) ; Z_{p}\right)+1
$$

Using the U.C.T. and $H_{n+1}\left(L^{(\prime)}, K_{0} ; Z\right)=0$ we have:

$$
\operatorname{Rank}_{Z_{p}}\left(H_{n}\left(L, K_{0} ; Z\right) \otimes Z_{p}\right)=\operatorname{Rank}_{Z_{p}}\left(H_{n}\left(L^{\prime}, K_{0}\right) \otimes Z_{p}\right)+1
$$

Lemma 4^{\prime} now follows by induction on the above rank.
The argument is now restricted to $n=$ odd. The prime 2 will play a special role.

Let L satisfy $H_{*}\left(L, K_{0}\right)=0, * \leqq n-1$ and $H_{n}\left(L, K_{0}\right) \otimes Z_{2}=0$ (i.e., $H_{n}\left(L, K_{0}\right)$ is odd torsion $)$.

Lemma 5. If n is odd and L is as above, and if a prime p/order $\left(H_{n}\left(L, K_{0}\right)\right)$ there is a normal bordism rel ∂L to L^{\prime} (consisting of either one or two normal n-surgeries) with: (1) $H_{*}\left(L^{\prime}, K_{0}\right)=0$, *$\leqq n-1$, (2) $H_{n}\left(L^{\prime}, K_{0}\right)$ odd torsion, and either: (3) order $H_{n}\left(L^{\prime}, K_{0}\right) \leqq \operatorname{order} H_{n}\left(L, K_{0}\right)$, and (4) $\left.\operatorname{Rank}_{z_{p}}\left(H_{n}\left(L^{\prime}, K_{0}\right) \otimes Z_{p}\right)<\operatorname{Rank}_{z_{p}}\left(H_{n}\left(L, K_{0}\right) \otimes Z_{p}\right)\right)$ or (3') order $H_{n}\left(L^{\prime}, K_{0}\right)<$ order $H_{n}\left(L, K_{0}\right)$.

Proof. In Lemma 1 set $F=Z_{p}$ and $a_{1}=x$. As in the proof of Lemma 4^{\prime}, any normal surgery based on x results in an L^{\prime} with $\operatorname{Rank}_{Z_{p}}\left(H_{n}\left(L^{\prime}, K_{0}\right) \otimes Z_{p}\right)<\operatorname{Rank}_{z_{p}}\left(H_{n}\left(L, K_{0}\right) \otimes Z_{p}\right)$. By (4) of Lemma 3 $\forall m, t\left(L_{m}^{\prime}\right)=t\left(L^{\prime}\right)+2 m s$, where $s=$ order $x_{0} \in H_{n}\left(L, K_{0}\right)$. By (1) and (2) of Lemma 3, $t\left(L_{m}^{\prime}\right) \neq 0$ iff $H_{n}\left(L_{m}^{\prime}, K_{0}\right)=$ torsion, and order (torsion $\left.H_{n}\left(L_{m}^{\prime}, K_{0}\right)\right) \leqq$ order (torsion $H_{n}\left(L_{m}, K_{0}\right)$) iff $-s \leqq t\left(L_{m}^{\prime}\right) \leqq s$. If (and only if) $t\left(L_{m}^{\prime}\right)=2 s$, order $H_{n}\left(L^{\prime}, K_{0}\right)=2\left(\right.$ order $\left.H_{n}\left(L, K_{0}\right)\right)$. We may choose m so that: Case A. $t\left(L_{m}^{\prime}\right) \neq 0$ and $-s \leqq t\left(L_{m}^{\prime}\right) \leqq s$ or Case B. $t\left(L_{m}^{\prime}\right)=2 s$.

In each case diagram (*) with Z_{2} coefficients shows $\operatorname{Rank}_{Z_{2}}\left(H_{n}\left(L^{\prime}, K_{0}\right) \otimes Z_{2}\right)=0$ or 1. In Case A we are finished if the above rank is zero; assume it is one. If $t\left(L_{m}^{\prime}\right)= \pm s$, order $H_{n}\left(L^{\prime}, K_{0}\right)=$ order $H_{n}\left(L, K_{0}\right)$, so (2) and (3) above are satisfied and we are finished. So add the assumption: $-s<t\left(L_{m}^{\prime}\right)<s$. Then order $H_{n}\left(L^{\prime}, K_{0}\right)<$ order $H_{n}\left(L, K_{0}\right)$. Now Lemma 1 with $F=Z_{2}$ provides $x^{\prime}=a_{1} \in \operatorname{ker} f_{n}^{\prime}: H_{n}\left(L^{\prime}\right) \rightarrow H_{n}(M)$, so that if $L^{\prime \prime}$ is the result of a normal surgery on x^{\prime} then $H_{n}\left(L^{\prime \prime}, K_{0}\right) \otimes Z_{2}=0$. $\exists r \in Z$ such that - order $x^{\prime} \leqq t\left(L_{r}^{\prime \prime}\right) \leqq$ order x^{\prime}. However, $t\left(L_{r}^{\prime \prime}\right) \neq 0$ as this would imply order $H\left(L_{r}^{\prime \prime}, K_{0}\right)=\infty$, contradicting $H_{n}\left(L_{r}^{\prime \prime}, K_{0}\right) \otimes Z_{2}=0$. So order $\left(H_{n}\left(L_{r}^{\prime \prime}, K_{0}\right)\right)$ $\leqq \operatorname{order}\left(H_{n}\left(L_{m}^{\prime}, K_{0}\right)\right)<\operatorname{order}\left(H_{n}\left(L, K_{0}\right)\right)$ so $\left(3^{\prime}\right)$ above is satisfied. This completes Case A.

