
PACIFIC JOURNAL OF MATHEMATICS
Vol. 64, No. 1, 1976

CENTRALIZERS OF TRANSITIVE SEMIGROUP
ACTIONS AND ENDOMORPHISMS OF TREES

CHARLES WELLS

A tree is locally finite if the interval between any two points
is finite. A local isomorphism of a tree with itself is a homomor-
phism which is an isomorphism when restricted to any
interval. Two theorems are proved. One characterizes those
locally finite trees which have transitive automorphism groups,
and those which have transitive local-isomorphism monoids. The
other theorem gives necessary and sufficient conditions for a
non-injective transformation to be centralized by a transitive
permutation group, and necessary and sufficient conditions for it
to be centralized by a transitive transformation semigroup. Also,
an example is given of a nonlocally-finite tree with transitive
automorphism group.

1. Preliminaries and statements of the theorems. All
functions will be written to the right of the argument, and functional
composition will read from left to right. If a: X—> X is a function, and
x E X, then xa1 denotes the inverse image of x under a. If X is any
set, |X | denotes the cardinality of X.

A semigroup S acts on a set Xon the right if, for every x EX and
s E S, xs denotes an element of X, and

(1) (xs)t = x(st) (xEX,sE S).

Then X is an S,-set or an S-operand.
An action by a semigroup S on X is transitive if for every J C J E X ,

there is an element s E S such that xs = y. A subset G of X generates
the S-set X if for every x EX there is g E G and s E S such that
gs = x. Thus an S-set is transitive if and only if every one-element
subset of X generates X.

Let X and Y be S-sets. A function a:X->Y is an S-
homomorphism (equivariant map) if

(2) (xa)s = (xs)a (xEX.sE S).

5-endomorphisms and 5-automorphisms are defined in the obvious
way. It is easy to see that the 5-endomorphisms of an S-set X form a
semigroup EndsX and the S-automorphisms form a group AutsX

Let T be a partially ordered set; its order relation, like all those in
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this paper, will be denoted ^ . T is a tree if the set tA - {u ET: t < u)
def

is well-ordered (whenever it is nonempty) for every t E T. T is nontri-
vial if tA is nonempty for some t ST. An element of tA is an ancestor
of t.

If T is a tree, define for each t E Γ:
tP = the parent of t = the minimum of the set L4 - {ί}, if it exists.
tB = tPP~ι = the set of siblings of t.
tD = {u ET: U < t} = the set of descendants of t.
tC = ίP"1 = the set of children of ί.

Observe that tC may be empty even if tD is nonempty.
If ί, w E T, the interval from t to u is the set [ί, w] = {JC E T: ί ^ x ^

w}; the notation will be used only when t ^ u. T is locally finite if [ί, w]
is a finite set for all t, u E Γ with ί ^ w. (This could be called vertical
local finiteness, contrasted with horizontal local finiteness which would
require that every sibling class be finite).

A filter of T is a subset X such that if x E X and JC < y, then
y E X. X is an ideal of T if x E X and y < x implies y E X.

Let T and T' be trees. A bijection /: Γ—> T' is an isomorphism if
t^u&tf^uf for all t,uET. A function g : T - » Γ \ i s a /oca/
isomorphism if g restricted to [ί, w] is an isomorphism from [t,u] to
[ίg, ug] for all ί, u E T with ί ^ M. The set of isomorphisms of a tree T
with itself forms a group Aut T under functional composition, and
similarly the set of local isomorphisms of T with itself forms a semigroup

:

Finally, let ω denote the set of nonnegative integers regarded as a
well-ordered set.

In this paper, the following two theorems will be proved.

THEOREM 1. Let T be a nontrivial locally finite tree. Then
(a) LI(T) is transitive if and only if T has no maximal or minimal

elements.
(b) Aut T is transitive if and only if T has no maximal or minimal

elements and \tB\ = \uB\ for all t,uET.

THEOREM 2. Let S be a semigroup and X a transitive S-set with
S-endomorphism a. Then a is suήective, and if a is not infective, then ak

has no fixed points for any positive integer k. Conversely, if a: X —»Xis a
suήective function with the property that ak has no fixed points for any
positive integer k, then there is a transitive semigroup of functions from Xto
Xwith respect to which a is an endomorphism (in other words, a commutes
with every function of the semigroup). This semigroup of functions can be
taken to be a group of permutations if and only if \xa~ι\ = |y^" ! | for all
x,yEX.
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Observe that as a corollary of Theorem 2, a transitive semigroup
action on a finite set can only be centralized by permutations.

2. Proof of Theorem 1. We need three lemmas.

LEMMA 1. Let T be a tree. Then T is locally finite and has no
maximal elements if and only iftA is order-isomorphic to ω for every t E T.

