
PACIFIC JOURNAL OF MATHEMATICS
Vol. 63, No. 2, 1976

FORMULAS FOR THE NEXT PRIME

SOLOMON W. GOLOMB

In 1971, J. M. Gandhi showed that if the first n primes,
Pif Pz> •*•> Pn are known, then the next prime, pn+1, is given
"explicitly" by the formula:

^£L λ)<b>
bd — l b )

where b is any positive integer ^ 2 , where Pn — pxp2 Pn,
where μ{d) is the Mobius function, and where the unique
integer value of t which satisfies the indicated inequalities
is in fact pn+1.

In this paper, we obtain of the following formulas for

( 2 ) P +i

(3) ϊ>.+1

( 4 ) Pn+i
β—*oo

and

(5 ) pn+1 = lim {1 -

Here ζ(s) = Σ*=i n~s ί ° r (real) s > 1 is the Riemann Zeta Func-
tion, with ζ~\s) - ΣϊUj"(w)/n ; Pn(s) = U^PΛ1 ~ VT8), and Qn(s) =
{Pn(s)}~1 — Σ'»-i n~°> where the prime indicates that summation is
extended over those values of n having no prime factors exceeding

2>n

The approach to be followed here involves the derivation of a
more general formula, based on the notion of probability distributions
on the positive integers, from which both the Gandhi formula and
the new formulas listed above follow as special cases.

2* Probability formulas for the integers* Let a(n) be a proba-
bility function on the positive integers. That is, a{n) ^ 0 for all
n = 1, 2, 3, , and Σ~=i a(n) = 1.

Let β(m) = Σ*=i oc(mn). In the probability distribution D de-
termined by {a(n)}y β(m) is the probability that a randomly chosen
integer is a multiple of m. Next, let Ύ(k) — Σdik M )̂/3(cf). Then
Ί(k) is the probability (in D) that a randomly chosen integer is
relatively prime to k, because

vQc) = 1 - Σ β(Vi) + Σ β(PiPi) - + •••.

Pi I k PiPj!k

Let Pn = pxp2 pn be the product of the first n primes. Then
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V(Pn) = ΊLd\pn μ{d)β{d) by the definition of Ύ(k); but also

( 6 ) 7(PJ - α(l) + α(p.+1) + = Σ " «ϋ) ,

where Σ " indicates summation over all positive integers divisible by
none of the first n primes.

THEOREM 1. Suppose 1 <Ξ nx < n2 < n3 < is α%i/ subsequence
of the positive integers, and there exists an operator T such that

for all such subsequences. Then

(7) Γ(7(P.) -

is a "formula" for the next prime, pn+1.

Proof. Since 7(PΛ) - α(l) = Σ/'s>i ati) = «(P»+ι) + , we have
T(Ύ(Pn) — α(l)) = p n + 1 by the hypothesis concerning the operator T.

Another general result is given by:

THEOREM 2.

(8) 7(0) - lim 7(P.) - Σ μ(d)β(d) = a(l) .

Proof. This follows directly from

7(Pn) = Σ μ(d)β(d) = ±" a(j) .
d\Pn 3 = 1

As we shall see, Theorem 2 is a generalization of Euler's product
formula for the Zeta Function.

3* Some special cases* Suppose a(n) = (b — l)b~n far n = 1, 2, 3,
• where 6 > 1 is a positive integer. This is a geometric distri-
bution on the positive integers. Then

β(m) = Σ ^

and

Σ M ) ^ ( ) = Φ - i) Σ
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In particular, 7(PM) = φ - 1) Σu\p, M W - 1). and

7 ( P . ) - « ( 1 ) = ( b - 1 ) ( Σ - ^ L - i . ) = (6 _ 1 ) ( ^ _ + . . . } ,

and to recover p w + 1 it suffices to divide by b — 1, and then multiply
by the smallest power bι of 6, £ an integer, such that

This is Gandhi's Formula (1). (For other derivations, see [1] and

[2].)
Alternatively, let a(n) — n s/ζ(s) for a fixed real value of s,

s > 1. (Note that Σ ϊ U <Φ0 = (Σ?=i ^"S)/C(s) - 1.) Then ^(m) =
Σ?~i α(mw) = m-, and 7(fc) = Σd l 4 j«(ώ)d-s = Σ,ι* (1 - ί>"s) Specifi-
cally, γ(P.) = Σi,pre (M<2))/ds = Π?=i (1 - P?) = P.(β) Note also that
α(l) = l/ζ(s). Thus 7(Pn) - α(l) = (pB+1)"s + , and an appropriate
operator T to recover the term pn+1, in the sense of Theorem 1, is

( Γ1/s. Thus

( 3 ) P . + ι = lim {P.(β) - C-'ίβ)}"1"
8-+OO

Each of the formulas (2), (3), (4), (5) can be given a direct in-
terpretation. Thus

( 9 ) P.(β)ζ(β) - 1 = Σx «"s

(10) P.(β)-ζ-1(β)=-ΣϊM«)α-

(11) C(β)-Q.(β) = Σ . α -

(12) l - ζ-ι(«)Q-(β) = - Σ . riφ-°

where 2 i indicates summation over those integers a > 1 all of whose
prime factors exceed pn; where Σ2 indicates summation over those
integers a > 1 having at least one prime factor exceeding pn; and
where μ(a) is the Mobius function. In all four of these expressions,
the first surviving term in p~+lf which is recovered by the inversion
operator T to yield the formulas (2), (3), (4), and (5).

For the case a{n) = n~slζ(s), Theorem 2 yields the identity

(13) 7(0) = Π (1 - PΓ ) = Σ μ(d) d~* = l/± n-
i~ί d=l n = l

which includes the Euler Product Formula for the Zeta Function
(cf. [3]).
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The reader is invited to find other distributions on the positive
integers for which Theorems 1 and 2 yield interesting formulas. A
simpler proof of Gandhi's formula was given by the present author
in 1974.
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