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SETS OF UNIQUENESS AND MULTIPLICITY FOR Lp

A N N A MARIA MANTERO

In the first part of this paper, it is proved that: if
1 < q < p ^ 2 and G is a nondiscrete, locally compact abelian
(LCA) group with character group Γ, there exists a subset of
positive measure EaG which is a set of uniqueness for Lq(Γ)
and, at the same time, a set of multiplicity for LP(Γ).

This is followed by some results of the same type concern-
ing the spaces Lp>a(Γ), a Φ 0, when G is the Cantor group.

I. I. Hirschman, Jr., and Y. Katznelson prove all the results of
this paper in the case when G — T (the circle group) and Γ — Z (the
integer) (see [5]). They also prove results concerning the spaces Lv a{Z).
The core of the present work consists in proving our theorem for the
case in which G is a compact group the elements of which have
bounded order. To obtain the theorem for a general LCA group, we
use the latter result, the theorem of Hirschman and Katznelson,
and the structure theory for LCA groups. The existence of sets of
uniqueness for LP(Γ), 1 <̂  p < 2, which are of positive measure (and
therefore are sets of multiplicity for L\Γ)) was proved by Y. Katznelson
([6]; [7], p. 101), for the case G = Γ, and by A. Figa-Talamanca
and G. I. Gaudry for the general case (see [2]). The results contained
in this paper appeared in part in our thesis for the "laurea" in
Mathematics at the University of Genova. This thesis was prepared
under the guidance of Prof. A. Figa-Talamanca, to whom we are
grateful for advice and assistance.

l Preliminaries* Let G be a nondiscrete LCA group and Γ its
character group. If / is an integrable function on G,

( - χ)dx for any jeΓ

denotes the Fourier transform of / .
Let us define now a uniqueness set and a multiplicity set for

LP(Γ) as follows:

DEFINITION. Let E be a measurable subset of G; then E is called
a set of uniqueness for LP(Γ) (or set of p-uniqueness), if no non-
zero integrable function /, carried by E, satisfies the condition
feLp(Γ).

A subset which is not a set of uniqueness is called a set of
multiplicity for LP(Γ) (or set of p-multiplicity).
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Throughout this paper we indicate the Haar measure of a set S,
by m(S).

2. The main result* We can now state the first result of
this paper.

THEOREM 1. For every real numbers p, q such that 1 < q < p S 2
there exists a subset £ c G , of positive measure, which is a set of
q-uniqueness and p-multiplicity.

Proof. From a theorem of structure [8, p. 40] we know that
every LCA group has an open subgroup which is the direct sum of
a compact group K and a Euclidean space R*(n ^ 0). Thus it is
sufficient to prove the theorem for groups of the form

Rn for n^O .

We must distinguish several cases:

Case (1). G is a compact group with Haar measure normalized
(% = 0). In this case the proof of the theorem can be obtained from
the following two lemmas:

LEMMA 1. Given a real numbers ε, 0 < ε < 1, and p, qe (1, 2]
such that q < p, we can find a measurable set EaG and two functions
F and φ, defined on G, satisfying the following properties:

(a) m(E) ^ 1 - ε
(b) F(x) = 1 for any xeE
(c) \\F\\q,^ε ifl/q + l/q' = l
(d) φ(x) ̂  0 for any xeG
(e) m {x € G: φ(x) = 1} ^ 1 - 2ε
(/) log II^H^ε
(g) {x e G: φ(x) ^0}c:E.

Proof of the Lemma 1. We consider three cases according to the
order of the elements of Γ.

Case 1 (a). Γ is a torsion group of bounded order. Let Δ be an
independent set of generators for Γ. Let {JΠJJ=I be a sequence of
subgroups of Γ, all having the same finite order r and which are
generated by elements of Δ in such a way that, if (Γl9 Γ2, •) denotes
the group generated by Γl9 Γ2, , then

rn+1n(rlyr2, ...,rn) = {0} for w = i , 2 , . . . .

Now, for any (large) positive integer N, we can define—on the group
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G — t w o s e t s of N f u n c t i o n s , Fl9 F2, •••, FN a n d φl9 φ2f •••, φN i n t h e
f o l l o w i n g w a y :

Fi(x) = 1 - Σ y(x) for ΐ = 1, , N

φi(x) = 1 - — Σ y(x) for i = 1 - N .
r iert

Since F{ and φ{ (1 ̂  i ^ N) are trigonometric polynomials, we can
trivially deduce that:

( I ) \\Fi\\q, ^ rlιg/ for any i = 1, •••, iV.
(II) log I! ώ< Up ^ r1"^ for any i = 1, , N.

