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UNIQUENESS THEOREMS FOR TAUT SUBMANIFOLDS

MICHAEL FREEDMAN

1. Introduction and statements of theorems. Given
two closed smooth manifolds, how do you tell if they are diffeomorphic?
If you start out with a homotopy equivalence, Browder-Novikoff Theory
breaks the problem up into: (1) finding all self-equivalences, (2) finding a
normal bordism, and (3) the surgery obstruction on the normal
bordism. In applications, however, one may encounter manifolds sus-
pected of being diffeomorphic, where no obvious homotopy equivalence
is present.

ζ

We describe such a situation: Let I be a simply connected, finite,
M

simplicial complex with linear bundle. Let K2n-+ M, i = 0 or 1, n ^ 3 ,

be normal maps from closed smooth manifolds, i.e. f*(ζ)= v(Ki)
Suppose that /, and f2 are normally bordant, / is n -connected, and that
Bn(KQ) = Bn(Kx). Bn here denotes the n-th Betti number. It follows from
Poincare's Duality and the universal coefficient theorem that Ko and Kx

have isomorphic integral homology groups, but a map inducing this
isomorphism is lacking. However,

THEOREM 1. If n is odd, Ko and Kx are diffeomorphic.

THEOREM 2. Ifn is even, but not 2, and the intersection pairings on

(Ker/0: Hn(K0; Z)-> Hn(M; Z))ltorsion and

(Ker/,: Hn{Kx Z)-* Hn(M; Z))/torsion

are isometric and nonsingular, then Ko and Kλ are diffeomorphic.

COROLLARY 1. // M 2 n + 2 is a compact, simply connected, smooth

2n+2-manifold, n odd, and K2

Q

n^M2n+2 and K]n-^M2n+1 are n-

connected inclusions of closed submanifolds with io*[Ko] =
/,.[£,] 6 H 2 n ( M 2 l l + 2 ; Z ) , then if Bn(K0) = Bn{Kx), Ko is diffeomorphic to
Kx.

COROLLARY 2. Assume M2n+1 is a simply connected smooth In + 2-
manifold, n even ( n ^ 2 ) , with Hn(M,Z) = 0. If i0 and ix are as above,
then if the intersection pairings on Hn(KQ;Z)/torsion and
Hn(Kx;Z)/torsion are isometric, Kx is diffeomorphic to K2.

REMARK 1. The above corollaries are specialized by replacing the

379



380 MICHAEL FREEDMAN

connectivity assumptions with the assumption that the submanifolds are
taut (definition: π (M-neighborhood (K), d) = 0, i^n).

REMARK 2. It follows from Corollary 1 and [2] that if n is odd and
7r,(M2n+2) = 0, every homology class X E Hln(M2n+2\ Z) is represented by
a simplest submanifold with an n -connected inclusion map, K°, and
every other submanifold with an n -connected inclusion map is dif-
feomorphic to K* = K° ΦSn x Sn x # • • • # £ " xS", t SO.

ί-copies

THEOREM 3. 1/ ττi(M2"+2) = 0, and // Ko and K1 are submanifolds
representing X E H2n{M2n+2\ Z) with n-connected inclusion maps, then
there are integers /, k such that KQ #Sn x Sn # - - #Sn x Sn is diffeomor-

/-copies

phic to Ki #SnxSn #-'#Sn xS".

k -copies

2. Proofs . (All coefficients will be integral unless stated.)
Thm 1 Φ Cor 1 and Thm 2 Φ Cor 2: Let N be a very large integer.
i: CPN1-> CPN is an isomorphism on H2( Z ) so there is a unique

2-plane bundle i extending VCP
N-I->CPN> Since i1 [JKΓ1] = ίVt^L there is a

CPN

homotopy h:MxI^CPN with ho\CPNι) = KQ and /ίΓ1(CFN"1) =
JK",. Λ *(^) extends ^K0X0-+MXO and vKλXλ^Mxλ. Furthermore, the inclusions

K0x0-^ I and J K Ί X 1 - > I are normal maps and if h is
MXO M x l

transverse to CPN~\ h~ι(CPN1) provides a normal bordism. This
together with the hypothesis of Corollary 1 (or Corollary 2) is the
hypothesis of Theorem 1 (or Theorem 2). Corollary 1 (or Corollary 2)
follows.

