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WEIGHTED SIDON SETS

J. W. SANDERS

A weighted generalisation of Sidon sets, W-Sidon sets,
is introduced and studied for compact abelian groups. Firstly
W-Sidon sets are characterised analogously to Sidon sets and
variations of these characterisations shown to lead back to
Sidon sets. For the circle group W-Sidon sets are constructed
which are not 4(1) and hence not Sidon. The algebra of all
W’s making a set W-Sidon is investigated and Sidon and
p-Sidon sets cast in terms of it. Finally analytic properties
of W-Sidon sets are pursued and a necessary condition on
the growth of W? gbtained.

Throughout this paper G denotes a compact abelian Hausdorft
topological group and X denotes its (discrete) dual group. Both are
written multiplicatively with identities ¢ and 1 respectively.

We write (L”(G), || - ||,) for the Lebesgue space derived from the
normalised Haar measure on G and (C(G), || - |l.) for the space of
(complex-valued) functions continuous on G with the supremum norm.
However for 4< X and counting measure on 4 we denote the Lebesgue
spaces ({°(4), || - ||,) and use ¢,(4) for the subset of [”(4) of functions
tending to zero at infinity.

If A and B are sets we write B+ for the set of all functions from
A to B; if feB*and CZ A (C is reserved for strict inclusion) we
write f|C for the restriction of f to C; &, is the characteristic
function of A; $(A) denotes the set of all finite subsets of 4; P(A)
denotes the power set of A; v(A4) is the cardinality of A; and we
write [ ] for the empty set.

The sets of complex numbers, real numbers, integers and natural
numbers will be written €, R, 3, and N respectively and we write T
for the topological group of unimodular complex numbers. If ce €,
¢ denotes the constant function with value ¢, whose domain will be
clear from the context.

For 4 X, ¢ @4 and A S €4 we write g4 for {gy: € 4}.

We denote the Fourier transform of fe L'(G) by f. If EisaBanach
space we write B’ for its dual. Let A(G) = {f € C(G): f e I(X)} be
normed by || 7 |l. = || f]l. and set the space of pseudomeasures on G,
(PM(G), || * llrx)s equal to A(G)' so that it contains (JMG), || - ||), the
space of measures on G. For 7w e PM(G) we write # for its Fourier
transform and sprw for its spectrum, ie. X e X:7(y) # 0}. If E<
PM(G) and 4 < X we let E, = {re E:spr = 4} and call its members
d-spectral pseudomeasures. We also write £~ for {7: 7 e E}.
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256 J. W. SANDERS

The set of trigonometric polynomials on G will be denoted T(G).
A subset 4 of X is called
(i) a Sidon set iff
sup {Sues | E(0) i te THG) and ||£]l. £ 1} < o, and
(ii) a A(p) set, for 0 < p < « (written 4 ¢ A(p)) iff for some r
with 0 < r < p, LY(G) = Ly(G). The reader is referred to [2] for an
exposition of Sidon and A(p) sets.

1. W-Sidon sets.

DEFINITIONS 1.0. If 4 < X and We G’ we let
| Wls = sup {Sues | WT0) |: t € To(G) and ||t ]l < 1)
and say 4 is W-Sidon iff this is finite. Set
W) = {(WeCt|| W < }.

Evidently || W||s equals the least constant for which, whenever
te TyhQ), Zuea | W0 | = K|t ||

The letter W is used to suggest a weight function and W-Sidon
sets should not be confused with p-Sidon sets ([4]) or V-Sidon sets

([13)).

1.1. Taking ye 4 as ¢t above we see || W|. < || Wi So 4 is
Sidon iff BW(4) = 1°(4) and the Sidon constant of 4 equals || 1],

1.2. For any 4 C X, I*(4) < B(4).
For if t € T(G) the Cauchy-Schwarz inequality followed by Parseval’s
identity shows

pyy W= WL El =1 Wikt < || Wt .

Thus || Wi, < || Wl

In the W-Sidon theory to follow, sets 4 for which Wel*(4)
behave very like finite sets in the Sidon theory. We refer to them
as trivial W-Sidon sets.

Examples of 4 and W for which W¢ l*(4) yet 4 is W-Sidon and
not Sidon are given in 2.3, and some infinite 4’s which are W-Sidon
only for Wel*4) in 3.4.

1.3. In 1.0 we have not referred directly to the group X. The
following result excuses this. Let X, and X, be discrete abelian
groups with 4 € X, and X, a subgroup of X,.

THEOREM. For We€4, 4 is W-Sidon as a subset of X, iff it
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is W-Sidon as a subset of X,.

Proof. Suppose that G; is the dual of X, for 7€ {1, 2} and define
an equivalence relation @ on G, by (z,y)ea iff x(x) = x(y) for all
1€ X,. Writing A for {xe G x(x) =1 for all ye X}, the kernel of
a, A is a closed subgroup of G, and G,/A is isomorphic to G, by
[10], 2.1.

For te T«(@,) define t* € T4«(G,/A) by

@) = 3, t)x() -

By definition of @, the map g: Tu«(G,) — T«(G.,/A) given by B(t) = t*
is well defined. It is easily seen to be a vector space isomorphism,
||+ |l.-isometric and to satisfy

(BEN (%) = £(x) for all te T4«(G,) and Xe 4.

Consequently
sup {3 | WOOBGH) |: te Tu(G) with I|¢l. < 1}
= sup {3 WO)() |- we TAG/A) with ||l < 1}
and the conclusion follows.

1.4. To see how W-Sidon sets are affected by group operations
on X we extend 1.3 as follows. If ¢ is a function from one discrete
abelian group X, to another, X,, (with duals G,) it induces a map ¢*
from T(G)) to T(G,) by

3, B0 — 3, Esn) -

When ¢* is || - ||.-isometric, ¢ is injective so given 4 £ X and
We @4 there is a map W, €? defined by

Wy(é(x)) = W(y) for all Xed.

THEOREM. If ¢* 1is || ||.-isometric, 4 is W-Sidon iff ¢(4) s
W4-Sidon.