Moreover:
(III) m{x e G: F<(x) = 1} = 1 - 1/r for i = 1, . ., N.
(IV) m{α; e G: (̂α?) = 1} = 1 - 1/r for i = 1, . . . , N.

Now, let us define, for every integer N:

E = fl {α; e G: i^(a;) = 1} ,

F&) = T r Σ i^(») for s e G

^(x) = Π Φi(χ) f ° r x&G .

It follows that:
( i ) m(E) = m{x 6 G: F(a;) = 1} ̂  1 - iV/r.

Because the F, are supported by disjoint subgroups and Fi(0) = 0
( l g i g iV)? then (I) yields:

Since ji^Hj, = H^ilj, for any i, i e {1, 2, •• ,iV}> and by the definition

of Γn there exists a t most one way to wri te T G Γ as the sum of

elements 71 e Γu 72eΓ2, , ΎN e ΓN, then
(iii) logll^iί, - l o g i n s | |^ | |p) ^ N-r1-*.

Since p> q, it is possible to choose a positive integer ΛΓ and a large
positive integer r such that the conditions

| | ^ | | p ^ JVΓ r1-p ̂  ε ,

are simultaneously satisfied.
Since Γ is of bounded order (and therefore it has infinitely many
elements of the same order) we can choose r arbitrarily large so that
it is the common order of infinitely many disjoint subgroups Γl9 Γ2,

To complete the proof of the lemma in Case 1 (a), we note that:

( i ) φ(x) - Πf=i (1 - XjiiHx) ^ 0 for x e G
where—for every i = 1, 2, , N — M{ — {x e G: Ύ(X) — 1, 7 e Γ^} and
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XM. is the characteristic function of ilί*.
* (ii) m(E) ̂  1 - N/r ̂  1 - iNΓ r1-* ̂  1 - s

bceause r > 1 and (p — 1) ̂  1.
(iii) m{# e G: φ(x) = 1} = m(£f) ^ 1 - ε.

Case 1 (b). Γ* contains an element of infinite order. Let 7' be
an element of Γ such that n Y Φ 0, for every neN. We call /" the
subgroup of Γ generated by 7'. Thus Γ' is isomorphic to Z and its
character group f' is a compact group isomorphic to G/M, where

M = {x G G: Y(x) = 1}

is the annihilator of Γ' [8, p. 35]. But Γ' is also isomorphic to T.
Thus we can consider—given a positive real number ε—the construction
of the functions which satisfy the Lemma 1 in the case G = T, given
by Hirschman and Katznelson in [5, p. 226]. We call these functions
/ and <p. Since / and φ belong to L2{T), we can write:

Now

and

we define:

F(x)

Φ(x)

) = Σ«ι
keZ

keZ

— y , ciu *
keZ

= ΣV
keZ

.</<*)*

Y(α;)*

for any ??

for any ??e

fo

for

6(0,

(0,2

>r x

xe

2π]

π] .

eG

G.

Prom the definition of M it follows that such functions are constant
on the sets x + M, where x e G, and therefore we can consider F and
φ as defined on G/M. Hence for every x e G/M we have

F(x) = % /Σ
keZ

where ΰ e (0, 2π] is such that eiB e T is the image of a? e G/M under
the isomorphism mapping G/M onto T.

Similarly:

Φ(x) =

It follows that [4, p. 91, vol. II]:

m{x e G: F(x) = 1} = m{# e (0, 2π]: f{ϋ) = 1}

and
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m{x e G: φ(x) = 1} = m{# 6 (0, 2τr]: ?(#) = 1} .

Thus, by observing that:

Λ = 11/11.';
and recalling [5], the proof of the lemma is easily completed in this
case.

Case 1 (c). Γ is a torsion group of infinite order. Suppose that
YeΓ has order n. We call Γ' the cyclic subgroup of Γ generated
by 7'. The discrete group Γ' is isomorphic to Z(n). Its character
group f' is a cyclic compact subgroup of T which is also isomorphic
to G/M, if M is the annihilator of Γ\

Similarly to the Case 1 (b), if

/(<?) - Σ Ak etM for # G (0, 2τr]
feeZ

and

Σ J5* e*M for & e (0, 2ττ]
kZ

are the functions satisfying the Lemma 1 when G — T and ε/2 replaces
ε, we pose:

Σ A . I ΎΎΊΛ* for r a Π-

Φ{x) — Σ f Σ Bk+ni) Y(x)k for xeG .