Proof of Theorem 1. Let L, dL = K0U — Ku be a normal
bordism. By Theorem 1.2 [4] we may assume f:L—>M is n-
connected. It follows that //*(L, JKΓ0) = 0 for * ̂  n, n + 1. Our plan is to
perform some normal n -surgery on interior (L) to produce V with
Hn(L',K0) = 0 (this will leave H*(L,K0) unchanged * g n - l ) . By

duality and U.C.T. H*(L', Ko) = 0, and L s K o x / φ K i ^ K o by the

ft-cobordism theorem.
Let i0: Ko->L and ix\Kλ->L be the inclusions. Consider the

following commutative diagram:
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0

I
0 > Hn+1(M,L) _ ^ H ( L K o ) >Q

ί I^ » H n + 1 ( M ) >Hnl(M,L) >Hn(L)
|/d ΐ'Ό* t/o* ΐ id

-> Hn+1(M) > Hn+1(M, Ko) > #„ (i:0) A ^ H ( M

Since /0 factors through i0, coker(/0n+1)-> coker(/n+i) is epi. There is a
short exact sequence

^ ^ 1 -> Ker/n/, -^0
i o * - H n + i ( M , Λ.0/) Ό (κ.r/Ori)

0

so there is a natural isomorphism
Ker/n/ =Hn(L,K0).

We will consider the two modules identified.
Duality and the U.C.T. show Hn(L,K0) and Hn{L,Kx) are isomor-

phic. So we have a noncommutative diagram:

V f ) ( = Co

Λ =ker/π

 eρ/^ llί

^ ^ k e r / π /
Ί (ker/0

We need an algebraic fact about such diagrams.

L E M M A 1. IfFis a field, there are elements au- - -,ak E A, such that
) 5 α fcα^is /or C€ (8)ZF9 e = 0 or 1.

Proof. By induction. dimF (Co (8)z^) - dimF ( d (Sίzi7). Suppose
fl! α; are already chosen so that τr6(αi)® 1, , πe(α ; )(g)l are
independent. Let the spans of these vectors be sρan;;o and spanA1. If
these spans are proper subspaces of CQ§§ZF and Cλ(g)zf, then
^ ( s p a n ^ ) are proper subspaces of A §§ZF. Let α/+i be any element of
A such that α,+1(g)l E (A ® Z F - (Ue=0,i π ^span^)))^ 0 .

In order to compute the effect on Hn (L, Ko) of normal n -surgeries
along L, we use a diagram adapted from Lemma IV.3.2 [1]. (At this
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point it may be helpful for the reader to review the proof that the odd
dimensional simply connected surgery obstruction vanishes, see Ch. IV,
§3 of [1]. This argument is originally due to J. Milnor and M. Kervaire,
see [3].)

LEMMA 2. If L' results from a normal surgery on Snc->L, [Sn] =
x E ker/n, we have the following diagram:

(*) Hn+i(L',K0)

Hn+ι{L, Ko)

zeλ'

I'1
Hn (Lo, KQ) - Hn(L,K0) >0

Hn(L',K0)

0

with: (1) TΓO(JC) = x0 = i*ίi(λ'), where λ' is the appropriate generator
above. (2) The map θ: Hn+i(L,K0)—> Z is given by intersection with

Proof. (1) See Lemma IV.3.2 [1].
(2) θ: Hn+ι(L,Ko)-*Z may be thought of as:

Hn+ι(L/K0)-!>Hn+i(L/Kn,L0/K0)^Hn+ι(S» x D"+ 1, 5" x S»]

J
where the last map is evaluation of the Thom class U G
H ' H ( S " x D " + 1 , $ " x S n ) . Let a £ Hn+ι(L/K0). /•(ex<ΓIl/)(α) =
U(J*a)=θ(a).

Hn+\Sn xDn+1,Sn

nxDn+\SnxSn]

Hn(S">

[S

j *(exc-' U) (Ί [L, Ko U X,] = τr,(x ) e Hn (L, K,), so
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where denotes algebraic intersection.