Proof. Now ¢* maps TG, onto T,,(G,) and whenever t e T,(G,)
and X e 4,

WE) = Wie())(5*t) ($(X)) -
Consequently, using 1.3 to move from the group 4(X,) to X,,
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11l = sup {3) WD) |: te TGy and I1¢]l. < 1}

Il

sup {ee%ml W)@ :ue Tyu(G,) and [[ull, < 1}
= || W¢”¢u) .

1.5. (i) For example take as ¢ the map 7,: X — X (for ¥,e X)
given by 7, (X) = XX. If te T(G),

5,0l = || 2t

3 800x

_
w |
whence 75, is || - ||.-isometric. For any 4< X, y,€ X and We @4,

provided we define W,e €%? by Wy (x.x) = W(y) for all Xe4, 1.4
guarantees

=

%(Xod) = {W,:: WeB4)} .

(ii) Similarly if we define p: X — X by po()) = x~* then provided
we set W,e €~ to be W,(x™") = W(x), 1.4 shows

W(4™) = {W,: We W(4)} .

(iii) Note that for We €%/ 1.5(i) does not claim 4 is W-Sidon
iff x4 is W-Sidon (and similarly for 1.5(ii)).

If 4 is an infinite proper subgroup of X (it ecan be chosen for 3 say)
and y,€ X\4 then clearly y,4 N4 =[]. So we may choose W e €4V%
such that W | 4el’(4) yet W | x4 € 1°()\P*(xo4). A premature glance
at 3.3 now shows, together with 1.5(i), that T(4) = I*(4) and TW(y.4) =
1*(x,4). Thus 4 is W-Sidon yet y,4 is not W-Sidon (taking restrictions
for granted).

1.6. Suppose E is a Banach space contained in PM(G), with
norm || - || stronger than || -||py. For 4 < X define 6: E—E" |4 by
o(r) = @ | 4. Since 0 is a vector space morphism, ker ¢ is a subspace
of E. This subspace is closed since if 7€ E and {7,:ne N} & kerd
with ||7 — 7, ||z — 0 then ||# — Z,]|l.— 0 hence 7|4 = 0.

Thus E/ker 0 is a Banach space under the quotient norm. Equiva-
lently, £~ | 4 is a Banach space with norm

¢l =inf{[|x|l;:reE and 7|4 =g} .
Evidently for all 7¢ E,
IZll.= 214l =ll7]le .

(See also 3.7.)
If E is a Banach subalgebra of PM(G) (not necessarily with
identity) then so too is E~ | 4.
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When considering E’ rather than E we write ¢’ in place of 4.

1.7. Our dependence on 4-spectral functions makes the following
result useful. Refer to [7], Chapter 1, (2.10) for the definition of a
homogeneous Banach space on G, replacing £ there by G.

Suppose E is a homogeneous Banach space on G and E' is the
dual of E under a pairing {f, ¥)> (for fe E and e E’). If e E'
and y€ X N E then the Fourier coefficient is defined to be

T = X, ¥
and satisfies [4() | = || v Iz 1| % ]z

THEOREM. Let 4< X, let E be a homogeneous Banach space on
G containing 4 and suppose that, restricted to 4, | .|z 1s weaker
than || -|ls. Then there is a canonical isomorphism from (E,) to
(E")" | 4 (the latter being normed by || - ||;) whose norm is less than
or equal to one.

Proof. Since
17l S NSNS 1S sy for all Fe B,
E, is a closed subspace of E. So the canonical map
J: (By) — E'[(E,)

is an isomorphism of norm less than or equal to 1, where (£),)°, the
annihilator of Ej, is {4v€ E': 4(f) = 0 for all f e E,} (see [8], p. 93).

Now |4(x)| £ |l 4 ||z whenever ¢ E' and ye 4 thus by 1.6 it
remains to show that (£, = kerd’. If + € (&,)° then +(y) =0 for
all ye 4 hence (x,+> = 0 so that « |4 = 0 whence + € kerd’. Con-
versely if (X)) =0 for all Xed then () = 0 for all tespan (4).
But span (4) is dense in E, (by the method of [7], Chapter 1, (2.12))
hence ¥(f) = 0 whenever f e E,, whence + € (E,)".

Consequently (,)" is isomorphic to (E’)" | 4 under J followed by
the Fourier transform lifted to E'/kerd’.

COROLLARY 1.8. Let 4= X. Then

(i) 2f 1 = p <o, there is a canonical isomorphism from LiG)
to L”(®)"| 4 whose norm is dominated by 1,

(ii) there 1s a canonical isomorphism from C,(G) to M(G)" |4
whose norm 1s dominated by 1, and

(iii) 2f 1< p < o, there is a canonical isomorphism from
€LA(G)" [ 4) to LE(G).

Proof. (i) and (ii) follow immediately from 1.7.
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If 1 <p< o, LY(G), being a closed subspace of the reflexive
space L*'(G), is also reflexive. So by (i) the dual of L?(G)"|4 is
canonically isomorphic to L3 (G)”, i.e. to Ly (G).

For p =1 we are forced to resort to the method of 1.7. Any
@€ (L(G)"| 4)" lifts to a continuous linear map ¥: LY(G)— € which is
constant on cosets of kerd’ and which may be identified with an
element of L*(G), giving [|¥ ||, £ ||+ |- Consequently if X e X\4,

P = vi={ +-0=0

so that ¥ e L7(G). This yields a map from (LY(G)" | 4)’ to L3(G) and
the method of 1.7 completes the proof.

REMARKS 1.9. (i) Obviously A,G) is isometrically isomorphic
to PM(G)" |4 as is LiG)' to L*(G)" | 4.

(ii) In (i) and (iii) above it suffices to take 4 = X to see the
falsity for p = . However LY(G) can still be embedded canonically
in (L=(G)"]4), as can C,G) in (M(G)" | 4)'.

