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CERTAIN CONGRUENCES ON ORTHODOX SEMIGROUPS

JANET E. MILLS

Letting k be the minimum unitary-congruence on a regular semi-
group S and ¢ be the minimum congruence such that S/¢ is a semilattice
of groups, it is the purpose of this paper to characterize all regular
semigroups for which « N ¢ is the identity relation. That is, we describe
all regular semigroups which are subdirect products of a unitary semi-
group and a semilattice of groups. In the process of doing this, a
description of ¢ is given for any orthodox semigroup.

In A. H. Clifford’s paper on radicals in semigroups, [2], a diagram
was given presenting the relationship between various classes of regular
semigroups and certain minimum congruences. Two questions were left
open. The first was to find all subdirect products of a band and a
semilattice of groups, that is, all semigroups for which BN ¢ is the
identity, where B is the minimum band-congruence. This was solved by
Schein in {14] and also by Petrich in Theorem 3.2 of [11]. The second
question involves finding all subdirect products of a semilattice of groups
and a regular semigroup whose set of idempotents is unitary. In this
paper we find that any such semigroup can be described as a semilattice
of unitary semigroups on which # N o is a unitary-congruence, where o
is the minimum group-congruence. A description will also be given in
terms of restrictions on the structure homomorphisms. In order to
accomplish this, we first give an explicit characterization of ¢, the
minimum semilattice of groups-congruence, on any orthodox semigroup.

1. Preliminary results.- For a regular semigroup S, E; de-
notes the set of idempotents of S. If E, is a subsemigroup then S is said
to be orthodox.

ProrosiTioN 1.1. [11; Proposition 2.5] On a regular semigroup S,
the following are equivalent: for s, t € S,

(i) e, es € Es implies s € Es;

(i) e, se € Es implies s € Es;

(iii) e, ese € Es implies s € Es;

(iv) e, set € Es implies st € Es;

(v) ese=e € Es implies s € Es.

If any one of these five conditions holds, then E; is said to be
unitary. For brevity, we shall call S unitary if E; is a unitary subset of
S. It is easily seen that any unitary semigroup is an orthodox
semigroup. For inverse semigroups, those whose idempotents satisfy
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condition (v) are called proper by McAlister in [8] and [9], and he has
given a description of all such inverse semigroups in terms of partially
ordered sets and groups [9]. Unitary semigroups are not closed under
homomorphisms; in fact, as is shown in [8], every inverse semigroup is an
idempotent-separating homomorphic image of a unitary inverse semi-
group.

A congruence on a semigroup is an equivalence relation which is
compatible with multiplication. For two congruences p, p’ on a semi-
group S, p C p' if apb implies ap’b. The identity relation on S will be
denoted by , or u, if emphasis is needed. For the basic properties of
congruences, the reader is referred to [3; §1.4, §1.5].

For a class € of semigroups, a congruence p is called a €-
congruence on S if S/p isin €. For a regular semigroup, the following
notation will be used:

= the minimum unitary-congruence,

B = the minimum band-congruence,

1 = the minimum semilattice-congruence,

% = the minimum inverse-congruence,

¢ = the minimum semilattice of groups-congruence,

o = the minimum group-congruence,

@ = the maximum idempotent-separating congruence.
The Green relations will be noted as usual, and for brevity, a semilattice
of groups-congruence will be called a SG-congruence. That each of the
above minimum congruences exists is explained in [5], and also noted
there are some of the following relationships which will be useful here:

pnCHCBCn;, «kCPBNo; £CnNo
The following result will be needed for later work.

LEmMMA 1.2. Let B be a class of regular semigroups and € be a
subclass of B such that for any S € B, the minimum € -congruence on S, p,
exists. If 7 is any congruence defined on all semigroups in B such that 7 is
the identity on any €-semigroup, then v C p in 3.

Proof. Let 7 be such a congruence, SE€ %. Then 7vp is a
congruence and 7vp = on any %-semigroup. Now S/p is a €-
semigroup and p C 7 v p,so (S/p)/(rvp)/p =S/p/t =S/p. On the other
hand, (S/p)/(rvp)/p =S/(rvp). Hence S/p = S/(7 v p). Therefore p =
Tvp and 7 Cp.

