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PERIODIC JACOBI-PERRON ALGORITHMS
AND FUNDAMENTAL UNITS

NAMBURY S. RAJU

In this paper the author states a class of infinitely many real
cubic fields for which the Jacobi-Perron algorithm of a properly
chosen vector becomes periodic and calculates explicitly a funda-
mental unit for each field. The main results of this paper are: Let
m = α 6 + 3α3 + 3, ω = λ/m, ra cube free a EN] then the
Jacobi-Perron algorithm of α ( 0 ) = (ω, ω2) is periodic. The length
of the primitive preperiod is four and the length of the primitive
period is three. A fundamental unit in Q(ω) is given by
e = α3 + 1 — aω.

1. Introduction. The Jacobi algorithm [9] which was
generalized by Perron [11] for any dimension n ^ 3 proceeds as follows.
Let am be a vector in Rn^; then the sequence (a(v)) is called the
Jacobi-Perron algorithm, if, for a(v) = (a[v\ , α ^ ) , (υ = 0,1, )

β(» + l) = ^ Sa(v)_ Jj(v) . . . a(v) _ fo(v) \ /fo(v) V a(v). v = Q J . . . \

( L 1 ) flί >-6f>

6 ί ϋ ) = [ α Π , (/ = l , . , n - l ; V = 0 , l , )

For notation see Bernstein's book [7, pp. 11-18].
The Jacobi-Perron algorithm of a vector Qφ)ERn-ι is called

periodic, if there exist two rational integers L and M, L ^ 0, M ̂  1, such
that

If min L = /, min M = m, then the sequence of vectors

is called the primitive preperiod of the Jacobi-Perron algorithm, and the
sequence of vectors

{ϊΛ) a ,α , , a

is called primitive period. The / and m are called respectively the
lengths of the primitive preperiod and period. If / = 0, the algorithm is
said to be purely periodic. By definition, from any periodic Jacobi-
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Perron algorithm a purely periodic one can be derived. Perron [11]
proved that if the Jacobi-Perron algorithm of α(0) is periodic, then all the
components of a(v) (v = 0,1, ) are algebraic numbers belonging to a
field of degree ^ n. In [1-5], Bernstein has stated a few classes of
infinitely many real algebraic fields, for which the Jacobi-Perron al-
gorithm of a properly chosen vector α(0) becomes periodic.

For later purposes, we need the following two important results
about units in the field Q{af\ af\ , αf ,) :

THEOREM 1. (8). // the Jacobi -Perron algorithm of α(0) =
(α(i0), , α(

n°li) becomes periodic, with length I of the primitive preperiod and
length m of the primitive period, then

l + m-l

(1-5) e= Π flίί^.ω

is a unit in Q(a?\ • , α <?>,).

THEOREM 2. (6). Let the denominators of a(v) (V = 0,1, ) be
rationalized, that is,

„<»> =

(1-6) i = 1, ,π - 1; u = 0,l, C f / e Z (/= l, , n )

M0EN; O(ω)=O(αΓ, , α f ] )

// there exists a c ^ l such that

(1-7) Mυ = 1

and if the a(,v) (i = 1, ,n - 1) are algebraic integers, then

(1.8) e = ΛiB)+ αίo)(ω)Arυ+ + α i ^ ω μ r - "

is a unit in Q(ω). The Ao

ω are calculated by the recurrence formula

(1-9) Ai"+ t )=

2. A new periodic Jacobi-Perron algorithm. Let

(2.1) m = a6+3a3 + 3, ω3 = m
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and

α(0)(ω) = (ω,ω2), a E JV, a ^ 2.

It seems that the first step is to give a sufficiently good approximation for
ω. Since

(2.2) α ^ 2 , α 6 > 3 α 3 + 3,

we can rewrite

ω = ( α 6 + 3 α 3 + 3) 1 / 3=α

as

ω = a

2(i + * i + l _ C^ 3^ 1) 2 + . . Λ = a2 Λ + I_ _ (2* 3 +i)

and we have approximately

(2.3) ω = fl2 + i _ ί 2 « i μ ) .

a a

Now, since 0 < If a ~(2a3+ ί)/alo< 1, we obtain

(2.4) [ω] = a2.

In the following calculations, we shall use as the approximation for

(2.5) ω = a2 + -

since the remainder is comparatively very small. It should be noted that
a2+ If a > ω. We further obtain the approximation of ω2:

which is approximately

ω2 = α r 4 Λ + A + α 6 - 2 α 3 - l

(Z.o) ω = α + 2a + -g .
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Since 0 < ( α 6 - 2 α 3 - l)/α 8< 1, we obtain

(2.7) [ω2] = α4 + 2α.