In Case B order $\left(H_{n}\left(L_{m}^{\prime}, K_{0}\right)\right)=2\left(\operatorname{order}\left(H_{n}\left(L, K_{0}\right)\right)\right)$.
Lemma 6. $\exists x^{\prime} \in \operatorname{ker} f_{n}^{\prime}: H_{n}\left(L_{m}^{\prime}\right) \rightarrow H_{n}(M)$ such that $\pi_{0}\left(x^{\prime}\right)$ is the unique element of order $2, \delta$, in $H_{n}\left(L_{m}^{\prime}, K_{0}\right)$ and $\left(\pi_{1}\left(x^{\prime}\right)_{2} \neq 0\right.$.

Proof. $\quad H_{n}\left(L_{m}^{\prime}, K_{0}\right) \cong H_{n}\left(L_{m}^{\prime}, K_{1}\right) \cong Z_{2}+\mathcal{O}$, where \mathcal{O} is odd torsion. Consider compositions P_{0}, P_{1}

Ker $P_{0} \not \subset \operatorname{ker} P_{1}$, otherwise P_{1} could be factored through P_{0} by an epimorphism (dotted arrow). Let $x \in \operatorname{ker} P_{0}-\operatorname{ker} P_{1} . \pi_{0}(x)=0$ or δ, $\left(\pi_{1}(x)\right)_{2} \neq 0$. If $\pi_{0}(x)=\delta$, set $x^{\prime}=x$ and we are finished. If $\pi_{0}(x)=0$ let $y \in \operatorname{ker} f_{n}^{\prime}$ satisfy $\pi_{0}(y)=\delta$. If $\left(\pi_{1}(y)\right)_{2} \neq 0$, set $x^{\prime}=y$ and we are finished. If $\left(\pi_{1}(y)\right)_{2}=0$, set $x^{\prime}=x+y$. Now $\pi_{0}\left(x^{\prime}\right)=\pi_{0}(x+y)=$ $0+\delta=\delta$ and $\left(\pi_{1}\left(x^{\prime}\right)\right)_{2}=\left(\pi_{1}(x+\dot{y})\right)_{2}=\left(\pi_{1}(x)\right)_{2}+\left(\pi_{1}(y)\right)_{2}=1+0=1$.

Let $L_{r}^{\prime \prime}$ be the result of a normal surgery along x^{\prime}. Again looking at $\operatorname{Rank}_{Z_{2}}$ tells us $t\left(L_{r}^{\prime \prime}\right) \neq 0,2$. Therefore we can choose r so that $t\left(L_{r}^{\prime \prime}\right)=$ ± 1. It follows from diagram $(*)$ that $H_{n}\left(L_{r}^{\prime \prime}, K_{0}\right) \cong H_{n}\left(L_{m}^{\prime}, K_{0}\right) / Z_{2} . L_{r}^{\prime \prime}$ satisfies (3) above, but

$$
\operatorname{Rank}_{z_{p}}\left(H_{n}\left(L_{r}^{\prime \prime}, K_{0}\right) \otimes Z_{p}\right)=\operatorname{Rank}_{z_{p}}\left(H_{n}\left(L_{m}^{\prime}, K_{0}\right)<\operatorname{Rank}_{z_{p}}\left(H_{n}\left(L, K_{0}\right)\right)\right.
$$

so $L_{r}^{\prime \prime}$ also satisfies (4) above. This completes Case B.
$\operatorname{Rank}_{Z_{p}}\left(H_{n}\left(L, K_{0}\right) \otimes Z_{p}\right)$ is finite so after a finite number of applications of Lemma 5, it is no longer possible to reduce the Z_{p}-rank without increasing order $\left(H_{n}\left(L, K_{0}\right)\right)$. So we can find a normal cobordism rel ∂ of L to L^{\prime} with (1), (2) and (3') satisfied. By inducting on order $\left(H_{n}\left(L, K_{0}\right)\right)$, we have a normal bordism rel boundary to L^{\prime} with $H_{*}\left(L^{\prime}, K_{0}\right)=0$, all values of $*$. Theorem 1 now follows from the h-cobordism theorem.

