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ON FINITE HANKEL TRANSFORMATION
OF GENERALIZED FUNCTIONS

L. S. DuBe

In this paper the finite Hankel transformation of generali-
zed function of a certain space is defined, and an inversion
formula for the transformation is established. The inversion
formula gives rise to a Fourier-Bessel series expansion of
generalized functions. The convergence of the series is inter-
preted in the weak distributional sense. An operation trans-
form formula is also obtained, which together with the inversion
formula, is applied in solving certain distributional differential
equations.

1. Introduction. The orthonormal series expansions of dis-
tributions of certain classes have been studied by Gelfand and Shilov [3,
Vol. 3], Giertz [2], Walter [9] and Zemanian [11]. Some previous works
on Fourier and Hermite series expansions of certain classes of distribu-
tions are due to Schwartz 8, Vol. II] and Korevaar [5]. The procedures
of Giertz, Walter, and Korevaar are appropriate for the fundamental
sequence approach to generalized functions (see Lighthill [6] and
Korevaar [4]), whereas those of Schwartz, Gelfand and Shilov and
Zemanian, including the present work are suitable to functional ap-
proach to generalized functions.

Some particular cases of orthonormal series expansions including
Fourier-Bessel series expansion of generalized functions have also been
studied by Zemanian [11]. The method involved in his work is very
much related to Hilbert space techniques. The present goal is to extend
the classical inversion theorem for finite Hankel transform [10, p. 591] to
a class of generalized functions, which gives rise to the Fourier-Bessel
series expansion of the generalized function; the convergence of the
series is interpreted in the weak distributional sense. The techniques
developed in establishing the present inversion theorem are quite
different from those employed in previous works and, at the same time,
are quite simple and handy. An operation transform formula is also
established and is applied in solving certain distributional differential
equations.

The finite Hankel transformation of a function f(t) defined on the
interval (0, 1) is defined as

1.1) H(m) = f‘ if (0)J, (jut)dt, m=1,23"--,
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where J,(z) is the Bessel function of first kind of order » = — for any
complex z, and ji,J, J3, *+* are positive zeros of J,(z) arranged in the
ascending order. Note that for » > — 1, all the zeros of J,(z) lie on the
real x-axis [10, p. 483].

The inversion theorem for the transform (1.1) is given in [10, p. 591]
and stated as:

THEOREM 1.1. Let f(t) be a function defined over the interval (0, 1),
1

and letf t*f (t)dt exist and (if it is improper integral) let it be absolutely
0

convergent. Let

= 2 1 / — .« ..
an = Jiﬂ(im)fo tf ()], (jt)dt, m=1,2,3,---,

for v= —13. Let x be any internal point of an interval (a,b) such that
0<a <b<1 and that f(t) has total limited fluctuation in (a,b). Then
the series

%

(1.2) > and i)

m=1

is convergent, and its sum is {f(x +0)+ f(x —0)}, and is f(x) if the
function f is continuous at the point x.

In this paper, the above theorem will be extended to a class of
generalized functions.

2. The notation and terminology. Throughout this work,
jm, m =1,2,---, will denote the positive zeros of J,(z), arranged in the
ascending order. The interval (0,1) will be denoted by the letter
I. The letters ¢t and x will stand for real variables in the interval
(0,1). The symbol D (I) will denote the space of infinitely differentiable
functions on I = (0, 1), which have compact support on I. The topology
of D(I) is that which makes its dual D’'(I) of Schwartz’s
distribution. E(I) will denote the space of all infinitely differentiable
functions on I.  Its dual E'(I) is the space of distributions with compact
supports. We will use the following operators:

1 p\*

2.1) Q’;J:(Diﬁ-;Dx—xz), k=0,1,2--: »v=-1, D =23,

3. The testing function space U, ,(I) and its dual. For
each pair of real numbers « and v such that « =} and v = — 3, we define
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U, ,(I) as the space of all complex-valued functions ¢(x) on I =(0,1)
such that ¢(x) is infinitely differentiable and that

Yi'(e) = sup [x= QL [x o (x)]] < oo,

for each k =0,1,2,---.