Since these functions are constant on x + Mcz G(x e G), we can con-
sider them as defined on G/M. Thus, for every x e G/M, if eid is the
image of x under the isomorphism mapping G/M onto T,

Using the same reasoning we get, for any x e G/M and for any &

defined as above,

φ(x) = ψ{d) .

In order that the functions F and φ satisfy the Lemma 1, they must
verify these non-obvious conditions:
(1) | |F | | , , gε,
(2) log |.|^||, ^ e ,
(3) m{xeG:F(x) = 1} ^ 1 - e,
(4) m{x e G: φ(x) = 1} ^ 1 - 2e.

We will show that these conditions are satisfied if the order of
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the element Y is large enough. Indeed, given feLι(Z) and ε > 0
there exists nr so large that for n ^ n' we have:

Consequently, by Minkowski's inequality and recalling that if 1 <; s
then L\Z) S LS(Z) we have:

= (?
£(Σ

V k

1̂1/11

Ak

Ak

,' +

+ 2

k

V k

Σ Ak+ni

\ 1/?'

r
Σ
kyi

, + e/2 ̂  e .

Similarly, given φ e L^Z) and s > 0, there exists w" so large that
for n ^ «" we have

Thus if Y has order ti ^ n",

\p\l(p

Finally, if 57 is the measure of the subset of (0, 2π] where f(ΰ) Φ 1
and the order n of Y satisfies

n

we have:

m{x e G: F(x) = 1} ^ 1 - e ,

m{x e G: ψ(x) = 1} ^ 1 - 2ε

Therefore, to fulfill conditions (1) to (4) and to prove the £lemma it is
enough to choose YeΓ with order n satisfying

n > max (n\ n", (v/ε)1{2)
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LEMMA 2. Given a sequence of positive real numbers {εk}^=ι such
that 2 Σ * εk < 1, it is possible—for every keN to find Eik\ Fik), φ{h)

satisfying Lemma 1 with ε = εk such that for all NeN

(1)

Proof. Inequality (1) can be proved easily enough by induction.
Suppose that (1) holds for N = 1, 2, •••, E — 1. We want to show
that:

( 2 )
11 /Λ—1 \ "

^O (ΠίH
||\fc = l /

We must distinguish two cases:
(1°) G is as in the Case l(a) of Lemma l Then we must choose φ(R)

such that

supp φ{R) Π (supp φ{1), , supp ^{Λ~υ) = {0}

(2°) G is as the Cases 1 (b) and 1 (c) of Lemma 1. Then we define
φ[R) starting from the function <pR which satisfy the analogous inequality
in [5] Using condition (/) of Lemma 1, we see that (1) is true in
both cases.

Conclusion of the proof of Theorem 1 in Case (1). Choose a
sequence of real numbers ek > 0, k = 1, 2, , such that 2 Σ ^ ϋ < 1.
We define

E = Π Eίk)

k=i

Since we assume that 2 χ f c £ f c < 1, then clearly:

m{E) - l - Σ δ f c > 0 .

We assert now that E is a set of uniqueness for Lq{Γ). Let
g be an integrable function with support included in E for which

:\q< + °o. Since F{k)(x) = 1 for x e E, k e N we have, for 7 fixed:

- ( g{x)Ί{-x)dx = \ F{k)(x)g(x)7(-x)dx
JG JG

and, from Holder's inequality:

\g(l)\^\\g\\g.\\F^\\g,<:\\g\\g-εk.

Letting k —> oo we have that <7(7) = 0 for all 7 e Γ and thus that # = 0.
We also assert that E is a set of multiplicity for LP(Γ). Let

φ(N, x) = ULiΦ{k)(%) for xeG. Since LP(Γ) is weakly boundedly
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compact for p e (1, 2], it follows from (1) that there exists λ(7) e LP(Γ)
which is a weak limit point of φ(N9 7), N= 1, 2, •••. By (e) of
Lemma 1,

m{x e G: φ(N, x) = 1} ^ 1 - 2 Σ β* > 0 ,
A;

and since, for every a eG, φ(N, x) ^ 0, by (d) of Lemma 1, we see that:

φ(N, 0) ^ 1 - 2 Σ εfc f iSΓ = 1, 2, ,

and hence

λ(0) = l - 2 Σ δ . > 0 .

Therefore λ(7) * 0.