Proof of Theorem 2. If n is even, surgery on a torsion class of $H_{n}\left(L, K_{0}\right)$ will always increase the $\operatorname{rank}_{Z}\left(H_{n}\left(L, K_{0}\right)\right)$ (see Lemma IV.3.8 of [1]). Remark 3 shows that it may be impossible to do surgery to lower $\operatorname{Rank}_{z}\left(H_{n}\left(L, K_{0}\right)\right)$ without increasing order (torsion $H_{n}\left(L, K_{0}\right)$). This prevents the usual inductive argument on order torsion $H_{n}\left(L, K_{0}\right)$, and is the reason that Theorem 2 requires an additional assumption.

Let $\left\{\alpha_{1}^{0}, \cdots, \alpha_{k}^{0}\right\} \subset \operatorname{ker} f_{0}: \quad H_{n}\left(K_{0}\right) \rightarrow H_{n}(M) \quad$ be \quad a basis for $\left(\operatorname{ker} f_{0} ; Z\right) /$ torsion and let $\left\{\alpha_{1}^{1}, \cdots, \alpha_{k}^{1}\right\} \subset\left(\operatorname{ker} f_{1}, Z\right)$ be the isometric image of $\left\{\alpha_{1}^{0}, \cdots, \alpha_{k}^{0}\right\}$. By the relative Hurewicz Theorem, the α 's are spherical. The classes $\left\{\left(i_{0} .\left(\alpha_{1}^{0}\right)-i_{1} .\left(\alpha_{1}^{1}\right), \cdots, i_{0} .\left(\alpha_{k}^{0}\right)-i_{1} .\left(\alpha_{k}^{1}\right)\right\}\right.$ are represented by framed, imbedded n-spheres, s_{1}, \cdots, s_{k}. Let L^{\prime} be the result of a normal surgery on $\left\{s_{1}, \cdots, s_{k}\right\}$. Let h_{0}, h_{1} denote the inclusions $K_{0} \rightarrow L^{\prime}, K_{1} \rightarrow L^{\prime}$.

Lemma 7. $h_{0}\left(\operatorname{ker} f_{0} ; Z\right)=h_{1} \cdot\left(\operatorname{ker} f_{1} ; Z\right)$ in the quotient $H_{n}\left(L^{\prime} ; Z\right) /$ torsion.

Proof. By induction on the number of surgeries. We will denote the inclusions at any stage by inc ${ }_{0}$ and inc ${ }_{1}$. Surgery on s_{1} makes $\operatorname{inc}_{0}\left(\alpha_{1}^{0}\right)=\operatorname{inc}_{1}\left(\alpha_{1}^{1}\right)$. Assume that after surgery on s_{1}, \cdots, s_{j}, $\operatorname{inc}_{0}\left(\alpha_{i}^{0}\right)=$ $\operatorname{inc}_{1}\left(\alpha_{1}^{1}\right), \quad 1 \leqq i \leqq j$. Let b_{1}, \cdots, b_{l} be simplicial chains with $\partial b_{i}=$ $\alpha_{1}^{0} \cup-\alpha_{1}^{1}$. Let Π denote algebraic intersection. $\prod_{L}\left(s_{1+1}, b_{1}\right)=$ $\prod_{K_{0}}\left(\alpha_{1+1}^{0}, \alpha_{1}^{0}\right)+\prod_{K_{1}}\left(-\alpha_{j+1}^{1}, \alpha_{t}^{1}\right)=0$ (using the isometry). As a result, $\operatorname{inc}_{0}\left(\alpha_{1}^{0}\right)$ and $\operatorname{inc}_{1}\left(\alpha_{1}^{1}\right)$ remain equal after surgery on s_{j+1} and $\operatorname{inc}_{0}\left(\alpha_{j+1}^{0}\right)=$ $\operatorname{inc}_{1}\left(\alpha_{1+1}^{1}\right)$. The lemma follows.

Consider the following diagram with all kernels interpreted by applying the function $H_{n}(\quad ; Z)$.

Lemma 7 implies $\quad h_{1}\left(\operatorname{ker} f_{1}\right)=h_{0}\left(\operatorname{ker} f_{0}\right) \quad$ in the quotient (ker $f) /$ torsion.