U...(1) is a linear space. The topology of U, .(I) is that generated
by the collection of seminorms, {y§'}, k =0,1,2,---. U, ,(I) is the dual
of U, ,(I), and is equipped with the usual weak topology. We will refer
to the members of U_ ,(I) as generalized functions. It turns out that
U, .(I) is a Fréchet Space.

We now note some further properties of the space U, ,(I) and its
dual.

(i) D()CU,,(I)and the topology of D(I) is stronger than that
induced on it by U, ,(I). Consequently, the restriction of any member
of U, .,(I)to D(I) is in D'(I).

(i) The space E'(I) can be identified as a subspace of U, ,(I).

(i) Foreach f€ U, ,(I), there exist a nonnegative integer r and a
positive constant C such that, for all ¢ € U, ,(I)

[{f,e)| = C max yi*(¢).

0=k=r

The proof of this statement follows by the boundedness property of
generalized functions.
(iv) Let f(x) be a function defined on the interval (0, 1) such that

| ,
x"|f(x)|dx exists for @ =3. Then f(x) generates a regular
0

generalized function in U, ,(I) defined by
G1) o) = [ fWetd, ¢ UL,
This result easily follows from the inequality
(e = yi(e) [ x £ (ol dx <.

(v) Foreach m =1,2,---, and for » = —3 the function xJ,(j.x),
0<x <1,isamemberof U, ,(I). Indeed, an easy computation leads to

(32) (D241 D, = 2) (G0 = = 7).
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Using the above operational property, it is quite simple to see that
yi'[xJ,(jux )] <o for each k =0,1,2,---.

4. The generalized finite Hankel transformation. For
an arbitrary generalized function f € U, ,(I), we define its finite Hankel
transformation %, (f) as the application of f to the kernel xJ, (j,.x); i.e.,

(4.1) (H.f)(m)=F(m)=(f(x), xJ.(nx)), ~m=12,--
(4.1) is well defined in view of the fact that xJ,(j.x)€ U, ,(I) for
eachm=1,2,---.
We will often use the expression, Z)_;2J, (juX ), (jut)/J341(n) in
sequel, so let us denote it for simplicity by the symbol Ty(t, x), for N to
be any positive integer and ¢, x € (0, 1).

LEmma 4.1. Let f€ U, ,(I). Then for any positive integer N and
for an arbitrary ¢ (x)€ D (1),

.2) ﬁ] (F (0, (T (t, x)) ¢ (x )xdx = <f(t), L 1 ITN(t,x)qo(x)xdx>.

Proof. As it is obvious to see that the functions (Ty(t, x) for some
1

fixed x €(0,1), and f tTu(t, x ) (x)xdx are members of the space
0

U, .(I) with ¢ as the variable of testing functions, expressions on both the
sides of (4.2) have sense. Using the technique of Riemann sums as used
in [7, Th. 2], (4.2) can be easily established.

LEMMA 4.2. Leta, b be any two real numbers satisfying 0 <a < b <
1. Then

b
(4.3) %}Elf Tuv(t,x)xdx =1, when a<t<b.

Proof. By interchanging the variables x and ¢ and setting f(x) =1,
0<x <1 in Theorem 1.1, we get

1
}Vimf Tn(t,x)xdx =1 when O0<a<t<b<l.
—=Jo
Now,

1 a b 1
4.4) f Tn(t, x)x dx =f Tn(t, x)xdx +J' Tn(t, x)xdx +J Tn (2, x)xdx.
0 0 a b
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By virtue of the analogue of Riemann-Lebesgue Lemma [10, p. 589]
for f(x) =1, 0< x <1, the first and third integrals on the righthand side
of (4.3) tend to zero as N — o, when a <t < b. Therefore, taking limits
as N — « on both sides of (4.4), (4.3) is established.