THEOREM 1.10. Let 4 X and We €’ With the understanding
that the constants in (i), (iii), (iv) and (V) are the least possible, the
following are equivalent:

(i) 4 is W-Sidon with £ = ||W|IAA,

(i) feLiG) implies S| WSQO | = €1l f |l

(iii) feCyG) implies SucsIWOOS()| = £l flle

(iv) for all ¢ €l=(4) there exists (e M(G) with fi|4 = W¢ and
]l < 1§l i

(v ) for all ¢ ccfd) there exists fe L(G) with f|4 = W¢ and
AL = ellglle

(vi) WL3(G)" | 4Z1Y(4) (see section 0 for product notation),

(vil) WC(G@)" | 4<Z1M(4),

(viii) WIi~(4) S M(G)" | 4, and

(ix) We(d) S LN(G)" | 4.

Proof. (i)= (ii) follows by a straightforward modification of
(a) = (b) in [10], 5.7.4.

(ii) = (iii) is obvious because Ci(G)< L3(G).

(iii) = (iv). By hypothesis the map f— WF| 4 from CAG) to 1)
is linear and bounded by k. Let K:I1=(4)— M(G)" |4 denote the
canonical isomorphism of 1.8(ii)) composed with the adjoint of this
map-evidently || K| < k. For yed4,

Ko(y) = E%{ dEWINE) = W)
so given ¢ € 1(4), there is ¢ € M(G)-namely pe o (Kg)-with 2|4 =W
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and || ¢ = €| ¢l
(iv)=(v) follows by an easy alteration of (d)= (e) in [2], 15.1.4.
(v)=(1). By hypothesis the map ¢ — Wg¢ from ¢,(4) to L(G)"|4
is linear and bounded by k. Let K: L3(G)— l'(4) denote the com-
position of its adjoint with the canonical isomorphism of 1.8(iii).
Then K is linear and bounded by . If yed4 and fe L3(G) then

KA = | WGIT = Wi

hence Kf = WF|4, so (i) holds.

(ii) = (vi), (iii) = (vii), (iv) = (viii) and (v)=(ix) are obvious. Since
the converses fall into similar pairs we show only one of each.

(vii) = (iii). In the following lemma take A to be I'(4) with «
the canonical injection, B to be C4(G) with Bf = Wf| 4 and C to be
€4 with the product topology. Now (vii) ensures B(B)Z a(4)< C
so by 1.11 to follow, there is a constant £ such that for all fe CAG),
there is ¢ € I(4) with Wf|4=¢ and ||¢|, < £|| f|l.. That is, (iii) holds.

(ix) = (v). In the following lemma take A to be LYG) with
a(f) = Fl4, B to be c(4) with B(g) = Wg and C to be €’ with the
product topology. Now (ix) assures us that the hypotheses of 1.11
hold and hence (v) results.

1.11. I am indebted to Professor R. E. Edwards for the fol-
lowing statement:

LEMMA. If A and B are Banach spaces, C a Hausdorff topological
vector space, a: A—C and B: B— C continuous linear maps and if
B(B) € «a(A) then there is a constant £ such that for all be B there
exists a € A with a(a) = B(b) and ||all. < k]]b]|5.

Proof. Let A = A/ker a and endow it with the quotient topology
in which ||@|| = inf {||c||: cc @} for each @ e A. Since C is Hausdorft,
{0} is closed in C and since @ is continuous 0 = a~'({0}) is closed in
A. Thus A is again a Banach space and « induces a continuous
injection @: A — C defined by @(@) = a(a), for @< A.

Define 7: B— A by v(b) = @ *-B(b), for be B. By hypothesis v
is well defined-it clearly suffices to show it is bounded. Evidently
7 is linear, so it remains to show it has a closed graph. If 5,— 0
in B and 7(b,) — @ in A then 8(b,)— B8(0) = 0 in C. Thus, since @
is also continuous and linear,

@ (lim, 7(b,)) = @(lim, @ B(b,)) = lim, B(b,) = &(a@)

and so
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0 = lim, 8(b,) = (@) .
Finally by injectivity of &, @ = 0.

1.12. We shall also use this lemma in another direction.

THEOREM. Let A and B be Banach spaces, let 4 be a set and
suppose €4 has the product topology. Let a: A— C* gnd GB: B— @4
be continuous and linear with

(i) there is A > 0 such that for all ac A and all x € 4,

le(@)(X) | = Nlalls, and
(ii) there exist {bs: y €4} S B with

Lif é=1

, and bolliyed < oo .
0 otherwise’ " sup {|| bz ][z: x €4} <

B(b:)(&) =

Suppose finally that ¥ € €4 with vB(B) S a(A). Then + l=(4).

Proof. Applying 1.11 there is a constant £ such that for all
be B, there exists a€ A with a(a) = v£() and |la||, < £||b]z. If

we write a, for an element of A corresponding to b, by this process
we have

0 | = 190080 | = [al@)(0) | = N lax(la = &N (b ]]5

Consequently || ||, < o as required.
1.13. The next result is helpful when showing a set is W-Sidon.

THEOREM. If 4 < X and We @4 the following are equivalent:
(i) 4 is W-Sidon,

(i) feCuG) with feR* implies Sues| WO ()| < oo, and
(iii) whenever ¢ €l=(4) N R there is pe M(G) with fi|4 = Wg.

Proof. (i) = (ii) and (ii) = (iii) follow from 1.10.

(iii) = (i). If ¢el”(4) we may write ¢ = ¢, + i¢, where, by (iii),
there is ;€ M(G) with fi;|4 = W¢; for je{l,2}. Thus taking
p=p + iy, gives pre M(G) and fi| 4 = Wg, so (i) results by 1.10.

1.14. One important respect in which 1.10 differs from the
analogous result for Sidon sets is that we only claim inclusions like
1.10(viii) rather than Wi~(4) = M(G)" | 4. The reasons for this are
embodied in:

THEOREM. Suppose 4 X and We€!. Then 4 is Sidon when-
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ever one of the following holds:
(i) W) = M(G)" | 4,
(ii) We(4) = LY(G)" | 4,
(i) WCAG)" |4 =1(4),
(iv) WL3(®™ | 4 = I'(4).

Proof. (i) Taking the Dirac measure at ¢ we see 1€ WIi~(4).
Thus {*(4) € Wi~(4) S 1"(4) hence I”(4) = Wi*(4d) = M(G)" |4 so 4 is
Sidon.