LEMMA 3. If we set y = i*d(λ), then:
(1) Hn(L\ K0)l(y) = Hn(L, K0)/(x0), { ) means "subgroup generated

by-.
(2) Suppose (x{)) has finite order s, then for some t E Z sdf(λ') +

td(λ) = 0. Order (y) = oo iff t = 0. Order y = t iff t^O.
(3) // n is ez ett (as m Theorem 2), ί = 0.
(4) If n is odd (as in Theorem 1), L' is not uniquely determined, and

may be varied to L'm by changing the framing of the surgery along x by m
times the generator of ker(πn(SO(n + 1))—> ττn(SO)) = Z. So t is a
function of L'm. We have the relation: t(Lln)= t(L') + 2ms.

Proof. These facts correspond to Lemmas 3.2, 3.5, 3.8 and 3.11
respectively in Chapter IV of [1].

LEMMA 4. L2n —>l is normally bordant rel d to L' satisfying
M

H*(L\ KQ) = 0, * ^ n - 1 and Hn(L\ KQ) = torsion. (This lemma holds for
n even or odd.)

Proof In Lemma 1 set F = Q, normal surgery on the classes
{aU'-',ak} affords the desired V. More precisely, assume
Rank z (Hn(L, Ko)) > 0. By setting F = Q and ax = x in Lemma 1, TΓO(JC) =
JCO and τri(jt}= x{ are infinite order. Therefore, by diagram (*) (xo)= Z
and (y) = torsion. Let L' result from surgery on x. Now (1) of Lemma 3
implies Rank z (Hn (L \ Ko)) = Rand z (Hn (L, Xo)) - 1. Proceed induc-
tively.

REMARK 3. It may not be possible to do the preceding construction
without increasing the order of torsion (Hn(L, Ko)). The reason is that
there are diagrams, for example:

so that lkx^iZ + Z with π€(x) generating a free summand. So unlike
the classical case, killing the free part may increase the torsion!

LEMMA A'. Given a prime, p, L2n —» I is normally bordant rel dtoL'
M

such that H*(L\K0) = 0, * ^ n - l , and Hn(L\ KO)®ZP = 0. (This
lemma holds for n even or odd.)
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Proof. Assume L satisfies the conclusion of Lemma 4. In Lemma
1 set F = Zp and ax = x. Now consider diagram (*) with Zp coefficient.
The mod p reductions (τro(x))p = (xo)p E Hn(L,K0;Zp) and (TΓI(JC))P =
(jCi)p G Hn(L, Kχ\Zp) are nonzero, d is the zero map so by (1) of Lemma
3:

RankZp (tfn(L, Ko; Zp)) = RankZp (H n (L', Ko);Zp) + 1.

Using the U.C.T. and Hn+ι(L«\K0;Z) = 0 we have:

RankZp (Hn(L, Xo; Z)(g) Z p ) = RankZp (Hn(L\ KO)®ZP)+1.

Lemma 4' now follows by induction on the above rank.

The argument is now restricted t o n = odd. The prime 2 will play a
special role.

Let L satisfy H*(L, Ko) = 0, * ^ n - 1 and Hn(L, K0)<g>Z2 = 0 (i.e.,
Hn(L,K0) is odd torsion).

LEMMA 5. If n is odd and L is as above, and if a prime p/order
(Hn(L, Ko)) there is a normal bordism rel dLtoL' (consisting of either one
or two normal n-surgeries) with: (1) / / * ( ! / , Ko) = 0, * ^ n - l , (2)
Hn (L', Ko) odd torsion, and either: (3) order Hn (L', Ko) ^ order Hn (L, Ko),
and (4) Rank Z p (// n (L',X o )(8)Z p )<Rank Z p (// n (L,Xo)®Z p )) or (3')
order Hn (L', Ko) < order Hn (L, Ko)

Froo/. In Lemma 1 set F = Z p and #i = x. As in the proof of
Lemma 4', any normal surgery based on x results in an V with
RankZ p(ffn(L', KO)®ZP) < RankZ p(Hn(L, X0)(g)Zp). By (4) of Lemma 3
V m, ί(L^) = ί(L ;) + 2ms, where 5 = order x0 G Hn(L, Ko). By (1) and (2)
of Lemma 3, ί ( L ^ ) ^ 0 iff Hn(L4, Xo) = torsion, and order (torsion
H n (L: , Ko))^ order (torsion Hn(Lm, Ko)) iff - s ^ ί (Li) g 5. If (and only
if) f(L;) = 25, order H n (L' , Ko) = 2(order HH(L9 Ko)). We may choose m
so that: Case A. t(L'm) ϊ 0 and - s ^ ί ( L : ) g s or Case B. t{L'm) = 2s.