LEmMA 4.3. Let ¥(x) be an arbitrary member of D(I), I=
(0,1). Then for a =3

4.5) t® fb Tn(t,x)[v(x)—¢()]xdx —0 as N—ow

uniformly for all t € (0, 1), where the support of Y(x) is contained in the
interval (a,b); 0<a<b<1.

Proof. Let us divide the interval (0, 1) into two mutually disjoint
sets (0,a)U (b, 1) and [a, b].

For t €(0,a)U (b, 1), ¢¥(t)=0, as support of ¥(t) is contained in
(a,b). Therefore,

Lb Tu(t, x)[Y(x)— ¢ (t)xdx = Jab Tn(t, x )¢ (x)x dx.

In view of the analogue of Riemann-Lebesgue Lemma [10, p. 589},
for a given € >0, there exists a positive integer N, such that for all
N = N,,

8cle

= )
w21 -b)Vi

fb Tn(t, X)) (x)dx

[10, p. 590, line 9] which is again bounded by 8cie/(mc3(1 — b)V'1). Here
¢, and ¢, are some constants. Therefore for all N = N, and for all
t€0,a)U(b1).

ta

1

b 8cle el 8cle .
L TN(t,x)tp(x)dx' = 71— B) e = 71— b)’ since a =

Hence, as € is arbitrary,
b
(4.6) t“f Tn(tx)[y(x)—¢(t)]xdx >0 as N—>oo,

uniformly for all 1t € (0,a) U (b, 1).
Next, we want to show that
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4.7) te fb Tu(t, )Y (x)—¢(t)]xdx—>0 as N

uniformly for all ¢t € [a, b].

Let F(t,x) (x*—=t)=x"" [¢(x)—¢(t)] for 0<x<1 and 0<t<
1. Now define the function G (¢, x) in the square domain {0 <t <1;0<
x <1} as:

F(t,x) t# x
G(tx)= {x‘”([/’gxl , t=x.
2x

Obviously G(t, x) is a continuous function of ¢ and x in the domain
{0<t<1;0<x<1}. Now,

fb T(t, x)[0(x) = w(t)]x dx = fb VF(t x) (6 — )T (1, x )dx

b
= [ x"'G(t x)(x* = ) Tu(t, x)dx,

as the value of the integral remains unchanged by replacing the expres-
sion F(t,x) (x> 1°) by G(t,x) (x*—1?).

Let us now divide the interval a = x = b into p equal parts by the
points a = Xy, X;, X», -+, X, = b, and write, G(t, x) = G(t, x,,-,) + W,. (¢, x),
for X, = x = X, a =t = b so that |W,(t,x)|= U, — L,, where U,, and
L, are repsectively the supremum and infimum of G(t,x) taken over
{Xpo=x=x,;a=t=b}, m=1,2,---,p.

Using uniform continuity of the function G(t, x) over the region
{a=t=b; a=x=0b} and following exactly on the same lines as in the
proof of the analogue of Riemann Lebesgue Lemma [10, p. 589], for an
arbitrary € >0, we get a positive integer N, such that

4cle

mei(1-b)Vi

<

fb x"'G(t x)(x* = )Ty (t, x )dx

a

for N = N,, where ¢, and ¢, are some constants. Hence for t € [qa, b],

4cle

~_ 4cle
mci(1-b)”°

=Tcii-b)"

i<

e [ T o - s ax

for N = N,. This proves (4.7), as € is arbitrary. Combining (4.6) and
(4.7), the lemma is proven.
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5. The main result. We will now prove the following inver-
sion theorem for our generalized finite Hankel transform.

THEOREM 5.1 (inversion). Let f be an arbitrary generalized function
in the space U/ (I) where v = —1, and let F(m) be the finite Hankel
transform of f as defined by (4.1). Then in the sense of convergence in
D'(I),

. X 2 .
(5.1) f(t) = lim mzzl oG F(m)J,(jnx).