(ii) By hypothesis we cannot have W(X) = 0 for any X e 4, so
WL G)" | 4 = ¢o(4). Now in 1.12 we take A = ¢,(4) with norm || - ||,
a the canonical injection, B = LYG) with norm || - ||,, B( 7 y=7F | 4 and
= W™, The hypotheses are readily verified so we conclude that
[| Wl., < . Applying 1.10, whenever te T,(G3),

2 I =Wl e[t .

So 4 is Sidon.

(iii) Again, W is never zero so we may apply 1.12 taking
A=C/(&), B=l'(4), a(f) = 74, B the canonical injection and 4 = W™,
As in (ii) we deduce that 4 is Sidon.

(iv) Apply the same method as (iii).

NoTe. The converse to each of these assertions is false. Even
if 4 is replaced by 4,= {ye4: W(y) # 0} and 4, is Sidon, these
inclusions are strict if 4, is infinite and W e ¢,(4).

THEOREM 1.15. Let 4 X, We €4 and 4, be as above. Assuming

the comstants in (ii), (iii) and (iv) to be the least possible, these are
equivalent:

(i) 4, is Sidon with constant £,

(i) feLi(® implies Sue, WK As(@ and || WS, <
£l Sxes WOOFOX lor ) )

(i) te Ty(G) tmplies || Wil = £ ] Zxea WOOL(OA s and

(iv) for all pel™(4,) there is pe M(G) such that f|4,= Wg
and ||l = £ W ..

Proof. (i)=(i)). If fe L3(G) then
IWFl =2 W = 1 Wik 171l

so that if 4, is Sidon, (ii) follows.

(ii) = (iii) is obvious.
(iii) = (1). If te T,(G) define ue T,(G) by taking
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@) = Wty for all ye4, .
They by (iii),

S0 = 51 W < x| 3, W) | < it

so (i) follows.

()= (@v). If gel™(d) and We B(4) then ¢Wel~(4) hence (iv)
results from (i) and 1.11.

(iv) = (@). If v el(4,) and @€ F(4,) let

W= (v (x) if xe@

, so that 1) .
0 if ye,\0 so that v, € c(4,)

“/faﬁ(X) =

By hypothesis there is f, € M(G) with f,| 4, = W, and
[ el = k|| Wiell. = £ |9 ]l -

Thus {tte: @ € F(4)} is bounded in M(G) hence by Alaoglu’s theorem
it has a weakly convergent subnet. So there is pe M(G) with
2|4, =+, and 4, must be Sidon.

1.16. Many characterisations of Sidon sets have weighted analogues,
like 1.10. More of these may be found in [11].

2. Thick W-Sidon sets.

2.0. To find W-Sidon sets which are not Sidon it suffices, by
1.2, to take 4 £ X not Sidon and then choose Wel*(4) (such 4 exist
since infinite subgroups are not Sidon). It is the purpose of this
section to exhibit non-Sidon sets 4 which are W-Sidon for some
Wel*(d). These sets are in the dual of the circle group and are not
even A(1).

The proof relies on Riesz products and therefore requires a sort
of independence condition on 4. Recall 4* = {y&:y, é€ 4} whenever
4 < X.

THEOREM 2.1. Suppose 4 = {4,:neN} where 0 < v(4,) < R
and

(i) 1led4,,

(ii) 47t =4,

(iii) dnp © X\U {diodsr -+« dinie,€{0,1, 2} for 0<1=<mn and at
most one €; equal to 2}, and

(iv) 4%, S X\U {deedsr «-- dinze,€{0,1} for 0=Zi<n and

0 € = 1} '
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Define W:4— (0, 1] to equal ¥(4,)™* on 4,. The conclusion is that
4 is W-Sidon.

Proof. Suppose ¢ € R with || ¢ ]l < 1. For ne RN define ¢, € T(G)
by

to= @) (3 000+ D + 3 600%)

251 z2=1
It is easy to see that
(2.1.1) t, is real-valued
(2.1.2) Nt ll. =1
A (2v(4,))79(x) if xe 4,
2.1.38 , b y L) = . :
@13 and by @ L0 =) b i

Next for Ne N set Py = [14-, (1 +¢,) sothat Py =14+ 32 t,+ Qy
where

= Z tnltfng + Z tnltnztn3 + .-

(2.1.4) ¥ osnShpe v, <ikn
Tttty
(2.1.5) Now Py|d,=%,|4,if 0Sn <N

provided that whenever 0 < n < N,
4, X\[spQD) U U{4,.:0=<m =< N and m = n} U sp(Qy)] .

Consequently the lemma to follow ensures this for each NeNR.
By (2.1.1), (2.1.2) and (2.1.3), for each N, if we have
le U{4,:0=n =< N) U sp(Qy)
then

(2.1.6) [[PNHl:SGPN:l-{—EN‘,S t,,+gGQN:1.

n=0JG

Again, the lemma assures us of this.

So by (2.1.6), {Py: Ne N} is bounded in M(G) and thus has a
weak cluster point ze M(G); let ¢ =27. Then for each ne N and
Xed,,

A(r) = 28(x) = 2t.(x) by (2.1.5)
= v(4,)7'¢(x) by (2.1.3)
= W()4(x) by definition of W .

Thus # |4 = W so by 1.13(iii), 4 is W-Sidon.
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LEMMA 2.2. Suppose {4,:neRN} = P(X) satisfies conditions (i)
to (iv) of the previous theorem. Then with Q, given by (2.1.4), for
each Ne R,

(i) 0= n < N implies

4, S X\{JUU{4.:0=m < N and m # n} U sp(Qy)], and
(ii) 1¢U{4.:0=n = N} U sp(Qy).

Proof. By (2.1.4) and (2.1.3),
sp(Qy) S U{A;Mil veedinie;e{0,1} for 0 <7< N and _ZN“ei 22} .

For brevity define
AN, n)={JulUU{dn0==mNand m+#n} for0<n <N,
and
BN, j) = U {4 - 437 6,640, 1) and 3¢, = j} for je(l, 2} .
In these terms we have to prove, for each Ne®, 0<n < N
implies 4, & X\[A(N, =) U B(N, 2)], and
leU{4.:0=n =< N}UBW,2).