Proof Let T be locally finite and have no maximal elements. Let
t E T. Define β: ω -» tA by

Oβ = t

= (nβ)P (n = l,2, )

Then for k E ω, kβ is clearly tPk. It is easy to see that β is an injective,
order-preserving map. It is also surjective: If u E tA, then [t, u] is finite,
so that u - tPk for some integer k hence u = kβ.

The converse is obvious.

LEMMA 2. Let T and V be trees, and f: T-*T a function. Then
the following are equivalent:

(a) / is a local isomorphism.
(b) For all t E T, / restricted to tA is an injective order-preserving

function onto an initial segment of tfA.
(c) For all ί, u E T and w E T ,

(i) t<uφtf<uf
and (ii) tf < w < uf => Λerβ /s u E Tsuch that t < v < u and vf = w.

Proof The proof, particularly in the order (a) Φ (c) Φ (b) => (a),
is an easy consequence of the definitions of the terms involved and is
omitted.

LEMMA 3. Let Tbe a tree, t E TandfE LI(T). Then tfP = tPf.

Proof Immediate from Lemma 2(c).

We now prove the forward half of Theorem l(a). Let LI(T) be
transitive. Since T is nontrivial, there are t, u E T with t < u. If
x E Γ, t h e r e a r e fgG LI(T) w i t h tf = x a n d ug = x. T h e n tg < x < uf
so that JC is neither maximal nor minimal.

The forward half of Theorem l(b) now follows, since if Aut T is
transitive, LI(T) certainly is, and an automorphism restricted to a sibling
set must be a bijection onto another sibling set.
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Now for the converse half of Theorem l(b). Let T be a locally
finite tree with no maximal or minimal elements. Let t, u £ Γ . We
must construct an automorphism / of T with tf = u. To do this, we first
construct a sequence /0,/i,/2, * * of functions with increasing domains

0o, Di, .
Take /o to be an order isomorphism from tA to uA it exists (in fact

it is unique) by Lemma 1, and clearly tf0 = u. The domain Do of /0 is thus
tA.

Let DΛ = Do U ( U x e D o xB). For each x E D o , let gx: xB -* JC/0J5 be
a bijection such that xgx = x/0. Define fλ = /0 U (U x e D t o g x ) . Then /j is
well-defined because for x, y E D o , xB and yB are disjoint if x ^ y, and
XJB intersects D o precisely in {x}.

It is not difficult to show that (3), (4) and (5) below hold for / = 1.
(3) DHCD, and/jA-^/U
(4) A and D,/, are both filters of T.
(5) /, is an isomorphism from Dt to D/,.

Now suppose that /, has been defined with domain Dt so that (3), (4)
and (5) are true. Suppose also i > 0.

We define fι+1 and D / + 1 as follows. Let M, denote the set of minimal
dements of D, (M, is nonempty, but we do not need that fact). Let
Eι = UxGMιxC; Et is the set of immediate descendants of elements of
M{. It is important to note that Et is the disjoint union of the xC's.

For each x E Mn let gx: xC-^xfiC be a bijection. (Note: xC is
nonempty because [y, x] is finite for any y < x.) Let Dι+ι = Ό{ U En and
/•+i = /, U (U x G M , g,). Then /I+1 is well-defined because of the fact that E,
is a disjoint union of the xC's. It is straightforward to check (it involves
numerous cases) that ft+ι and D i + 1 satisfy (3) through (5) with / -f 1 instead
of /.

Now let fω be the union of the functions fim Condition (3) implies
that fω is well-defined, and conditions (4) and (5) that fω is an isomorph-
ism between filters of T. Actually, more is true: The domain and the
image of fω are each both filters and ideals of T. To see the latter,
observe that if x E D,, then any element which is k levels below x will be
included in Dι+k thus every element below x is included because of local
finiteness. An analogous argument works for the image of fω.

Furthermore, either dom/ω = im/ω or they are disjoint. (In fact, they
are connected components of T). For let w, x, y E dom/ω and xfω = y.
By construction of dom/ω, there is z E tA with w ̂  z and y ̂  z. Since
im/ω is both a filter and an ideal, it follows that w E im/ω. A similar
argument shows that if x and y are as before and w E im/ω, then
w Edom/ ω .

It follows that either fω or fω U f~J is an automorphism of a subtree X
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such that if t E T - X, then t is unrelated to any element of X. Thus
that automorphism can be safely extended to all of T by stipulating that it
be the identity on T - X. By construction it takes t to u as required.

Finally, to prove the converse half of Theorem l(a), the preceding
construction can be modified easily as follows: At the first stage, take
gx: xB —» xf0B to be any function with xgx = xf0. At each later stage, gx

can be any function from xC to xf C. Conditions (3) and (4) will still be
true at each stage, and condition (5) will be true if the word "isomorph-
ism" is replaced by the phrase "local isomorphism". The function /
thus constructed will be a local isomorphism from its domain to its
image. This function (rather than fω U /"* as in the automorphism case)
may then be extended to all of T by taking it to be the identity function
outside the domain of /ω. The resulting function will then be a local
isomorphism taking t to u.

