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COMMUTANTS OF MULTIPLIERS AND
TRANSLATION OPERATORS

MARTIN BARTELT

This note discusses a method for the determination of the
commutant of a set of translation operators on the ring of
bounded functions in C(X), X locally compact.

1. Introduction. If X is a locally compact group, then X can
be represented and studied as a class of operators on C,(X). Indeed, if
x € X and f € G,(X), then one defines an operator U, on C,(X) by
Uf(y)=f(y +x), V€ CG(X). The commutant of {U,: x € X} was
studied in [3] and [4].

The general method of §3 for the determination of the commutant of
a set of translation operators is applied to the study of the commutant of
a class of operators on bounded analytic functions. In §4 some directly
obtainable results are given on commutants of multiplier operators on
bounded analytic functions.

2. Definitions. Let X denote a locally compact Hausdorff
space. Let C(X) denote the algebra of continuous complex valued
functions on X and let C,(X) denote the subalgebra of C(X) consisting
of bounded continuous functions. One can study C,(X) in the to-
pologies k, B, or o; respectively, uniform convergence on compact
subsets of X, the strict topology or uniform convergence on X. The
topology o is a norm topology with ||f||=sup,ex|f(x)|. The strict
topology was introduced in [6] and its properties may be found in [5], [6],
[8] and [9]. Particularly relevant here are that the ¢ and B bounded
subsets of C,(X) coincide; on B bounded subsets of C,(X), the strict
topology coincides with « ; and a sequence {f, } converges B to zero if and
only if it is ¢ bounded and k convergent [6].

Denote by (C(X), c.0.) the space C(X) endowed with the compact
open topology or equivalently with the topology of uniform convergence
on compact subsets. The space (C(X — X), c.0.) is similarly defined.

Let B denote the bounded analytic functions on the open unit disc
D ={z:|z| <1} in the complex plane. Since B is a k closed subspace of
G,(D), one may consider B endowed with any one of the topologies k,
or o, denoted respectively by (B,«), (B,B) and (B,a). The algebra
[B: B] of all continuous linear operators from (B, B8) into (B, 8) has been
studied in [1] and [2], and it is closely related to an algebra of operators
studied in [4]. In particular [8: B]is a norm closed subalgebra of [o: o]
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the algebra of all continuous linear operators from (B, o) into (B, o) and
[B: B] seems more tractable than the larger algebra [o: o].

We will be concerned with translation operators and the commutant
in various spaces of operators of a given set of operators.

DEerINITION.  For ¢ a continuous map of X into X, the translation
operator U, is defined on C,(X) by

Usf (x) = f(&(x)).

DEerFINITION. Let G be a set of operators in [B: B]. Then the
commutant of G in [B: B] is

Comm(G)={VeE|[B:B]: TV=VT,V TE G}

3. Commutants of operators on C,(X) or on B. The
first result in this section is a general method for determining the
commutant of a set of translation operators on C,(X). We associate
with each operator in the commutant a linear functional on G, (X).

Now assume that to each x € X is associated one and only one
continuous map ¢, from X into X. In the special case when X is a
group, then ¢, might be defined by ¢.(a)=a+x and X is then
represented as a group of operators on C,(X). In general we define the
operator Uy, on G,(X) by

Us f(y) = f(d:(y)) where &(x)= ¢..

The topology o is not appropriate for our purposes because the map
x — U, f will not in general be continuous (see [S]). This difficulty is
overcome by using the strict topology on C,(X) (see Lemma 2). The
following three lemmas follow from the definitions and known properties
of the compact open and strict topologies and also from the characteriza-
tion of continuity via nets.

LEMMA 1. LetS C X. Themap ®: S — (C(X — X),c.0.) is con-
tinuous if and only if the map ¢ is continuous where

g SxX— X, with Y(x,y)=¢.(y).
LEMMA 2.  Assume that the map ®: X — (C(X — X),c.0.) is con-
tinuous. Then the map &: X — (C,(X), B) is continuous where f is fixed in
G (X) and ¢ (X) = Us, f.

LEMMA 3. LetF ={f,: a € A} where f, € C(X — X). Assume that
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F is compact in (C(X — X), c.0.) and let K be a compact setin X. Then
F(K)= U,f.(K) is compact in X.

Let J denote the continuous linear functionals on (C,(X), B) and
let B denote the continuous linear operators from (C,(X),8) into
(Gy(X), B). Let G be a collection of continuous maps from X into X
and for x, € X, let G(x))={g(x,): g € G}.

DEeFINITION.  The commutant in @ of the operators {U,: g € G} is
{Te®n: TU,=UTV ge G} Denote this  commutant by
Comm (Ug;). The following Theorem generalizes results in [4] and [S].

THEOREM 1. Let G be a semi-group with identity of continuous
maps of X into X. Assume that 3 x,€ X such that G(x,)= X and
specify one map ¢, with ¢,(x,) = x. Assume that the map P: x = ¢, is
continuous from X into (C(X — X), c.0.). Let

N={L € M: L(U,f)=L(U,f),V¥ &, ¥ € G D $(x)
= ll’(xo), VfE C,,(X)},

Then there exists a one-to-one norm preserving correspondence
between Comm (U;) and N given by

(1) Tf(x)= L(U,.f), for some ¢, € G with ¢,(x))=x.