A straightforward induction, relying heavily on 2.1(ii), completes
the argument.

THEOREM 2.3. There is a subset 4 of 3 which is W-Sidon for
some Wel*(A\*(4) yet which is not 4(1).

Proof. Take m,+ 0 and let 4, = {£m,}. Supposing 4, - - -4, have
been defined so as to satisfy the hypotheses of 2.1, let m e <R be the
supremum of the finite set

Uledy + -+ +e,4,:¢:€{0,1, 2} with at most one ¢, = 2} .
Now if n = 0 set 4, = {&(m + 1)} and if » =1 take
dyiy ={Fjm +1):1 =7 = [(n + 1)/2]}.

Since 4,,, + 4,., is also disjoint from the finite set above, it is
disjoint from

U {5040 Foeee 46,6 €10, 1) with f’gsig1}.

Consequently 2.1 shows 4= {4,:neN} is W-Sidon where
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SIWEEZS A+ = o

so W e l*(4).
By construction 4 contains arbitrarily long arithmetic progres-
sions hence it is not 4(1) by [9], (4.1).

2.4. Using multiplier notation from 4.2, by 3.3 to follow,
I(4) = (CAG), A4G))
whenever 4 is a subgroup of X. If 4Z X, Parseval’s identity shows
P(4) S (CAG), ALG)) .

To find 4 for which this inclusion is strict it suffices to take 4
an infinite Sidon set so that 1€ (C/(G), AA(G))\I*(4). However 2.8 pro-
vides examples of non-Sidon sets 4 in 8 for which the strict inclusion
holds. It also indicates the impossibility of extending [1], Theorem
1 to arbitrary subsets of X.

3. The algebra of weight functions.

3.0. From 1.10 we may read off more expressions for ||[W||,:

|Wl; = sup {%IW(X)J?(X)I: feCiG) with || fll.. = 1}

= sup {inf {|| f||.: £ € L(@) with f'| 4 = Wg}:6 € o(4) and ||¢].. < 1)
= sup {inf || ]: £ € M(G) with /2|4 =Wg}: ¢ €1=(4) and ||¢[l.=1}.

THEOREM 3.1. BW(4) is a commutative Banach algebra under
[|-1l; and pointwise operations. It has an identity iff 4 is Sidon.

Proof. The following straightforward formulae establish that
||+, makes I¥(4) into a commutative normed algebra under pointwise

operations.
Suppose W, W, e W(4), « c€ and te THG) with ||t]l. < 1. Then

S|, + W) | £ 5080 | + S IW.0080) |

| ) < 1W.ls + W21l

S| aW, (R0 = || 5 W) | = [l W]l

S WQOWCI0! = Wl 5 W.0800 | = WL, [l by 115
and if ||[W||, = 0 then ||W||. = 0 hence W = 0.

Suppose {W,:n e N} € W(4) is a Cauchy sequence. Then by 1.1
again, |W,— W, ||.—0 hence there is W € 1*(4) for which ||W — W ,||.—0.
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If ¢ >0, there is N e such that » = N implies, for all ¢ € T,(G) with
Nt =1,

2 (W0 — W) | < e.

Letting m — o, the same inequality holds with W replacing W,. So
n = N implies ||W, — W||, < e. Furthermore

Wi = 1Wxlls S IW = Wylla<e

hence [|W||; < e+ |[|[Wyl|ls< . Thus W,— W in ().
Finally T8(4) has an identity iff 1 2(4) iff 4 is Sidon.

3.2. From 1.1 we have: 4 is Sidon iff (4) = I°(4). Our next
few results consider T(4) contained in ¢,(4).

THEOREM. If LY(G)" |4 < B(4) (in particular, if (4) = c,(4))
then 4 is Sidon.

Proof. Suppose fe C,(G)—we show || 7 |l < o by using the
boundedness principle 1.11. Take therein A = [I'(4) with & the identity,
B = LYG) with B(g) = F§|4 and C = G4 with the product topology.
ThenA for some constant £, for all g € L'(G), thereis ¢ € l‘(zQ such that
¢=JG|4and 3| ¢(X)| =k gll,. In other words, 3., f(X)FX)| =

£l gl
Allowing ¢ to vary over an approximate identity,

SIFI] < e
as required.

3.3. At the other end of the spectrum we can have equality in
1.2.

THEOREM. If 4 is a subgroup of X then T(4) = I*(4).

Proof. Obviously I*(4) < (4) by 1.2.
If We B(4) then by 1.3 we may suppose 4 = X. Now by 1.10(iii)
and [1], 2.1(a), it follows that Wel*(d). This completes the proof.

REMARKS 3.4. From 3.3 it follows that if 4 is cofinite in some
subgroup of X then T(4) = I*(4).

Similarly by [10], 8.7.8, if 4 is cofinite in the positive cone of
the ordered dual of a compact connected abelian group then T(4) =
13(4).
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THEOREM 3.5. For 4 C X, B(4) is an ideal in M(G)" | 4 which
s improper iff 4 is Sidon. For each W eB(4), || Wll; < || W, (see
1.6 for notation).

Proof. If We2(4) by applying 1.10(iv) to ¢ =1, there is
ve M(G) with |4 = W and ||v|| || W]l;. So BW(4) € M(G)"| 4 and
for all WeB(4), || Wil = [| W4

Obviously the algebraic operations on these spaces coincide and
if pe M(G), for all te TyG) with ||t]. =1,

SWAOEGOE | = 21l Wls -

xed

Thus Wji| 4e 2(4) which, by 8.1, is consequently an ideal in
M(G)" | 4 which is improper iff 4 is Sidon.

NoTeE. By 3.3, T8(4) need not be closed in M(G)" | 4.

3.6. As algebras, for 4C X,
P4 S W) S MG)" | 4<1=(4) .

Each is endowed with a norm-they are ||-||, |I-|ls [|-|l; and ||:]|. re-
spectively. When 4 is a subgroup of X, ||-||, and ||-||, are actually
equivalent (by 3.3 and the open mapping theorem or [1], (2.1)(b)) on
BW(4).