Let {S.}.cs be a family of semigroups and T be a subsemigroup of
the direct product I1,c, S,. For each a € A, =, is the natural projection
of T into S,. A semigroup S is a subdirect product of S,, a € A, if S is
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isomorphic to a subsemigroup T of [I,c4 S, such that Tw, = S, for all «
in A. For the particular case we are interested in, the relationship
between congruences and subdirect products is as follows (see [10;
I1.1.4]). For congruences A, p on a semigroup S, S is a subdirect product
of S/A and S/p if and only if A N p = . The aim of this paper is to
describe all subdirect products of a unitary semigroup and a semilattice of
groups. It is evident that this is equivalent to finding all semigroups for
which k N ¢ is the identity congruence. It is the latter attack that we shall
make. From now on, we will assume that all semigroups are regular.

2. The minimum semilattice of groups-congruence. It
was shown in [5] that n N o is the smallest congruence p such that S/p is
a semilattice of groups and is unitary. Thus, in general, £ is strictly
contained in 1 No. Recall [7; Theorem 3.1] that on an orthodox
semigroup S,

aob < eae = ebe for some e in E,.

To find £ on any orthodox semigroup, we first describe £ on any inverse
semigroup and extend it to an orthodox semigroup via the method
developed in Theorem 3.1 of [7].

THEOREM 2.1.  Let S be an inverse semigroup. The minimum SG-
congruence £ on S can be defined as follows:

atb < anb and ea =eb for some e’=ena.

Proof. Let atb if and only if anb and ea = eb for some e’ = ena. It
is easily seen that 7 is an equivalence relation on S. Let arb and x be in
S. Then anb and ea = eb for some e’ = ena. Since 7 is a congruence,
axnbx. Let f be any idempotent such that fnx. Then efnax and

(ef)(ax) = f(ea)x = f(eb)x = (fe)(bx) = (ef)(bx);

therefore, axtbx. On the other hand, xanxb and xenxa. Thus, since 7 is
a semilattice congruence, xex 'mxa. In addition,

(xex™")(xa) = xe(x'x)a = xea = xeb = (xex ") (xb);

that is, xatxb.

To see that S77 is a semilattice of groups, it is sufficient to show that
aa’'ra'a for all a in S. But this is clear by letting e = (aa™")(a'a).
Therefore, £ C 1.

Now if S is in fact a semilattice of groups then n =  and 7 is clearly
the identity on S. Hence by Lemma 1.2, r C ¢ Consequently 7 = ¢
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On an orthodox semigroup, the minimum inverse-congruence % has
been described by Hall [4] and Schein [13] as follows:

a%b < V(a)=V(b),

where V(x) is the set of all inverses of x. For any a, a% will denote the
% -class containing a.

THEOREM 2.2. Let S be an orthodox semigroup. Then ¢ can be
defined on S as follows:

atb <> anb and eae = ebe for some e’= ena.

Proof. Since % is the minimum inverse-congruence then % C
n. Thus for a,b € S, a¥nb% implies anb.

Now, S/% is the maximum inverse homomorphic image of S, and
therefore, letting £’ be the minimum SG-congruence on S/%, we have,
via Theorem 2.1,

(*) aéb < a%E'bY < a¥Ynb¥y and x¥Ya¥ = xYb%,

for some (x% ) = x% with x¥na¥%.

Since (x% ) = x%, there exists an idempotent f such that f¥x, and
thus fna. Therefore, using the fact that & is a congruence, (*) is
equivalent to

a¥Ynb% and (fa)¥ = (fb)¥ for some f*= fna.
By definition of %, this means
atb < anb and V(fa)= V(fb) forsome f*>= fna.

The rest of the proof that ¢ can be defined as in the statement of the
theorem is very similar to that of Lemma 3.2 of [7], using the additional
fact that n is a semilattice-congruence.

CoroLLARY 2.3. (See [14] or [11; Theorem 3.2].) Let S be a regular
semigroup. Then B N & = if and only if S is an orthodox band of
groups.