3. Proof of Theorem 2. The following two facts are needed
for the proof of the forward part of Theorem 2. Both follow easily from
(2). In both, 5 is a semigroup.

LEMMA 4. Let X be an S-set with endomorphism a. Then a is
suήective if and only if Im a generates X.

LEMMA 5. Let X be a transitive S-set with endomorphism a. Then
a has a fixed point if and only if a = idx.

Now assume that X is a transitive S-set with endomorphism
a. Then a is surjective by Lemma 4, because every element of X
generates X. Furthermore, Lemma 5 applies equally well to ak for any
k. But no power of a noninjective function can be the identity
function. This proves the forward part of Theorem 2.

The converse part of Theorem 2 follows from Theorem 1. Suppose
that a: X-> X is a surjective function with the property that no power of
a has a fixed point. Define a relation g on X this way:

(6) x ^ y if y = xak for some nonnegative integer k.
It is easy to see that ^ is reflexive and transitive. It is also

antisymmetric: If y = xak and x = yctm for some nonnegative integers k
and m, then y is a fixed point of ak+m, which means that k + m = 0, hence
k = m = 0, hence x = y. Thus (X, ^ ) is a poset. Furthermore, if
JC E X, then xA is obviously isomorphic to the set ω, so that (X, ^ ) is a
locally finite tree with no maximal elements by Lemma 1.

It is immediate that a is the parent mapping of the tree (X, ^ ) .
Since a is surjective, (X, ^ ) has no minimal elements, so by Theorem 1,
LI(T) is transitive. But by Lemma 3, every function in LI(T) com-
mutes with α, as required.
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The last sentence of Theorem 2 clearly follows from Theorem l(b).

4. Remarks. A congruence on an 5-set X is a partition π of X
with the property that if u E π and w, υ E U, then ws and us are in the
same block of π for any s E S. If X has an S-endomorphism α, the set
{jcα"1!* E X} is a congruence on X (this follows easily from (2)). It
follows that if X is a transitive 5-set with no nontrivial congruences, then
a must be a permutation of X. In particular, a primitive group action,
finite or infinite, is centralized only by permutations.

It is easy to see, using (2), that a doubly transitive semigroup action is
centralized only by the identity function.

The way to construct permutations that centralize finite transitive
group actions has been known since the turn of the century. A recent
exposition is in Kerber [2]. Expositions of the elementary theory of
semigroup actions may be found in Banaschewski [1], Knauer [3], Petrich
[5] and Wells [8] with varying emphases. This subject is treated from an
axiomatic point of view by Sain [6].

Infinite trees have been used as tools in various areas, for example in
mathematical linguistics. References may be found in Maxson [4] Serre
[7] describes the structure of groups acting on trees. (Warning: My
terminology is quite different from his!).

It would be interesting to characterize all the trees with transitive
automorphism semigroup. Such a tree need not be locally finite; the
only examples I know, however, are all quite complicated. The one
which can be described most succinctly is the following:

Let T consist of all ordered triples (α, b, y) with α, b E Z (Z the set
of all integers) and γ: Z—>Z a function for which

(7) ny =0 for n < b.

Define

I a ^ a\ b = b' and γ = γ'
or b<b\ (ft '-l)γ^α'and

ny = ny' for all n g b'.

A tedious but straightforward proof shows that T is a nonlocally
finite tree. The element (a, b, y) may be visualized as the integer a in a
copy of Z which is hanging down from the element (feγ, 6 + 1, γ'), where
y' agrees with γ except that by' — 0. Each element of T has a copy of Z
hanging below it.

If (α, b, y) and (α\ b\ y') are elements of T, the following defines an
automorphism ψ of T which takes (α, 6, γ) to (a\b\yf).

Let η: T—> T be defined by
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{{y + b'-b - l )γ '~(y - l)γ for y > b.
(9) yη =

la' - a for y g b.

If (JC, y, £) G Γ, define f: Z -> Z by

and n ^ b\
(10) n^ = \

(n + b ~ b')ξ + a'- a for n ^ y + 6 ' - b and n < 6'.

0 for n < y + b' — b.

Now set, for (x,y,£)E T,

(11) (^y,ί)φ =(χ + yη, y + b'-b, ξ).

Then φ will be an automorphism of T taking (α, b, γ) to (α', fe', γ').
The author wishes to thank Steve McCleary for pointing out an error

in the original version of Theorem 1, and Paul Kainen, who came up with
the idea behind the preceding example.
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