In each case diagram (*) with Z 2 coefficients shows
RankZ2 (//„(!/, X 0 ) ® Z 2 ) = 0 or 1. In Case Λ we are finished if the
above rank is zero; assume it is one. If ί(L^) = ± s, order Hn(L\ Ko) =
order Hn(L,K0), so (2) and (3) above are satisfied and we are
finished. So add the assumption: - s < t(L'n)< s. Then order
Hn(L',KQ)< order Hn(L,K0). Now Lemma 1 with F = Z 2 provides
x' = έi! E ker/^: Hn(L')-> Hn(M), so that if L" is the result of a normal
surgery on x' then Hn(L",K0)^}Z2

:= 0. 3 r G Z such that -order
x ' g ί(L' r

r)border x'. However, t(L")/0 as this would imply order
H(L';,Ko) = oo, contradicting Hn(L' , K 0 ) ® Z 2 = 0. So order (Hn(L"nKo))
g order (Hn (L , Ko)) < order (//„ (L, Ko)) so (3') above is satisfied. This
completes Case A.
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In Case B order {Hn{L'm, Ko)) = 2(order (Hn(L,K0))).

385

LEMMA 6. 3 x ' e ker/;,: Hn(L :)->//„ (M) swc/ί tfiαί 7ΓO(JC') w r/ιe
unique element of order 2, δ, m Hn(L'm,KQ) and {τrι(x'))27^ 0.

Proo/. Hn(L ,Ko) = Hn(L ,Kλ) = Z 2 + <?, where 0 is odd torsion.
Consider compositions Po, Pλ

ker/;

Ker PoftkevPu otherwise Pλ could be factored through Po by an
epimorphism (dotted arrow). Let cEkerPo—ker Pi. TΓO(JC) = 0 or δ,
(77i(x))27^ 0. If TTQ(X) = δ, set x' - x and we are finished. If πo(x) = 0 let
yEker/i satisfy 7ro(y)=δ. If (^(y)) 2 ^0, set x'= y and we are
finished. If (τr1(y))2 = 0, set jt' = Jt + y. Now πo(x') = πo(x + y) =
0+ δ = δ and (TΓΪOOX = M * 4- y))2 = (^(JC)) 2

Let L" be the result of a normal surgery along x'. Again looking at
RankZ2 tells us ί(L'r')^0,2. Therefore we can choose r so that t(L") =
±1. It follows from diagram (*) that Hn{L\Ko) = Hn{Lf

m,Ko)/Z2. L"r

satisfies (3) above, but

RankZp (Hn (L ' , Ko) (g) Zp) = RankZp (/fn (L , Ko) < RankZp (Hn (L, Ko))

so L'r' also satisfies (4) above. This completes Case B.

RankZp (Hn (L, Ko)® Zp) is finite so after a finite number of applica-
tions of Lemma 5, it is no longer possible to reduce the Zp-rank without
increasing order (Hn(L, Ko)). So we can find a normal cobordism rel d
of L to L' with (1), (2) and (3') satisfied. By inducting on order
(Hn(L,K0)), we have a normal bordism rel boundary to V with
H*(L\K0) = 0, all values of *. Theorem 1 now follows from the
h -cobordism theorem.



386 MICHAEL FREEDMAN

Proof of Theorem 2. If n is even, surgery on a torsion class of
Hn(L,K0) will always increase the rankz(fίn(L, Ko)) (see Lemma IV.3.8
of [1]). Remark 3 shows that it may be impossible to do surgery to lower
Rankz(Hn(L, Ko)) without increasing order (torsion Hn(L,K0)). This
prevents the usual inductive argument on order torsion Hn{L, Ko% and is
the reason that Theorem 2 requires an additional assumption.