A different proof of the inequality ||-||; < ||-||s (established above)
follows by the method in [10], 1.9.1 which yields the characterisation:
for W e 2B(4),

W s = Sup{I%W(x)f(x)lite T(G) and [[¢]l. =1} .

This shows why, in 1.0, we kept the modulus signs inside the sum.
We now consider when pairs of these norms are equivalent.

THEOREM 3.7. For 4C X these are equivalent:
(i) 4 s Sidon,

(i) |l*lle and ||-|l; are equivalent on TB(4),
(i) ||-]l; and ||-||; are equivalent on M(G)™| 4,
(vi) ||-ll; and |[|-||. are equivalent on M(G)™| 4.

Proof. (a) If 4is Sidon and W e B(4) and t € T,(G) with ||t]l.<1
then

W0 | = (Wl 3 8001 < WLl -

Thus whenever W e B(4) = M(G)"] 4,
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Wile = IWl = WL = 1L IW e ST W ],

so the norms are pairwise equivalent.

(b) If 4 is not Sidon then by 3.2, I*(4) S W(4) Cecd). Since
1*(4) contains all finite linear combinations of characteristic functions
of singleton subsets of 4 and these are dense in ¢,(4), T(4) cannot
be closed in ¢((4). Thus (4) cannot be complete under the restriction
of [[*|l«. So by 3.1, ||:||l. and ||-||; cannot be equivalent on ().

(¢) If|l-]|l; and || -|s are equivalent on M(G)" |4 then TW(4) =
M(G)" | 4 hence by 3.5, 4 is Sidon.

(d) If ||-||; and || -||l. are equivalent on M(G)" |4 then it is
complete under ||-|l, and hence ¢, (4) & M(G)"|4. So by 1.9(ii),
C(G) | 4<1(4) and so 4 is Sidon.

REMARKS 3.8. (i) As a Banach algebra, T(4) is neither separable
nor a B*-algebra in general. The former follows by 1.1 and the latter

by 3.3.

(ii) Considering C,G)" | 4 as a sequence space, Ty(4) is its a-dual
(see [8], §30). However 3.3 shows that C,(G)"| 4 is not, in general,
a perfect sequence space.

3.9. Refer to [4], 1.1 for the definition of a p-Sidon set.

THEOREM. Let 4 X and 1 < < 2." Then 4 is p-Sidon iff
*'(4) < B(4).

Proof. For p =1 this is just 1.1 (it is trivial when p = 2). If
l<p<2 and 4 is p-Sidon then by [4], 1.2(ii), fe C.G) implies
fl4el’(4). So if Wel”(4), Holder’s inequality shows

51D < o
hence by 1.10, We 2(4).
Conversely if 1”7'(4) S BW(4) then by 8.5, I”(4) < M(G)~|4. So
by [4], 1.2(iv), 4 is p-Sidon.

From this follows, by the Hausdorff-Young theorem, a converse
of 3.2 for p > 1.

COROLLARY. If1<p<2and 4 1is p-Sidon then L*(G)" | 4< T3(4).
4. Multipliers and W-Sidon sets.

4.0. When 4 is Sidon, spaces of 4-spectral functions collapse.
Not only is L3(G) = A(G) but M(G) = N{LiG): 1< p < }. In this
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section we investigate analogues for W-Sidon sets.

In this context it is natural to consider the trigonometric series
S a WAy for e M(G) (see for instance 1.15.) To ensure such
objects make sense we define, for 4 < X,

T: 1=(4) x PMAG) — PM/AG)
by
T(5, %) = 36000 -
When ¢ is fixed we shall use the single variable notation T,

even for its restriction to some subset of PM/G).
If ¢ el=(4) let m, € PM4G) be given by

g(x) if yed

) = {0 if yeX\4’

Then T(¢, ) = wy+x, for all we PMAG), so T is just convolution
from PM,G)x PMAG) inte PM,G). From this it is evident that T
is bilinear, continuous and behaves nicely under translation and
convolution.

THEOREM 4.1. If 4 is W-Sidon and t € TAG) then

(4.1.1) Twtll, = 21W p il tll, of 2<p<oeo
and
(4.1.2) Tyt = 8I[W LI ¢ -

Proof. We modify Rudin’s proof for Sidon sets. For an ex-
position of the Rademacher functions {r,: n € N} refer to [2], Chapter
14. By redefining r, on a set of measure zero so that is is right
continuous at each dyadic rational and left continuous at 1, we ensure
r, € {£ 1}

For te T,4G) let je X* be an injection with sp(t) S j(N), and
define R: X — {£1}>Y by

P [0 i e
e, i e XU

Now let f: G x [0, 1] — € be given by
fw, p) = X HORA0)1(@) -

Using single variable notation we have f, € T,G) for all p<€]0, 1] and
for all xe G, f, = S..q t(j(n))j(n)(x)r, which is a Rademacher series.
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Since f is a finite sum of functions which are measurable on G X [0, 1]
each dominated by the constant ||t||., f is integrable and we may
use Fubini’s theorem.

Suppose p€[0, 1]. By 1.10(iv), there is p,€ M(G) such that
£o(X) = W)RAp), for all ye 4 and || 5 || = [[W 4[| B. (0)lle = ||[W ||
So for y e 4,

2o00F (1) = WOORL(0)ERA0) = WR)ER) = (Twt) (1)
and if y e X\4,
(th)A(X) =0= fp(X) .

Thus Tyt = poxfo hence [[Tytlls < [ o[l follo = [[W 4]l folls.
So when p = 2m (for some m e N),

(4.1.3) [, 1Tt = 1wl Sl

But a property of Rademacher series ([2], 14.2.1) ensures that for
all 2 €@,

| £l = (5, @) 1)

eX

So using Fubini’s theorem to integrate (4.1.3) along [0, 1],
(4.1.4) |, | Twt = = W llamy( 31 300
G xed

Now given any p € (2, =) choose m € N such that 2(m — 1) <p < 2m
and 1 <m < p. Then (4.1.4) guarantees

[ Twtlls = [[Twtllow = 2| W [lam** || ][, = 2[[W [l || 2]l

which yields (4.1.1).
To prove (4.1.2) we argue similarly, except that for tec T«G)
we redefine f(z, 0) = s W)t RL0)x(x).