Proof. Let BN ¢ =1 Now we know that £ C B Cn. We will
show that B is idempotent-separating. Let e and f be idempotents with
eBf. Then enf and (ef)e(ef)=(ef)f(ef) with efne. That is, by
Theorem 2.2, e&f. Since B N &€ = 15, we have e = f. Therefore, B C u C #.
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But # C B so B =3 and S is a band of groups. The converse follows
easily from the fact that B =% and X N ¢ =«

3. kNé&=1 In this section we characterize those semigroups S
which are a subdirect product of a unitary semigroup and a semilattice of
groups, that is, those semigroups S for which « N ¢ is the identity.
Clearly, since a unitary semigroup and a semilattice of groups are both
orthodox, then § is again an orthodox semigroup.

Recall that a semigroup is n-simple if it has exactly one n-class.

LemMma 3.1. Let S be an n-simple orthodox semigroup. Then S is
unitary if and only if k N & = .

Proof. If S is unitary then k = so k N & = . Conversely, let
k N & =15 Then, using Theorem 2.2 and the fact that S is n-simple, we
have

atbeanb and eae =ebe forsome e’=ena

<> eae = ebe forsome e’=e < aoch.

That is, ¢ =0 and kNo =1« But o is a unitary congruence so
k N o = k. Therefore k = and S is unitary.

LEmMMmA 3.2. Let S be a semigroup with k N¢é =1 Then S is a
semilattice of m-simple unitary semigroups.

Proof. Since m is a semilattice-congruence, we know that S is a
semilattice Y of n-simple semigroups S,, « € Y. Now,on S,, k| S, isa
unitary-congruence and £|S, is a SG-congruence. Hence, on S,
(x| S.)N(&]S.) =1, and thus the intersection of the minimum unitary-
congruence on S, and the minimum SG-congruence on S, is also the
identity. By Lemma 3.1, S, is unitary.

LeEmMmA 3.3 [5; Theorem 3.9]. If S is a unitary semigroup then
% No= Ls.

LemMMmA 3.4. Let S be a regular semigroup. Then # N o C k.

Proof. Let J be the class of all unitary semigroups. Letting = be the
congruence generated by # N o, then 7 = for any § € ¥, by Lemma
3.3. Therefore, by Lemma 1.2, r C k. Thatis, ¥ No C k.

THEOREM 3.5. Let S be a regular semigroup. The following state-
ments are equivalent.
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(i) &k NE& =1, where k is the minimum unitary -congruence and § is
the minimum SG-congruence.

(i) S is a semilattice of unitary semigroups and k =X No =
pnNao.

(iii) S is a semilattice of unitary semigroups and % N o is a unitary
congruence on S.

(iv) S is a subdirect product of a unitary semigroup and a semilattice

of groups.

Proof. (i) implies (ii)). Let k N¢é =« By Lemma 3.2, § is a
semilattice of unitary semigroups. Since 7 and o are both unitary-
congruences, k is contained in both n and 0. We shall show that « is
idempotent-separating. For, let exf, with e, f€ E;. Then enf and
(ef)e(ef) = (ef) f(ef) with efne. That is, by Theorem 2.2, e£(f. Since
k N§¢ =1, then e =f Hence « is idempotent-separating and « C u.
Consequently, using Lemma 3.4, we have # No Ck Cu No. But
w C ¥, so equality holds.

(ii) implies (iii). Clear.

(iii) implies (iv). Let S be a semilattice of n-simple unitary
semigroups S,, @« € Y, with # N o unitary. Then by Lemma 3.4, k =
¥ N o. Therefore

kNE=(HNo)NE=HN(cNE=FNE

Let a N¢b. Then a, b € S, for some . Thus, since S, is n-simple,
in S,, a# N ob. But S, is unitary, so by Lemma 3.3, on S,, ¥ No =t
Hence a =b. Consequently « N ¢ =1 Therefore S is a subdirect
product of S/k and S/¢ (see 11.1.4 of [10]).