Let {α?, ,αo

k}Cker/o: Hn(K0)-+Hn(M) be a basis for
(ker/0; Z)/torsion and let {a\, , a{} C (ker/ l 9Z) be the isometric
image of {a°u , α°}. By the relative Hurewicz Theorem, the α's are
spherical. The classes {(io.(a?) - iu(a 1), , io.(αί) - i\.{a 1)} are rep-
resented by framed, imbedded n-spheres, su , sk. Let L' be the result
of a normal surgery on {•$,,•••,$*}. Let ho,hι denote the inclusions
Jvo —> L , K! —> L .

LEMMA 7. h0Xkerf0;Z)= hι.(keτfι;Z) in the quotient
Hn(L';Z)/torsion.

Proof By induction on the number of surgeries. We will denote
the inclusions at any stage by inc0 and inci. Surgery on sλ makes
inco(α?) = inc ](α!). Assume that after surgery on su •• ,5/, inco(α°) =
inc^α!), l g / g y . Let ftl5 •••,&, be simplicial chains with db,•,. =
a^U-a). Let ίtl denote algebraic intersection. (\\L(sJ+u h) =
ΓΠj(o(α?+i,αfί)+fΓlκ1(-αy

1

+i,α!) = 0 (using the isometry). As a result,
incoia0,) and inc,(α!) remain equal after surgery on s,+ί and inco(α7

o

+i) =
inci(αj+i). The lemma follows.

Consider the following diagram with all kernels interpreted by
applying the function Hn( Z) .

ker//ft,.(ker/I)«»HI1(L,i:1)

ker/i

Lemma 7 implies /i!(ker/i)= /ιo(ker/o) in the quotient
(ker/)/torsion.

Assuming the hypothesis of Theorem 2, we have:

LEMMA 8. Suppose hι.(kerfι) = fιo.(ker/o) m the quotient
(ker/)/torsion. If RankzHn(L, Ko) > 0 3 x E ker/ swcfi ί/iαί
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(1) π€(x) = x€ generates a free summand of Hn(L, K€), for e = 0,1,
and

(2) If L' is the result of surgery on x, h1.(ker/1)= ho*(ker/o) in the
quotient (ker /')/torsion.

(3) Hn(L,Ko) = Hn(L',

Proof Let y E Hn(L, Ko) generate a free summand. Let J t 'Eker /
satisfy TΓO(JC') = y. τri(x') generates a free summand of Hn(L, K^) (Proof:
Consider the above diagram modulo torsion.). Let ί?z, 1 S i ^ k, be as
before. Let α, = ίΐl(jc',&,). Since (ker/0., Φ) is nonsingular, 3 β E
ker/o such that (Wκo(β, <**) = ~ a* V ί^i^k. Set JC = JC'+ /0(j8).
(Π (JC\ fe.) = 0 V &,. (2) now follows. It is easy to check (3) using diagram
(*) of Lemma 2. (Compare with Remark 3.)

Let {L'\KQ,Kλ) be a normal bordism satisfying the conclusion of
Lemma 7. By virtue of Lemma 8, we may do surgery to eliminate
Hn(L\K0). The argument for this coincides with "the proof of
Theorem IV.2.1 for m = 2q + 1, q even", page 104, [1]. As before, L'
becomes an /ι-cobordism completing the proof of Theorem 2.

REMARK 4. If n = 2, this argument may be used to give another
proof of: homotopy equivalence Φ /ι-cobordism for simply connected
4-manifolds, see Wall, [4].

The Proof of Theorem 3. We may again assume H*(L,K0) = 0,
* / n, n + 1. L may be described as KQ x / U rc, n + 1-handles. Let Df be
the cores of the n-handles. Disks Dj->Kox I may be chosen so that
/ # [D ;

+ UD y "] = 0 E πn(M) as /#: 7rπ-i(K0)-* ππ-i(Λf) is an isomorphism
and />: TΓΠ(1CO)-» τrn(M) is surjective. Let H be the level set of L after
the n-handles have been attached. The preceding statement implies
that H is obtained from KQ by a sequence of surgeries on (n - l)-spheres,
dDj, trivialized by some null-homotopy (Dj) in Kϋx L By general
position {3D7} is isotopically trivial (we check (n - 1) + \<\(2n + 1)).

Therefore, H^ K0#j(Sn x S n ) Γ By turning L upside down, we obtain
diff

H = K#k (Sn x Sn)k. This proves Theorem 3.
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