Proof. Given L € N, define T by Tf(x)= L(U,,f). Certainly T is
well defined since if ¢ (x,) = ¥ (x,), then L(Usf) = L(U,f)because L isin
N. The function Tf(x) is continuous since the maps x— Uqyf
— L(Uyy, f) = Tf(x) are continuous as maps X — (G,(X), B)— the
complex numbers. Also Tf is bounded and || T|| = || L || since | Tf (x)| =
L | Usfll = IL|[IIf]l. Now let ¢ € G. Then T commutes with U,
since

(TU,) f(x)=TUsf)(x) = L(Uaw(Usf))
and, letting (¢ °¢.)(y) = ¢(é.(y)), we have

(Us T) f(x) = Tf(b(x)) = Tf (¢ (b (x0)))
= L(Uscomf) = L(Uspry Usf).

To show that T isin & it suffices to prove that T is B continuous on
B bounded sets [7]. Let S be a bounded set of functions in C,(X). Let
€ >0 and assume K is a compact set in X. Choose K, and & such that
gl <& implies|L(g)|<e. LetK,={d.(y): x €K,y € K,}. Then the
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map ®: x — ¢, being continuous implies {¢,: x € K} is compact in
C(X— X, c.0.). Hence by Lemma 3, K, is compact.
Therefore if |[f|x, < &, then we have

| Ui fllx, = :g’l(é" [f(d(y)| <8 Vx€EK

and

ITfllx = sup [Tf (x)] = sup{|L (Uow f)|: x E K, ¢(x) = x} <e.

Now assume T € Comm(U;) and define L by

) Lf = Tf (x;).

To see that L isin /4, let S be a bounded set in (G,(X), B). Let K
be compact in X, x, € K, and € > 0. Choose K, compact in (C,(X), B)
and 8(e) >0 such that if |f|lx, <8 and f € S, then | T(f)|x <e. Then
for fin S and ||f||x, < §, we have | L(f)| = | Tf (x,)| = || Tf|x < €. Thus L
isin . Now assume that ¢ and ¢ are in G with ¢ (x,) = ¥(x,). Let f
be in G,(X). Then

L(Usf) = T(Usf)(x0) = Us Tf (x0) = Tf (b (xo))

and similarly L (U,f) = Tf (¢(x,)). Thus L(U,f)= L(U,f)and L € V.
To show that the maps are inverse let L be in A and apply (1) to
obtain T € Comm(Ug;) and then apply (2) to obtain L'€ N. Then

L'(f)= Tf (x0) = L(Uswy f) = Lf.

Now given T € Comm (U, ) apply (2) to obtain L € A and apply (1) to L
to obtain T'€ Comm(U;). Then

T'f(x)= L(Us,f) = T(Usw f)(x0) = Uaie) TS (x0) = Tf (x).

Thus the maps (1) and (2) are inverse. Notice also that under (1) we
have | T| = ||L| and under (2) we have |[L|| = | T|.

We obtain as a corollary the following result in [S] where X had a
group structure which was not necessarily abelian. For ease of exposi-
tion we assume X is abelian. Then X has a representation as linear
operators (translation operators) on G,(X). For a in X, and f in G,(X)
we define

U.f(x)=f(a+x).
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Let G ={¢,: a € X} where ¢,(x)=x +a. Notice that ¢,(0)=a and
we are thus associating the map ¢, with a € X as in Theorem 1.

COROLLARY 1 [4]. Let B denote the continuous linear operators
from (C,(X), B) into itself where X is a locally compact Hausdorff abelian
group.

Then there exists a one-to-one norm preserving correspondence be-
tween Comm(Ug) and M given by

Tf(x)=L(U.f), x€X, fe€ C(X).

Proof. We apply Theorem 1 with x, =0 the identity in X. Then
G(0)=X and & = .. It only remains to be verified that the map
XxX into X given by (x,y) into ¢.(y) is continuous. But if
{(x.,v.): « € A} is a net in X X X converging to (x, y), then since ¢ is
continuous {¢, (v.)= x, + y.: @« € A} converges to ¢, (y)=x +y.

We now apply Theorem 1 to the case when G consists of analytic
maps. A uniqueness set for b is a subset S of D such that if f, g € B and
f=gonS, then f=gonD. Inordertoapply Theorem 1 it is sufficient
if G(z,) determines the functions in B uniquely. Let B* denote.the
continuous linear functionals on (B, ).

CoroLLARY 2. Let G be a collection of analytic maps of D into
D. Assume that G(z,) is a uniqueness set for B.

Then there exists a one-to-one correspondence between Comm (Us)
and a subset of B*.

Proof. Given T in Comm (Uy), define L by Lf = Tf(z,). Then L
is well defined and L is in B*. Indeed, if the sequence {f,} in B
converges 3 to zero, then {Tf,} converges B to zero and so {Tf,(z,)}
converges to zero. It suffices to consider sequences since a subset of B
is B closed if and only if it is B sequentially closed ([1], [8]).