(iv) implies (i). Let S be a subdirect product of a unitary semigroup
U and a semilattice of groups T. Then the congruences induced on S by
the two projection maps are, respectively, a unitary-congruence A, and a
SG-congruence, p, and A Np = Thus k NEC A Np = s

It is not possible to eliminate either one of the two conditions:

(1) S is a semilattice of unitary semigroups,

(2) J N o is unitary.

For, any unitary semigroup (which is not a group) with a zero
adjoined, satisfies (1), but for such a semigroup, k = 8 and B N £# ¢ by
Corollary 2.3. On the other hand, let S = B(G, a) be any bisimple
w-semigroup fors which « is not one-to-one. Then S is not unitary but
k=#HNoand kNé=xkNo=HNacg#.

COROLLARY 3.6. Let S be a fundamental regular semigroup. Then
k N & = if and only if S is unitary.
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Proof. Since S is fundamental, then w = «. Therefore, u No =

Every regular semigroup which is a semilattice Y of semigroups S,,
a €Y, can be constructed via certain homomorphisms ¢, ; from S, into
Q(S;), the translational hull of S, for all @« > B; in this case, we shall
denote S by (Y, S., ¢..s)- For a full description of this structure the reader
is referred to [10; II1.7.5]. In light of Theorem 3.5, it is of interest to know
how the condition k = # N o can be expressed in terms of the structure
homomorphisms ¢, ,. To do this we need to explore the translational
hull Q(T) of a unitary semigroup 7. For the elementary properties of
the translational hull, see Chapter V of [10]. Recall [10; II1.7.5] that in
S=(Y,S., b.;), if sES,, t €S, with a > B then

st=¢Lpgt=A°t and s =1td = 1p"
where ¢5 ;= (A", p") € Sp).

LEMMA 3.7. Let S be unitary and (A, p) € QUS). If there exists an
idempotent e such that Ae € E or ep € Eg then A (Es)C Es, (Es)p C E;.

Proof. Let e and Ae be in E;. Then (ep)e = e(Ae) € Es, and since
S is unitary, by Proposition 1.1, ep € E;.

Let fbein Es. Then e(Af) = (ep)f € Es, so again Af isin Es. Thus
A(Es) C Es. Since Af € Es implies fp € Es, then also (Es)p C Es.

LEmMA 3.8. Let S be a unitary semigroup. Define
K(S)=1{(», p) € US)| A(Es) C Es, (Es)p C Es}-
Then K(S) is a subsemigroup of ((S) which contains Eqs).

Proof. That K(S) is a semigroup is clear. Let (A, p) be in Eq).
Then A*= A, p’=p. Leta €S and Aa = b. Let b’ be an inverse of b;
then we have A(ab') = (Aa)b' = bb' € E,. Hence there exists x in S such
that Ax =f€E,. Moreover, f=Ax=A%x =A(Ax)=Af. Therefore
Af € Eg, and by Lemma 3.7, A(Es) C Es. Similarly (Es)p C Es.

If S is an inverse semigroup then Egs = K(S), [1; Lemma 2.1].
However, in general, strict containment is possible. For, if S is a
rectangular group, we may assume S = L X G X R where L (R) is.a left
(right) zero semigroup and G is a group. Then €(S)=
T(L)x G X T'(R), where T(L) (T'(R)) is the semigroup of all transfor-
mations of L (R) written on the left (right) [10; V.3.12]. Under this
isomorphism,
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Eos,={(f,1,f)|f, f' are retractions},

where a retraction is any mapping which is the identiy on its range. On
the other hand, K(S)= T(L)x 1X T'(R) which is not equal to Eqg).

From [5] we recall that a congruence 7 is unitary if x> 7x and (sx )*rsx
implies s’rs. For regular semigroups this is equivalent to:

for e, f € Es, serf implies s’7s.