NorATION 4.2. When E, F S PM(G) and 4< X we shall write
(E4, Fy) for the set of all ¢ € €4 such that 7 € E, implies ¢7|de€ F | 4.
Writing (E, F') for (Ey, Fy) we return to the standard multiplier
notation.

4.3. Exploiting the conclusions of 4.1 we have

THEOREM. If 1< p,q < o with p+# c and q# 1, these are
equivalent:
(1) sup{|[TwtHe:t e T4G) and ||t]l, <1} < o,
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(ii) fe LiG) implies Ty fe LYG),
(iii) W e (LYG), LYG)), and
(iv) WLY(G) |, L™(G)"| 4.

Proof. (i)= (ii). Let {¢,} < T(G) be an approximate identity
(see [6], (28:53)). If feL%G) then t,xfe T,G) hence by (i), for
some £ > 0

1Tyt Nle = £ll2xFlls < KISl

By the weak compactness of norm balls in L%(G) (¢ # 1) there exists
9e LYG) with ||g|l, < |/ fll> and §=WF. So by the uniqueness
theorem, Ty f = g € LYG).

(ii) = (iii) is clear.

(iii) = (iv). By hypothesis and the boundedness result 1.11,
Ty: LYG) — LYG) is bounded and linear. So by 1.8 and 1.9 there is
a bounded linear map K: L"(G)| A—»I:”’(G)A[A for which, whenever
feL¥(G) and y e d, K(S () = WO()-

(iv) = (i) follows similarly.

4.4. It is usually hard to identify (Z,, F,) even when (E, F') is
known (for E, F < PM(G)) so we pause to combine the approach of
3.1 with the result above.

COROLLARY. Let 1=p,q=<co with p+~c and p =+ 1. Then W e
(LXG), LYG)) uff sup{inf{llgll,:9eL"(G) and §|4 = Wf|4}: fe L(G)
and | £l =) =sup (|| Tyt |l: t € TAG) with ||¢],=1}< oo, (LG, LYG))
is @ Banach space and when p < q it is a commutative Banach algebra
which has an tdentity +ff 4 e A(q).

REMARKS. (i). Although (L4(@), LY@)) is unknown in general,
special cases yield: W e (Li(G), LY @)) iff W el=(4); and for 1 £ p < oo,
W e (LyG), L3(@)) iff W e L*”(G)"| 4 by [2], 16.7.5.

(ii). Conditions sufficient to ensure membership to (L*(%), L (%))
are known and yield:

f1l<p=E£2<qg<o and We@? with
sup{{W(n)[(1 + [n )"V :ned} < oo

then W e (L3(T), LY(T))—see [2], 16.4.6(3). More involved conditions
apply when ¢q = p.

4.5. When p =1, 4.8 can be extended ‘at each end’.
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COROLLARY. For 1 < q < oo these are equivalent:
(1) We(L(®), LYG)),

(ii) WMLG)"|4< LYG)"| 4,

(i) WL(®"|4< L™(@)" | 4,

(iv) WL(G)" |4< C(G)" | 4.

Proof. (i) = (ii) follows as in 4.3(i) = (ii).

(ii) = (iii). Since (ii) = (i), 4.3 implies this.

(iii) = (iv). If fe LY(G), by [6], (32-30), there exist ge LYG)
and f,e LY(G) with f=g=xf,., By (iii) there is h,e L™(G) with
WF, |4 = hy| 4. Setting h = g*h, gives he C(G) and

h|d=ghy)d=§WF|4=WF|4
as required.
4.6. More can also be said when p = 2.

THEOREM. For 1< q < o, We (LAG), LYG®) if for all fe LV(G),

(461) (1 weiwr)” < el f
for some constant K.

Proof. (=) uses the adjoint of T, as in 4.3(iii) = (iv).
(=). Parseval’s identity with the hypothesis shows WL (GQ)" |4<
L¥G)"| 4 hence by 4.3(iv), We (Li(®), LY(Q®)).

NoTE. By choosing an approximate identity the method above
shows We (Li(G®), L7(@)) iff Wel*(d), as noted in 4.4(i).

Since (Li(G)), L7 (®)) < (Li(G), L3(G)) we have thus dealt with
the case ¢ = « of 4.5. Alternatively,

(LY@, L3(@)) S 1*(4) when 1 < p < 2.
See also 4.8.

4.7. Summarising what we have gleaned about W-Sidon sets by
virtue of 4.1:

COROLLARY. If 4 is W-Sidon then

(i) for all e MAG), Typre LiG) and || Tyl 8[| Wil £l

(ii) for all feLi@), Tyfe Li{G) whenever 2 < p < « and
I Twfll, = 21l Wil 2" || f I

(iii) for all pe MA®), Tyoptc LYG) whenever 2 < p < o and
| Twottll, = 16 || WG V2] 2],
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(iv) for all ¢ el*(d), there is fe C(G) such that f] 4= Ws and
flle =8I Wlsll g1l and

(v) of 1< p=2and fe L*(G) then

(1 weier) =21 Wi 1151,

Proof. All are obvious except possibly (iii). If pe My (&) and
2 < p < o, by (i) and (i),

| Tyt |l = | T Twt) s = 21l W2 (| Tiwttlls
=16f| Wilip I el .

4.8. For which W can 1.10(vi) be tightened to
(4.8.1) WLHG)™ | 4 < 1'(4)

for some pe[l, «)? We show that when 1 < p» <2, (4.8.1) holds
iff 4 is a trivial W-Sidon set, and we give a partial answer when

2 p < oo,

THEOREM. If 4 < X then

(1) 1=p <o wmplies (LYG), AAG)) < L*(G)" | 4,

(i) 1=p =2 implies I7(4) S (LG, AAG)),

(ili) 2 < p < oo tmplies ’(4) S (LYG), AAF), and

(iv) 2 < p < e tmplies (LG, A(D) N (LAG), LY () < I*4).