If T, and T, are in Comm (U ) and they both map to L, then for any
fin B, T,f(z)= T.f(z,). For any ¢, in G with ¢,(z,) = x we have,
letting g = ¢,

L(U;f) = T(U;f)(z0) = U, T f(20) = Ti f(x)

and
L(U,f) = To(U,f)(z0) = U, T:f (z0) = T>f (x).

Thus T, f(x)= T,f (x) forall x in G(z,). Thus T, f=T,fand T, = T,.
One can recover T from L by defining for x € G(z,)
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3) Tf (x) = L(U,f)
where g = ¢, and ¢.(z,) = x.

CorOLLARY 3. Let G be a collection of holomorphic maps of D into
D such that G (z,) is a uniqueness set for B. Denote by ¢, a distinguished
element of G mapping z, to x, x € G(z,). Assume that ¢,(z) is analytic
in x, for each x € G(z,).

Then there exists a one-to-one correspondence between Comm (Uy; )
and

N={LEM: L(UJ)=L(U.f)V g h € G3g(z)=h(z),V f € B},
given by
Tf (x) = L(Ua f), fE€B.

Proof. The map from T to L maps Comm (U;) into N. We have
to verify that any L in & maps into Comm (U ) and this only requires
verification that Tf(x) is analytic in x. This follows by using Morera’s
Theorem, the characterization of # as the Radon measures on D and
the analyticity of ¢.(z) in x.

We consider the maps ¢, from D into D given by ¢,(z) = g(x)z
where g is a fixed analytic nonconstant function in B. A special case is
g(x)=x. Denote the map z — g(x)z by ¢, Thus ¢,.(z)=g(x)z.
Observe that ¢,,(z) is analytic in x and G(z,) ={g(x)z,: x € D} is a set
of uniqueness for B for any z,# 0 in D because g(D) is an open set.

We say that a linear operator T from B to B is a multiplier on B if
there exists a sequence {c,}.-, of complex numbers such that if f(z)=
3a,z" € B, then Tf(z)=Xa,c,z". Let A denote the class of all such
multipliers. It is known that A C [B: B], and the sequences {c,} as-
sociated with operators in A have been characterized [1]. In particular if
{c.}i-o is @ sequence of complex numbers such that limsup|c, |"" <1,
then an operator T defined on B by T(X a,z") =2 a,c,z" for2a,z" € B
is a multiplier in [B: B].

4. Commutants of multipliers. Clearly A is a commuta-
tive algebra. Furthermore if T € [B: B] commutes with every operator
in A, then TE€ A. In fact a stronger result (Proposition 1) holds. First
recall that an eigenvalue for a linear operator is called simple if the
corresponding eigenspace has dimension one. One can easily verify that
if T€ A has associated sequence {c,}, then the eigenvalues of T are
simple if and only if the sequence {c,} has no repeated terms. Notice
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that A does actually contain operators with only simple
eigenvalues. For example, let ¢, = (1/2)". Proposition 1 follows readily.

ProposiTiON 1. If T €[B: B] commutes with an operator V € A
whose eigenvalues are all simple, then T € A.

CoroLLARY 4. Let g(x) be a fixed nonconstant analytic function
mapping D into D. Let G = {¢,.,: x € D}. Then Comm(U;)= A.

This follows because for any such function g(x),|g(x)| < 1forx € D
and hence U, € A and has simple eigenvalues.

ProrosiTioN 2. Let TE€([B: B]. Then Comm(T)= A if and only
if TE€A and the eigenvalues of T are all simple.

DerINITION.  For |a|=1, define the translation operator U, by
U.f(z) = f(az).

The operator U, is in A for |a| =1, and it has associated sequence
{a"}. Thus if a"#1, V n, then Comm(U,)=A. For example, this
holds for an operator U, with|a|<1. If|a|=1anda™=1,thenAisa
proper subset of Comm (U, ), moreover:

ProrosiTioNn 3. Let TE[B: B] and a®=1. Then T € Comm(U,)
if and only if u{” =0 whenever n —m# nys for s an integer, where
T(z")=u,(z).

It is not known which operators with these sorts of gaps in the
sequence {c,} are in [B: B]. However, there certainly are some in
[B: B] which are not in A. For example, for a fixed n,, define the
operator T by

0 n#1
T(z")={

z 4z n=1.

One expects in a given situation, that if G is “large’” enough then
Comm (G) will consist only of constant multiples of the identity operator
L

ProrosiTiON 4. Let G C [B: B] and assume

(1) G contains at least one multiplier all of whose eigenvalues are
simple and

(il) G contains one linear fractional transformation U, where ¢(z) =
(z —a)/(1-az), with 0<|a|<1.
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Then Comm G = {cI: ¢ complex}.

Finally we observe that for a given operator V € [B: 8], Comm (V)
will contain all power series in V which converge to an element in
[B: B]. But, in particular, for the operator U,, for |a|<1, it can be
shown that not all operators in Comm (U, ) can be obtained by power
series.
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