Proof. Let ¢(x) be an arbitrary member of D(I). We wish to

show that

62 {3 i FOOLGa). e () = (0, (0

m=1

as N— oo,
Since ¢(x)€ D(I) iff xp(x)E D(I), (5.2) will be equivalent to
showing

62 (3 g FnLGw),xe () = (1), te (1)

m=1

as N — o,

As ¢(x) € D(I), let us assume that the support of ¢ (x) is contained
in the intereval (a, b), where 0 <a < b <1. Now, the theorem will be
proven by justifying the steps in the following manipulations:

63 (2T G0 xew)

(5.4) = f 2 Tzill(%lf(]mx)(p(x)xdx

(5.4 -[ 25 25 O .GV, G ) (6)x d
J, (., (]

(5.5) -[ <f(t>t2 PR ) ¢ (prdn

(5.5Y _ f (F(0), 1T (t, x))p (x)x dx

(5.6) - <f(t),t f " Tt %)@ (x)x dx>

(5.7) —=(f(t),t0(t)) as N-—co.
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(5.3) equals (54) in view of the fact that the function
21 RF(m)/Ja(m)). (jux) is locally integrable over the interval (0, 1),
and ¢ (x)is in D(I) with support contained in (a, b). (5.4)' leads to (5.5)
by the linearity of the functional. That (5.5)" equals (5.6) is proved in

Lemma 4.1. To prove that (5.6) converges to (5.7), we need show that
for each k =0,1,2,---

(5-8) QL [Lb Tn(t, x)e(x)xdx — go(t)] —0 as N-oox,

uniformly for all ¢ € (0, 1).
In view of the operational relation (3.2), one can easily see that

5.9 Q, [Tn(t, x)] = Q. [Tu(t, x)].

Since the order of differentiation and integration in (5.8) is inter-
changeable,

QV,,fb To(t, x ) (x)x dx = fb Q... [Tu(t, x)]o(x)x dx
- f " Tu(t )]e(x)xdx, (by (5.9))

b
= J' Tn(t, x)Q,  [¢(x)]x dx,
(by integration by parts).

Operating by the operator (), , successively and using the integration by
parts, it can be shown that,

o, [ T me@ds = [ T 00t e @)
Hence, in the light of Lemma 4.2, we have as N —x,
Q, U;b Tu(t, x)e(x)xdx — (p(t)] = J;b Tn(t, x)[Q40(x)— Qe (t)]x dx
- [ @ - vl

where (x)=Q%,0(x), which is obviously a member of D(I) with
support contained in (a, b).
Hence it suffices to show that



ON FINITE HANKEL TRANSFORMATION 373

te jb Tn(t, x)[(x)— &(t)]xdx converges to zero

as N — o uniformly for all t € (0, 1), which is true in view of Lemma 4.3.
This completes the proof of the theorem.

THEOREM 5.2 (The Uniqueness Theorem). Let f,g € U, (I) and
let finite Hankel transforms of f and g be F(m) and G (m) respectively, as
defined by (4.1). If F(m)= G(m) for each m =1,2,---, then f = g in
the sense of equality in D'(I).

Proof. By Theorem 5.1, in the sense of convergence in D'(I),

N

f-g=1lim Z 7. (]m)[F(m) G (m)|. (jnx)

N—ox
=0,as F(m)=G(m) foreachm =1,2,---
Hence f = g in the sense of equality in D'(I).

6. Illustration of the inversion theorem by means of a
numerical example. Consider the Dirac delta function &(t — k)
concentrated at a point k,0 < k <1. Since 6(t— k)€ E'(I)and E'(I)is
a subspace of U, (I) therefore 6(t — k)& U, (1). The finite Hankel
transform of §(t — k) is given as

H,(8(t = k))(m)=(8(t — k), 1J,(jnt))
= kJ,(juk), m=12---
Now for any ¢(x)€ D(I),

(2 753 Kk ) x6 ()

‘ 1 N 2
B 0 mZ=I ]Zy+1(jm)

= kJ" Tn(k, x)@(x)x dx

—ke(k), as N—o,

L Gk ), (mx ) (x)x dx

in view of the Hankel inversion theorem [10, p. 591]. But ke¢(k)=
(6(t — k), to(t)) and therefore the inversion theorem is illustrated.