We shall cautiously use the following approximation

(2.8) ω2 = aA + 2a + \la\

keeping in mind that a" + 2a + I/a2 > ω2. We now have the beginning of
the JPA for

and obtain, by definition,

(2.9) en. =
ω - α2 ω - a

We can now obtain the rationalization of the denominator directly,
keeping in mind that

(2.10) ω3 - ah = 3(α3 + 1),

(or- (a" + 2a))(
( ω - α 2 ) ( ω M

-2ααr + (α3 + 3'
ω 3 -

- 2 α ω 2 + (α3 + 3;

~ (X " ι

)ω-t
α 6

- a2ω +
ω + α4)

α 2 (α 3

-a2(a"

a

+ :

+ :

4)

3)

3)

(ω

2

ω

ω2

(ω

- a

+ a
ω 3

+ a

2+ a
2){ω

2ω +

-a"

2ω +

rω
2 +

α4

4

+ α 4 )
a2ω + a4)

\

n in (
1 ) a { ω ) ~ { 3 ( α 3 + l ) ' 3 ( α 3 + l )

Now, using the approximation formulas (2.5) and (2.8), we can write
-2αω 2 + (ίj3 + 3)ω + α2(α3 + 3) as

^) + (α3 + 3) (a2 + jλ + a* + 3a2 = 2a2 + a +~ .

Therefore,

(2.12) 6

We further obtain,

Γ2α2+α+-Ί
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ω 2 + α 2 + α 4 = α 4 + 2α + —-2 + α 4 + a + α 4 = 3 α 4 + 3α + -^ .
α 2 α 2

Hence

\) λ
< 2 1 3 ) t ? ' " I 3(a'+l) J = «•

We write for the sake of convenience, as will also be done in the sequel,
α (1)(ω) and f>(1).

= / ~ 2aω2+ ω(a3 + 3) + α 2 (α 3 + 3) ω2+ a2ω + α 4

I 3 ( α 3 + l ) ' 3 ( α 3 + l )

We obtain the next vector, by definition,

(2), -. _
yω) ~

ω2 + a2ω - (2a4 + 3a)
-2aω2 + (α 3 + 3)ω + a\a' + 3) '

3 ( α 3 + l )

3 α 6 + 1 0 α 3

3 α 6 + 1 0 α 3

For the calculation of bψ and bψ, we obtain

4 i O i λ \ i /O 3 I O

+ 2a H—2 + (^Λ + 3
α /

which simplifies to α2 + 2/α. Hence

L3α6 4- 10α3 + 9 j

Now

(ίZ3 + 3 ) ω 2 + α 2 ( α 3 + l ) ω + α(α 3 + 2)(α 3 + 3)

= 3a1+12ai+Ua+—I .
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Therefore,

(2.16)

Now,

Therefore,

(2.17) a1

bψ

bψ

a(2\ω)

fc(2»=(C

= a.

= (:

,α).

!(a~

\

3α ?+10α 4 + 9,
3α 6+10α 3 + S

- α ω 2 + ( 2 α 3 +
3 α 6 + :

(α3 + 3)ω2

; + 3)ω2+α2(α
- α ω 2 + (2ί

1

> 3α6H

3)ω - α2

l0α3 + 9

+ a2(a3

3a"

3 + l ) ω -
ι3 + 3)ω-

f5α+|jl

-10α3 + 9j

!(α3 + 2)

+ l)α> + α(α3

+ 10a3 + 9

α(2α 6+5α 3-
-α 2 (α 3 + 2)

3α 6+10α 3

+ 2)(α3 + 3)

+ 9
- aω2 + (2a3 + 3)ω - α2(α3 + 2)/ '

(2.18) α(3)(ω) = (ω + α2, ω 2+ α2ω + α(α 3 + 1)).

The reader can now verify the continuation of the algorithm and prove

(2.19) α<7)(ω) = α(4)(ω)

This important result can now be expressed in the following theorem:

THEOREM 2.1. Let m be a cube-free natural number of the form
m = α6 + 3α3 + 3, where a is a natural number greater than or equal to
2. Let ω3 = m. Then the JPA of the vector α<0)(ω) = (ω, ω2) is periodic.
The length of the primitive preperiod is four and has the form

_ / - 2αω2 + (a3 + 3)ω + a2(a3 + 3) ω2+ a2ω + α"
3(a3+l) ' 3(α 3 +l)

3α 6+10α 3

(a3 + 3)ω2 + a2(a3+ l)ω + a(a3 + 2)(a3 + 3)
3α 6+10α 3 + 9

α(3)(ω) = (ω + α 2 , ω 2 + α 2

b(3) = (2a2,3a4 + 4a).
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The period of the JPA of α(0)(ω) has length three and is of the form

3αω2 + 3ω + 3α2(α3+2) ω2+a2ω +
3 ( α 3

+ l ) ' 3(α 3 +l)

- a2 ω2+ a2ω

&(5) =(0,α),

α<6)(ω) = (ω + 2α2, ω 2 + α 2 ω + α(α 3+3))

fc(6) = ( 3 α 2 , 3 α 3 ,

In the above theorem* we have excluded a = 1 and this is done
because, if a - 1, then m = 7 = 2 3 - 1 = D 3 - 1, D = 2 and this form
appears to be a special case of Bernstein's periodic Jacobi-Perron
algorithm as stated in Theorem 3.3, where m - D3- d, d\D. Here
D = 2, d = \. But his form is not exactly a special case because
D ^ 2d(n - 1) is not satisfied. Yet, the JPA of α(0) - (^7, V72) is periodic
and one obtains the following:

ai0\ω) = (ω, ω2); ω = V7,

b ( n ) = ( 1 , 3 ) ,

ω2 + ω

12

22

α ( 3 ) (ω) =

ω2+ω
6

*>(4> = (0,l),

- 1 α r + ω + 4

a(6\ω)= (ω + 2,ω2+ω

b(7) = (3,6),

α(7)(ω) = aw(ω).
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Comparing the above formulas with values obtained for α(ϋ)(ω),
(υ = 1, , 6) in Theorem 2.1, we immediately see that Theorem 2.1 also
holds for the case where a = 1.