We now explore the properties of ¢,, which make « N ¢ the
identity. For a semigroup S,, we denote Es, by E,, and K(S,) by K,. For
S =(Y,S., ¢..s) a semilattice of unitary semigroups S,, let I', ; = Kgp.'s
forala>B and T=U,. T,

THEOREM 3.9. Let S be a regular semigroup. Then k N ¢ = « if and
only if S = (Y, S., ¢..s) is a semilattice of unitary semigroups satisfying the
properties :

(i) T is a band of groups,

(i) forsin TNH, e€E, if f<e with f€ E,; then ¢; ,(f) 7,
where ¢}, ,(f) means both ¢; ,f and fo: s

Proof. Let k N ¢ = . Then N o = pu No is unitary. Let « > B
and s be in S, with ¢} ;€ K, Then ¢ z=(A,p)and A(Ez)CE, Letg
be in E;. Then Ag = f = f* € E,, so by definition of multiplication in S,
sg = ¢ipg = Ag = f. Hence seu N of, and u N o is unitary, so su N os’.
Thus s is contained in a group. Now since u N o is a congruence, the
w N o-classes which contain idempotents form a band of groups, T, and
since ¢, ; is a homomorphism, then Kz¢,s =T,  is a band of groups
contained in T. Thus I'" is a band of groups.

Now let s be in I',,. Then s is in a group so there exists an
idempotent h such that ss’ = s’'s = h for some s’ € V(s). Since sus’, then
swh and for all idempotents f, sfs’ = hfh, s'fs = hfh, [6].

Let f<h, f€S, Then sfs'=f and fs'sf = fhf = f. Thus if ¢, =
(A%, p°) and %, = (A", p"), f = fs'sf = (fo")(\'f). Therefore,

for = ffo*) = (oY XNUp*), A = (WNF = WHU AP
that is, fp* is an inverse of A°f. Now sfs’ = f = fs’sf can be expressed by
AN fe*)=f=(fo")(X*f).
Thus A‘f%f By considering s'fs = fss'f = f we find fp*%f Thus
¢, ().

Conversely, to show « N & =, using Theorem 3.5, we need only
show that u N o is a unitary congruence. Let sew N of with e, f € E;.
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Letting s bein S,, e in Ep, then f € E,5.  Since seo f, there exists g € E,,
v = af such that g(se)g = gfg € E,. This means that (g¢:.)(¢d5,8) €E E,.
Since e is idempotent so is ¢ 5, and by Lemma 3.8, ¢5,g isin E,. Thus
since S, is unitary, gé: , is idempotent by Proposition 1.1; by Lemma 3.7,
¢..,1sin K,. Consequently by property (i), s is contained in a band E, of
groups G,, b € E,. In particular, there exists s' € V(s) such that ss'=
s’s = h for some h € E,. We need to show that suh, and to do this it is
sufficient to show that sfs’'=f, s'fs = f for all f=h. Now if f is in E,,
f=h, then s and s’ are in the group G, and

stl € GthGh Q Ghﬂ, = Gf,
so that sfs’=f Similarly s’fs =f Now let f be in E,; § < a, with
f<h Let ¢;s=(A%p°), dis= (A%, p%). By property (ii), A’f X f, fp* ¥ f.
That is, f(A°f) = A°*f, (fp*)f = fp’. Now since f < h = ss’, then f= hf =
A*f=AA"f, and thus

sfs'= (A*f)(fo*) = f(X*F)(fo*) = (fo*) f(fo*) = (fo* ) (fr*)
=[(fo*)flo* = (fo*)p* =fo* = .

Similarly s'fs = f. Therefore suh.
Since o is always unitary, secf implies soh. Consequently, su N oh,
and u N o is a unitary congruence. By Theorem 3.5, k N & = .

A regular semigroup S = (Y, S., ¢..z) is a strong semilattice of the
semigroups S,, if ¢, , maps S, into S, for all « > 8. The conditions in
Theorem 3.9 can be simplified considerably for strong semilattices of
unitary semigroups.

CoroLLARY 3.10. Let S =(Y,S., ¢..5) be a strong semilattice of
unitary semigroups S,. Then k N & = « if and only if Egd.'s is a band of
groups for all a > B.

Proof. 1t can be easily seen that K, NII(S,)= E; where II(S;) is
the semigroup of inner bitranslations of S;. Thus if ¢, , maps S, into
Se =11(S;), then Kz, 's = Ey.)s. Property (ii) automatically holds since
homomorphisms preserve -classes.

The author would like to express her appreciation to Professor
Mario Petrich for the suggestions he made on the preliminary copy of this

paper.
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