7. Applications. Our finite Hankel transformation generates
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an operation transform formula which together with the inversion
theorem proved in §5, is applied in solving certain differential equations
involving generalized functions.

An operation transform formula. For v = —jand a =1, we define a
generalized operator (%, on U, (I) as the adjoint of the operator
xQ,,x"on U, ,(I). More specifically, for arbitrary ¢(x)in U, ,(I) and

for arbitrary f in U, (I)

(7.1) QL (), e (x)) = (f(x), x Qe x o (x)),

where as before, Q,, = D+ (1/x)D, — v*/x*.

The right-hand side of (7.1) has a sense because x{, ,.x '¢(x)€
U,.(I) when ¢(x)€ U, ,(I). Since the mapping ¢(x)— xQ, x ¢ (x)
is linear and continuous on U, ,(I), it follows that Q% , is linear and
continuous on U (I).

It can also be seen inductively that for any integer k

(7.2) Q) f(x), @(x) = (f(x), xQx " (x)),

and (% ,)* is linear and continuous on U/ (I).
Therefore,

QL) f (), X (nx )) = (f (x), x QL (X))
= (= DR (), xJ (mx)),

ie.,
(7.3) H Q) f] = (=D HAf), m=12,---,

which gives an operation transform formula.

Note that if f is a regular distribution in U, (I) generated by
elements of D(I), it can be easily seen by using integration by parts in
(7.1) that

(7.4) QL f= Q0 f,

in which case Q% , can be replaced by ), in (7.3). (7.4) also holds if we
take f as a regular generalized function in U, (I) and put some suitable
conditions on it so that the limit terms in integration by parts in (7.1)
vanish.

Now consider the operational equation

(7.5) PQ% )u=g 0<x<l1
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where g is a given member of U, ,(I), P is a polynomial such that
P(-ji)#0, m=1,2,---, and u is unknown generalized function but
required to be in U, (I).

By applying generalized finite Hankel transformation to (7.5) and
using (7.4), we obtain

P(—j)U(m)= G(m), m=1,2,--
so that
_ _G(m)
o vm = 5=

where U(m) and G(m) are generalized finite Hankel transformations of
u and g respectively. Applying the inversion theorem 5.1 to (7.6) we
get

X 2 G(m)

(17) u(x) =lim 2 76 P (- U

with equality in the sense of D’(I), which is a solution to (7.5). This
solution is in fact a restriction of u € U, (I) to D(I), and is unique in
view of Theorem 5.2.

One can easily verify that u as determined in (7.7) is also a solution
to the distributional differential equation

(7.8) P )u=g

Now observe that J,(axi), for any real number a satisfies the
distributional differential equation

(1.9) Q.. —a?u =0.

Using the variation of parameters one can show that the general
solution to (7.9) in D'(I) is given by

u(x)=J,(axi) [c fx [t]at)] " dt + d] , 0<x <1,

where ¢ and d are arbitrary constants.

Hence for a polynomial P(x)=(x —a?)(x —a3)---(x — a?), where
a;’s are distinct real numbers, the general solution of the distributional
differential equation (7.8) in D'(I) is given by
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u(x) = lim E Jiﬂzo'm) sz(—"}-% I+ Gnx)

+S J.(axi) [ckfx [t]i(akti)]“dt+dk} :
k=1 12

where ¢, and d, are arbitrary constants.