We have yet to show that there are infinitely many cubic fields
Q(ω), ω

3= α 6 +3α 3 + 3 or that the equation α 6 + 3 α 3 + 3 = ty\ where t is
a fixed number, a and y are indeterminants, has only a finite number of
solutions. We obtain, multiplying by α3,

denoting α 3 + 1 = x, yα = z, we obtain

(2.20) x 3 - ί z 3 = l ,

and this Diophantine equation, by a famous theorem of Nagell [10], has
at most one nontrivial solution (xu zx).

3. U n i t s in Q ( α > ) , ω3 = m = α 6 + 3 α 3 + 3 . In this chap-
ter, we will calculate units in Q(ω). Since M3 = 1, we can calculate a unit
using the results in Theorem 2. Also, since the JPA of α(0)(ω) = (ω, ω2) is
periodic, another unit can be calculated with the help of Theorem 1.

Using formula (1.8) and noting that n = 3 and V = 3, we obtain

(3.1) e = Ai3)

and from formula (2.18),

(3.2) e - A^3)+ (ω + a 2 ) A ^ + (ω 2 + α 2ω + a

in order to calculate A(o\ A(o] and A(Q\ we need ί>(1) and b{2) which are,
according to formulas (2.12), (2.13), (2.15), and (2.16),

( 3 ' 3 ) 6

Using formula (1.9), we obtain

- 1 + M0) 0 + 6?> 0 = 1

^3) = 0 + M1} 0-h a 1 = α,

A<5) = A^2)

(3.4) A?>=1,
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Now, from (3.2) and (3.4),

e = 1-f (ω + α 2 ) α ( ω 2 + α 2 ω + {aA+ a))a2

= α 2 ω 2 + ( α 4 + α ) ω + α 6 + 2 α 3 + l ,

(3.5) e = (1 + a3)2 + α(l + α3)ω + α 2 ω 2 .

This is a comparatively simple form for e. We shall now calculate e'λ as
follows.

1 + a3 - aω

((1 + α3)2+ α(l + a3)ω + a2ω2)(ί + a3-aω) '

1 + α 3 - aω 1 + a3- aω
( l + α 3 ) 3 - α 3 ω 3 α 9 + 3 α 6 + 3 α 3 + 1 - α 9 - 3 α 6 - 3 α 3 '

/r\ s-\ — 1 Λ \ 3

which is indeed an elegant and a beautiful expression for a unit in Q(ω).
Since the JPA of (ω, ω2) is also periodic, formula (1.5), in view of

Theorem 2, becomes

We obtain

(4) (5) ( 6 ) _ 1 3 ( ^

ω — a —.

3(a3+l)(ω2+a2ω + a4)
(ω -a2)(- 3aω2 + 3ω + 3a2(a3 + 2))

3(a3+l)(ω2+a2ω + a4)
3(a3+ί)(ω2+a2ω - (2a4 + 3a))

(ω2+ a2ω + aA)(ω - a2)
ω2+a2ω-(2a4 + 3a))(ω-a2)

3(α3+D

1

e , - α 2 α 2 α 2 - α 3 + 1 _ α ω
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Now, taking e\x, we obtain

(3.8) eλ = a'+l-aω,

which is exactly identical to the unit given in (3.6). The question of the
fundamentality of this unit is yet to be answered. We shall do that in the
following chapter.

4. The fundamentality of units in Q(cυ), ω3 = m =
α 6 + 3 α 3 + 3. In the preceding chapter, we showed that e = 1 + a3- aω
is a unit in Q(ω), ω3 = m = α 6 + 3 α 3 + 3. This unit provides a nontrivial
solution of the famous Nagell equation

(4.1) x3-my3= 1, ω3 = m = α 6 + 3α3 + 3.

To see this, one simply sets x = l + α3, y = a. Although Nagell could not
prove whether or not x3- my3 = 1 has a solution, he did prove the
following important theorem.

THEOREM 3. // (xu yi) is a nontrivial solution ofx3- my3 = 1, when
m is a cube-free rational integer, then xλ — yω, ω3 = m is a fundamental
unit of Q (ω), or the square of a fundamental unit. The latter happens only
when m = 19,20, or 28.

In view of NagelΓs theorem, we only need to check to see if there
exists an α E J V such that aβ+ 3α3 + 3 = 19, 20, or 28. However, it is
obvious that no such a exists and therefore we have the following
important result.

THEOREM 4.2. In the field Q(ω), where ω3 = α 6 + 3α 3 + 3 and a is a
natural number, e = \ + a3 — aω is a fundamental unit.
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