Let A be a function defined on G such that Λ(7) = λ(7). Moreover,
h e L\G) since it has support of finite measure and, by the Hausdorίf-
Young theorem, heLp'(G). Then h is a nonzero function supported
in the intersection of the supports of φ(N, x), xeG and NeN, and
therefore (supp h) c E.

Case (2) G is a Euclidean space iί% for some n > 0. We can
identify Γ with the real interval [ —1/2, 1/2) and therefore we can
identify Tn to be the vector product [ —1/2,1/2)*. Choose now a
sequence of real numbers {ek}Z=1 such that 4 Σ * s* < 1.

For every εfc we consider the corresponding function fh which
satisfies Lemmas 1 and 2 in the case of the torus. Thus we can
extend periodically the function fh to all the real line and we call
fk also this (periodic) extension. Now we extend the domain of definition
of fh from R to Rn as follows:

and we choose a positive, continuous function P defined on Rn which
satisfies:

( 1 ) 0^P(xly •••,<) ^ 1 for any (a?x, , a?Λ) eΛ"
( 2 ) P ( ^ , •-., O = 1 on [-1/2 + 1/8, 1/2 - l/8]
( 3) P(xlf , xn) - 0 out of [ -1/2, 1/2]*
( 4 ) PeC~(Rn) .
By defining Fh as

we have a function which is obtained from /£ by dropping to zero
its value outside of [ —1/2,1/2]" and which equals f{ on a smaller
cube.

Now we show that the range of the operator Tf
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T:g >(g*PΓ

where we define g*(xu , xn) = g(xd is contained in L*(Rn), 1 ̂  s <* oo,
for all continuous g on Γ with ge&(Z)> that is for all geA(T).
Moreover, we show that T is continuous from L1(Z)-equipped with
Z/(Z)-norm into L8(Rn), 1 ^ β ̂  oo.

To keep the notation simple we only prove the case when n = 1.
We also make use of the following formula for aeR:

{gPΠa) = g S(n)P(a - n) .

By the Riesz-Thorin theorem, it is sufficient to prove that T is
continuous for p = 1 and p = oo.
If p = 1,

^ Σ \Q(n)\(sup f | ^ ( α -
«=-oβ \ α JR

If p = oo,

\\Tg\U = sup|(fifP)Λ(α)| ^ sup g |^(n)| |^(α - n)\

the sum Σn I ^ ( ^ — w) | is bounded independently of a and therefore

where Cx depends only on P.
Therefore,

where C2 depends only on P.
We claim that

is a set of positive measure, of g-uniqueness and p-multiplicity.
It is easy to check that

m(E) ^ (1 - Σ* eh - 1/4X3/4)-1 > 0 .

The proof for E that is a set of g-uniqueness is the same as for
Theorem 1, Case (1).

To prove the ^-multiplicity of E, let hχ denote the periodic
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extension to Rn—defined in the same way as for f{ in Case (2)—of the
function h found in Case (1), where G = T.

Let P be defined on Rn as above. It remains only to show that
the function

H ( x l 9 , x n ) = h*(xu , xn)P{xu •••,&„)

is a nonzero function supported by E (obvious), and satisfying

HeLp(Rn).

This last fact follows from the boundness of the operator

T:g-+(g*P)~ from Lι(Z) to Lp(Rn), which we have proved above.
Thus the theorem is completed also in Case (2).

Case (3). G is a direct sum of a compact group K and a Euclidean
space Rn for KΦ {0} and n > 0. We can consider the set EaRn

found in Case (2) and, by choosing the Haar measure on K such that
m(K) = 1, it is easy to check that

is a set which resolves our theorem. We simply recall that the dual
group of a direct sum is a sum of the corresponding dual groups
[8, p. 36].

3* A variant* We consider the case when G is the Cantor group.

DEFINITION. We call Cantor group D, the complete direct sum
of Z(2)n for n e N where each Z(2)n is the group of order two. Thus
D is the group of all sequences {ξn}, ξn = 0 or ξn = 1 with coordina-
tewise addition modulo 2, and with the topology that makes the
mapping

a homeomorphism of the group onto the classical Cantor set of the
real line. It will be convenient to identify D with the interval [0,1].
This is done by considering the mapping

t:D ,[0,1]

which is continuous, invertible a.e. and Haar measure preserving.
Because the dual of a group of order two is again the group of order
two, the dual of the group D is the direct sum of a sequence of
groups of order two. In other words, the generators of Γ (the dual
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of JO), are the functions

and every element of Γ has the form

k
/J/«/Λ»\ I I M f/y*\ I "I \ * ΊHyv' •"{"* ίlt
(ΛJ\w) — I I I % \*vl — I JLJ ,

If t(x) is not a dyadic rational number, we can identify x with t(x)
and then we can identify the rn functions with the classical Rademacher
functions on [0,1] It is clear that the harmonic analysis on LP(D) is
the same as on I/([0,1]), if we identify D with the real interval [0,1],
its Haar measure with the Lebesgue measure, and its characters with
the Walsh functions (finite products of Rademacher functions).

