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DERIVATION OF THE INTEGRALS OF L ̂ -FUNCTIONS

C. A. HAYES

It is known that if a derivation basis £$ possesses Vitali-like
covering properties, with covering families having arbitrarily
small L(p)(μ)-overlap, where l^p < + °c and μ is a σ-finite
measure in an abstract measure space, then 01 derives the
μ-integrals of all functions f E L(q\μ) where p~ι + q~} = I if
p >1; q = + oo if p = 1. The converse is well known for the case
q = + oc, p — 1, and a partial converse is known for the case
p > 1, if 3S is a [11, δ]-basis. The present paper offers a converse
for p>\ under general hypotheses and, simultaneously, re-
moves the necessity that ^ be a [11, δ]-basis.

1. General definitions and terminology. Our universe is a
set of points S. We shall agree that if A C S and B C S , then A - B =
{x: (XEA)Λ(X£B)}; thus A - B = A -(A Π B). If A C S, we shall
denote the complement of A in S by A. 2)ί denotes a fixed Boolean
σ-algebra of subsets of 5, with 5 as its unit; μ denotes a fixed σ-finite
measure defined on 3ft, and μ * is the completion of μ defined on the
class 2)ί* of subsets of 5. We let 9? denote the family of μ-nullsets and
9?* the family of μ *-nullsets. We let μ denote the outer measure derived
from μ. If XCS, then X _denotes a measure cover of X; it is well
known that μ(X Π M) = μ(X Π M) holds for each set M E 3W and each
μ-cover X of X. For any set X C S we let χ x denote the characteristic
function of X.

A derivation basis 93 is defined as follows. We assume that to each
point x of a fixed subset E of 5, called the domain of 93, there
correspond Moore-Smith sequences of J/-sets of positive μ-measure,
called constituents, which are said to converge to JC, and are denoted
generically by {Mt(jc)}. We further assume (Frechet's convergence axiom)
that each cofinal subsequence of an x-converging sequence also con-
verges to x. The elements of 93 are thus converging sequences together
with corresponding convergence points. We denote by 3) the family of all
93-constituents; i.e., the family of all sets belonging to one or more of the
sequences {ML(x)} for some x E E. This family 3 is called the spread of
93.

If A is a real-valued function defined on 3) and x E E, then we define
D*λ(x)_and D*λ(x) by

D*λ(x)
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and

where the expressions in brackets mean, respectively, the limit superior
and inferior of any fixed x -converging sequence {Λίt(x)}, and then the
supremum and infimum of these values are taken among all such
sequences. D*λ(x) and D*λ(x) are called, respectively, the upper and
lower Vβ-derivates of λ at x. If D * λ ( x ) = D*λ(x) (whether finite or
infinite), then their common value is denoted by Dλ(x), and is called the
93-derivative of A at x.

We say that λ is a μ -finite μ-integral iff there exists a μ -measurable

function / such that - °o < A (M) = fdμ < + °o whenever MEM and
JM

μ(M) is finite. We say that A is ^-derivable iff Dλ(x) exists and
coincides with f(x) for μ *-almost all x E E.

By a subbasis of 93 we mean any basis 93* whose associated
sequences belong to 93 and which associates with these sequences the
same convergence points as does 93. Clearly, the spread of 93* is a
subfamily of the spread of 93. The domain of 93* is the set of its
associated points, which is a subset of E.

If X C E and SS* is any subbasis of 93 such that the domain of 93*
includes the set X (mod Jf*), then the spread V of 93* is called a 93-/me
covering of X. Sometimes a 93-fine covering is defined as any family Ύ of
93-constituents that contains, for μ *-almost all x E X, the sets of at least
one sequence {ML(x)}. Although these definitions differ slightly, in their
applications they have the same effect, so we may use them interchange-
ably.