A Dirichlet problem in cylindrical co-ordinates. This part is devoted
to an application of the present theory to a Dirichlet problem in
cylindrical co-ordinates having some generalized function boundary
conditions. We wish to find a function u(r,z) on the domain
{(r,0,2):0<r<1,0=6=2m 0<z <}, where u(r,z) does not de-
pend upon 6 and satisfies the following differential equation:

’u 1 ou v? 3%*u
(7.10) L E

with the following boundary conditions:

(i) As z—o, u(r,z) converges in the sense of D'(I) to zero.

(i) As z—0+, u(r,z) converges in the sense of D'(I) to a
generalized function f(r)€ U, (I).

(i) Asr—0+, U(r,z)= O(r”) uniformly on n =z < for each
n> 0.

(iv) Asr—1—, u(r,z) converges to zero uniformly on n =z <
for each n >0.

Now, equation (7.10) can be written as

(7.11) Q,.u+%%=0.

By applying the generalized finite Hankel transform #, to (7.11),
and formally interchanging #, with §%/dz? we convert (7.11) into

2
—jf,.U(m,z)+:%:—2- U(m, z)=0, m=12, -,
where U(m, z)= %, [u(r,z)] =(u(r, 2), ], (j.r)).
Thus,
(7.12) U(m,z)=A(m)e’ + B(m)e',

where A(m) and B(m) are constants depending on m.
In view of boundary conditions (i) and (ii), we formally take
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lim,..U(m,z)=0 and lim,,U(m,z)=%,(f)=F(m) respectively
which suggest B(m)=0 and A(m)= F(m) in (7.12). Therefore

U(m,z)=F(m)e .

Applying inversion theorem 5.1 to the above equation we get

u(r,z) = lim 2 NENTTN (] F(m)e 2], (jur) in D'(I).

For each ¢ € D(I), one can show that

(u(r, z), o(r)) = Z 00 (/-m E(m)e™ ], (jur)e (r)dr,

so that u(r, z), as a classical function is obtained as follows:

0

(7.13) u(r,z) = >, .00 (]m) F(m)e " J,(jnr).

m=1

We now verify that (7.13) is truly a solution to (7.10). It is an easy
consequence of note (iii) of §3 that, as m —c, F(m)= O(j2?) for some
nonnegative integer n.

Moreover,

1

—> , as m —> o,

j,,,~7r(m +1v~4

2

Ju+1(jm)~\/ﬂ—2.m—, as m-—>®

e’=0(e ™) uniformly on n=z<w

for each fixed n >0, and J,(j,r) is uniformly bounded for each m =
1,2,--- on 0<r<1. Using these facts, we can easily verify that the
series (7.13) and the series obtained by applying the operators (1,, and
D? separately under the summation sign of (7.13) converge uniformly on
0<r<land n =z < (n>0). Thus applying 2, , + D?term by term
to (7.13) and using the fact Q, ,[J,(j.r)] = — j2J.(jr), we see that (7.13)
satisfies the differential equation (7.10).

The uniform convergence of (7.13) leads to the verification of
boundary conditions (iii) and (iv) by taking the limits as r—0+ and
r— 1— respectively under the summation sign.

The boundary condition (ii) is verified by justifying the following
steps. For any ¢(r)€ D(I),
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lim < mE} 72—%@ F(m)e 1, (jur), qo(r)>

(7.14) = lim 01 > {Jiﬂ(jm) F(m)e ], (,mr)<p(r)}
(7.15) 2 (]m S Fm)J,ar)e (r)dr
(7.16) =<ﬁ ®).

The step (7.14) is straightforward. The uniform convergence of the
series in (7.14)on 0 <r <1 and n = z < for any n >0 allows us to take
the limit as z — 0 + under the integral sign and then under the summation
sign, and leads to (7.15). Finally, (7.15) equals (7.16) in view of Theorem
5.1.

The boundary condition (i) can be verified exactly in the same way as
(it). This completes our verification of (7.13) as a solution to
(7.10). This solution is unique in the sense of equality over D'(I) in view
of Theorem 5.2.
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