We recall now the Paley order for the Walsh functions and hence
for the characters of D:

wQ = rQ ΞΞ 1 ,

w2n~i — rn , f or n ^ 1 ,

wn = rΛ l rn]c w h e r e n = 2n^1 + . . . + 2%k~~1 .

Let us set, for / defined on D:

where 1 < p < co and 0 < a < 1 — 1/p .
If we make the obvious generalization of a set of uniqueness and a

set of multiplicity for LP(Γ)—given in §1—to the case Lp'a(Γ), a Φ 0,
we can prove:

THEOREM 2. For every real numbers p, q such that 1 < p, q < <χ>,
if V*a < βQf> where a, βeR,0<a< Ijp' and 0 < β < l/#', έ/̂ ere exists
a subset EczD of positive measure which is a set of uniqueness for
Lq'β(Γ) and a set of multiplicity for LP-°(Γ).

Proof. Given a real number ε > 0 we must find a function F such
that

(1) H^H,'.-, ^ e where lfq + W - h
(2) m{xeD:F(x) = 1} ^ 1 - ε,
and a function 0 such that
(3) φ(x) ;> 0, for any α? e D,
(4) m{^eΰ: 0(B) = 1} ^ 1 - ε,
(5) l o g l l ^ U g ε .
To this end we define a sequence {Fm}Z^o of functions:



478 ANNA MARIA MANTERO

Fn(x) = 1 - Σ » , for m = 0,1, 2,
n

where the sum is taken over the finite set

{0, 1-2*™, 2.2*™, 3-2*™, . . . , (2k - ΐ)2km}

and A: is a positive integer to be specified later

We can give the following equivalent definition for Fo:

elsewhere .

If we extend Fo to a periodic function Ft of period one, defined on
all of R and equal to Fo on [0,1] we can also define:

Fm(x) = F?{2k™x) for 0 ^ x ^ 1 .

It is clear that:

(jP.(αj)ίte = 0 and m{a? e D: FJx) = 1} - 1 - 1/2* .

Moreover, from the following relation:

(1 if n = 0, l 2*m, 2 2*m, 3-2*w, ., (2k - 1)2*™ ,
FJwn) = \

(0 otherwise ,

we deduce:

Analogously we define a sequence {φm}Z=o of functions such that

Φo(x) = 1 ,

Φm{%) = 1 — —7- Σ wn(a?) , for m = 1, 2,

where the sum is taken over the set

Since the φm are trigonometric polynomials, it is trivial that:

(1 - 1/2* if ft = 0

1/2* if n - 2*(—ι), , (2* - l)2* (w"1)

0 otherwise ,

and so, an easy calculation yields:
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log \\φm\\P,a^ B 2«ί->)-2*»™ .

Moreover, we have

m{x: φm{x) = 1} ^ 1 - 1/2* .

Indeed we can give the following equivalent definition for φx;

f0 for x e (0, l/2fc)

(l elsewhere

and notice that, if φ* is a periodic extension of φι on all the real line,
the following relation holds:

φjpή = φ^(2k{m~1)x) for any x, 0 ^ x ^ 1 .

Now, if we choose k and m such that are solutions of the system:

< ε
(2)
v 7 ig2fc(1~p) 2fcm(?)α) < ε

(we observe that A and B are constants depending on p, q9 af β)9 Fm

and φm satisfy properties (1), (2), (3), (4), and (5).
These solutions exist because p'oc < βq\ by hypothesis.

Let us define:

Choose a sequence of real numbers £< > 0, i = 1, 2, , such that
2 Σ ί εί < 1» a n ( i repeat the preceding construction for every ε — et. If
we also choose the solutions k and m of (2) in such a way that:

h > ki^rrii^ ,

we can show, by induction, that, for every NeN:

We assert now that our set of (p, ^-multiplicity and (q, β)-uniqueness is

E = n Et.

The proof of the theorem is now the same as that for Theorem 1,
Case (1).
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