Assuming the hypothesis of Theorem 2, we have:
Lemma 8. Suppose $h_{1}\left(\operatorname{ker} f_{1}\right)=h_{0}\left(\operatorname{ker} f_{0}\right)$ in the quotient $(\operatorname{ker} f) /$ torsion. If $\operatorname{Rank}_{z} H_{n}\left(L, K_{0}\right)>0 \exists x \in \operatorname{ker} f$ such that
(1) $\pi_{\epsilon}(x)=x_{\epsilon}$ generates a free summand of $H_{n}\left(L, K_{\epsilon}\right)$, for $\epsilon=0,1$, and
(2) If L^{\prime} is the result of surgery on $x, h_{1} \cdot\left(\operatorname{ker} f_{1}\right)=h_{0} \cdot\left(\operatorname{ker} f_{0}\right)$ in the quotient ($\mathrm{ker} f^{\prime}$)/torsion.
(3) $\quad H_{n}\left(L, K_{0}\right) \cong H_{n}\left(L^{\prime}, K_{0}\right) \oplus Z$.

Proof. Let $y \in H_{n}\left(L, K_{0}\right)$ generate a free summand. Let $x^{\prime} \in \operatorname{ker} f$ satisfy $\pi_{0}\left(x^{\prime}\right)=y . \pi_{1}\left(x^{\prime}\right)$ generates a free summand of $H_{n}\left(L, K_{1}\right)$ (Proof: Consider the above diagram modulo torsion.). Let $b_{\mathrm{t}}, 1 \leqq i \leqq k$, be as before. Let $a_{t}=\mathbb{T}\left(x^{\prime}, b_{t}\right)$. Since $\left(\operatorname{ker} f_{0 .}, \mathbb{T}\right)$ is nonsingular, $\exists \beta \in$ $\operatorname{ker} f_{0}$ such that $\prod_{K_{0}}\left(\beta, \alpha_{t}\right)=-a_{t} \quad \forall 1 \leqq i \leqq k$. Set $\quad x=x^{\prime}+i_{0}(\beta)$. $\Pi\left(x^{\prime}, b_{t}\right)=0 \forall b_{1}$. (2) now follows. It is easy to check (3) using diagram (*) of Lemma 2. (Compare with Remark 3.)

Let ($L^{\prime} ; K_{0}, K_{1}$) be a normal bordism satisfying the conclusion of Lemma 7. By virtue of Lemma 8, we may do surgery to eliminate $H_{n}\left(L^{\prime}, K_{0}\right)$. The argument for this coincides with "the proof of Theorem IV.2.1 for $m=2 q+1, q$ even', page 104, [1]. As before, L^{\prime} becomes an h-cobordism completing the proof of Theorem 2.

Remark 4. If $n=2$, this argument may be used to give another proof of: homotopy equivalence $\Rightarrow h$-cobordism for simply connected 4-manifolds, see Wall, [4].

The Proof of Theorem 3. We may again assume $H_{*}\left(L, K_{0}\right)=0$, $* \neq n, n+1$. L may be described as $K_{0} \times I \cup n, n+1$-handles. Let D_{j}^{+}be the cores of the n-handles. Disks $D_{j}^{-} \rightarrow K_{0} \times I$ may be chosen so that $f_{\#}\left[D_{j}^{+} \cup D_{j}^{-}\right]=0 \in \pi_{n}(M)$ as $f_{\#}: \pi_{n-1}\left(K_{0}\right) \rightarrow \pi_{n-1}(M)$ is an isomorphism and $f_{\#}: \pi_{n}\left(K_{0}\right) \rightarrow \pi_{n}(M)$ is surjective. Let H be the level set of L after the n-handles have been attached. The preceding statement implies that H is obtained from K_{0} by a sequence of surgeries on $(n-1)$-spheres, ∂D_{j}^{-}, trivialized by some null-homotopy $\left(D_{j}^{-}\right)$in $K_{0} \times I$. By general position $\left\{\partial D_{j}^{-}\right\}$is isotopically trivial (we check $(n-1)+1<\frac{1}{2}(2 n+1)$). Therefore, $H \stackrel{\text { diff }}{\equiv} K_{0} \#_{j}\left(S^{n} \times S^{n}\right)_{j}$. By turning L upside down, we obtain $H \stackrel{\text { diff }}{=} K \#_{k}\left(S^{n} \times S^{n}\right)_{k}$. This proves Theorem 3.

References

1. W. Browder, Surgery on simply connected manifolds, Springer-Verlag, 1972.
2. M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in co-dimension 2, I, J. Math. Soc. Japan, 24 (72), 586-608.
3. M. Kervaire and J. Milnor, Groups of homotopy spheres I, Ann. Math., 77 (1963), 504-537.
4. C. T. C. Wall, On simply connected 4-manifolds, J. London Math. Soc., 39 (1964), 141-149.

Received May 19, 1975. Partially supported by NSF Grant.
Institute for Advanced Study