Proof. (i) This follows by 4.4(i) but may be proved quickly
as follows. If We (Li(G), AAG)) then letting K denote the composition
of the isomorphism of 1.8(i) with T}, we have K:1”(4)— L*(®)" | 4
and whenever ¢el(4) and Xe 4, (Kg)(X) = W(H)p(X). Taking ¢ =1
this gives

(4.8.2) FeLP(®) with fl4=W

as required.
(ii) If 1=<=p=<2 and fe Li(G) then by the Hausdorff-Young
theorem and Holder’s inequality, whenever W e {?(4),

SIWID IS I WLl F 1l < o .

(i) If 2<p< o and feL}G) then f|4el*(4) hence when
W e l*(4),

SIWOFO = WL F 1l < o=

(iv) Continuing from (4.8.2), if 2 < p < o, 4.6 shows
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(S 1w )" =20 Wl 1 (o

red

so Wel'4).

REMARKS. (i) Taking W constant, (4.8.2) shows there can be
no infinite Sidon sets 4 with Li(G)" |4 S 1'(4) when 1 < p < .

(ii) Results (i) and (ii) above combine to show that trivial
W-Sidon sets are precisely the W-Sidon sets for which (4.8.1) holds
when pel[l, 2].

Results (iii) and (iv) do not interlock in this way but show, thanks
to 4.7(v), that when p € (2, =), (4.8.1) cannot hold when 4 is W-Sidon
and WelY(4).

(ili) For comparison, (L3(G), A,G)) is identified when 4 is a
subgroup of X in [6], (86-20) via the method of 1.3.

4.9. When W =1 the inclusions implied by 4.7 for Sidon sets
are, by Parseval’s identity, equalities. In fact these are the only
W-Sidon sets with equality:

THEOREM. 4 1s Sidon whenever it is W-Sidon and one of these
holds.

(i) 4 S WMAG)"| 4,

(ii) L~(G)" |4 < WIix4),

(i) C@G)"| 4 < Wik4),

(iv) LYG) | 4< WI(Y), for some p e (2, =) and

(v) ) SWL(G) |4, for some pe(l, 2).

Proof. Theorem 1.12 as used in 1.14 makes short work of these.

4.10. So far we have discussed the behaviour of Ty7w when =
is a 4-spectral measure of L’-function and 4 is W-Sidon. Immediate-
ly from 1.10(viii) we have: 4 is W-Sidon iff WPM«(G)"| 4 < M(G)"| 4.
From 1.14(i) this inclusion is proper whenever 4 is not Sidon.

Evidently T, (PMAG)) < L¥@G) iff 4 is a trivial W-Sidon set and
if Tw(PMAG)) S MAG) then W el!(4)

4.11. We now deduce more about those W in (4). Specialising
to ¥ (though (4.11.1) holds in general) we use:

THEOREM. Let Fe@: If ¢FeN{L(X):1Zp < oo} for all
é€c(B) then for all a >0, Siu|n*F(n)| < co.

Proof. Successive applications of 1.11 and 1.8 show that if
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1< p< oo, then ¢F e L?()" for all ¢ € ¢,(3) implies WL (G)"| 4 Z 1(4).
So the hypothesis entails

(4.11.1) for all pe(l, ) and all g € L°(¥), E‘al F(n)j(n)| < o .

Now if 0<a <1 then by [2], Exercise 7.8, there exist p € (1,(1—«a)™)
and g € L?(®) such that g(n) = n™* for n 0. If @ =1 then the map
n—n"* belongs to *(8\{0}) hence there is g€ L*(T) with j(n) = n
whenever n # 0.

In either case, substitution into (4.11.1) yields

S Fmm™| < o
n70
as required.

NoTeS. (i) In [12] we show the converse of this theorem to
be false.

(ii) The sum >}, |7 “F(n)| was first considered by Hardy and
Littlewood in [5]. Their results imply that it is finite whenever a > 1/2
and may be infinite otherwise, when Fe MN{L°(X)":1 =< p < ).

4.12. The information this gives about W is:

COROLLARY. If We(4) then for all pre M(Z), if a > 0 then
S | e W) | < oo .
Proof. In fact if ¢€l”(8) (not merely c¢,(3)) and 4 is W-Sidon
then evidently 4 is W¢'*-Sidon. Hence by 4.7(ii), whenever e M, (G),
eWiie N{LYG 11 < p < =}

so the conclusion follows from 4.11.

4.13. Using 1°(8) rather than ¢,(3) above seems to be stronger.
However in this context they are equivalent.

THEOREM. Let F'e €X. Then ¢F belongsto N{L"(G)":1=<p < o}
for all gecy(X) iff it does for all ¢cl™(X).

Proof. This follows readily upon taking the bidual of the map
K: ¢(X) — L*(G) given by (Kg¢)~ = ¢F.

4.14. It might be hoped that a tight necessary condition for
W to belong to TW(4) follows from 4.12 by eliminating g somehow
to give a purely combinatorial property. However the 4-spectral
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measures compensate for variations in the thickness of 4, so we
turn to other means for this.
Refer to [3], 8.1 for the definition of a test family of order m.

THEOREM. If W e (LiG), LYG)) where 1 <p <2 and 1 < q < oo,
and F is a test family of order m then for each @ e,

> WP = emy(@)
1e®nd

where £ 1s the unnamed constant in 4.4.

Proof. This is a routine modification of [3], 8.2 for which details
appear in [11].

COROLLARY 4.15. If 4 is W-Sidon and F is a test family of
order m then for each ® €§ with v (P) = 3,

o WO = 8e|[W [lam log (2) .

Proof. By hypothesis and 4.7(ii), W e (L%(G), LYG)) whenever
q€(2, =) and so by 4.14,

> WP = 41|W 2 gmu(9)" .
xreond

Taking ¢ = 2logv(®) so that ¢ > 2 because v(®@) = 3, this entails the
result.

Notes. (i). This means that if € > 0, the number of elements
of 4 in @ with |W(x)| > ¢ remains small as @ enlarges.

(ii). For g = o the result above is overshadowed by the note
to 4.6.

The results of this paper appear in [11]. The author is deeply
indebted to his supervisor, Professor R. E. Edwards, for his sugges-
tions and encouragement. He is also grateful to Dr. J. R. McMullen
for a correction to 1.7 and to the referee for several improvements.
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