If df( is any finite or countably infinite subfamily of M, then for any
jt E S, we define nπ(x) as the number of members of $f to which x
belongs. We denote the union of the family f̂ by U %t it is clear that
nπ(x) = 0 if x E ( S - ( U $ f ) ) . We define e^(x)= nx(x)-l if x E U %9

βsf(jc) = 0 for all other points x E S. It is clear that eπ(x)>0 iff x
belongs to at least two members of $f. We note that both nπ and e* are
μ -measurable functions.

Henceforth, we let p denote an arbitrary but fixed real number such
that l < p < + o ° , and we define q so that p" 1 + q " 1 = l ; we have
1 < q < +oo. We say that the derivation basis 93 is Lip)(μ)-strong iff for
each set X C E of finite outer μ -measure, each 93-fine covering Ύ of X,
and each e > 0, there exists a finite or countably infinite subfamily $f of V
such that, putting H = U $f, we have

(i) X - H E ^ * ( ^ covers μ *-almost all of X);
(ii) μ(H - X) < β (the μ -overflow of $? with respect to X is less

than β),
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(iii) ||e*||, < e; i.e., ( J eP,(x)dμ(x)Jn< e (the Vp)(μ) overlap of

%C is less than e).

2 The main theorem. Throughout this section, we assume
that 33 is a derivation basis with domain ECS, that derives the
μ-integrals of all functions f E L{q)(μ). We note that this implies, in
particular, that 93 has the density property for all J/-sets of finite
μ -measure, and hence also for the complements of such sets.

We begin by proving some needed lemmas.

LEMMA 2.1. If ffl is any finite or countably infinite family of M-sets,
then

^2'\
Js

Proof Let A = {x: nx(x) = 1}, B = {x: nπ(x)^ 2}. Clearly,
AUB = \JW and, for x G β , n*(x)= e*(x)+1 ^2e*(x). Thus

^ ί nζr(x)dμ(x)= I nb(x)dμ(x)+ ί np

w(x)dμ(x)
Js JB JA

LEMMA 2.2. Suppose that %C is any finite or countably infinite family

of M-sets for which I np^(x)dμ(x) is finite. If W is any M-set and

<S = WU{W}, then

0 ^ f el(x)dμ(x)^ \ e$t{x)dμ{x) + p \ nV(x)dμ{x).
Js Js Jw

Proof We observe that e*(x)= e*(x) if x E(H - W), where H =
uπ, e«(x) = 0itxE(W-H), and e^(x)= nx(x) if x £ W Π H. Thus,

because all the following integrals are finite owing to our hypotheses, we
may write

(1) Oϊi ί e$(x)dμ(x)= I el(x)dμ(x)
Js Jυ<s

e^(x)dμ(x)+ I eϊί{x)dμ(x)+ I e^{x)dμ{x)
JH-W JW-H JWDH

= ί eξt(x)dμ(x)+ ! np

x(x)dμ(x)
JH-W JWΠH
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ep

π(x)dμ(x)~ epχ(x)dμ{x) +
JH JWΠH J\

= ePγ(x)dμ(x) + (np

x(n)— ep^(
JH JW

Because 0 ^ np

π(x)dμ(x)< + <*>, it follows that nπ and
Js

are

finite μ -almost everywhere. Hence, for μ -almost all points x E W Π Hy

we have /t^(x)=/ι p and ep^(x) = (n - l)p, where n is some positive
integer. By the mean-value theorem, we can write

0 ^ n p

w ( x ) - epχ(x) = n p - ( n - l ) p = pξp'\

where n - 1 < ξ < n and so

(2) 0 ̂  nb(x)- ep

x(x) ^ pnp~ι = pn<£\x).

The desired result is obtained by substituting (2) into the final term of (1).

LEMMA 2.3. Suppose that XCE, X is any μ-cover of X, 0 <
μ(X)< +°o? and V is a %5-fine covering of X. Suppose also that
0 < a < 1 and that %C is a finite or countably infinite subfamily of M subject
to the conditions

(i) I ep^(x)dμ(x)^aμ(XDH), where H = U%;

(ii) (l-_α)Σve^μ(V)^μ(XΠH);
(iii) μ(X-H)>0.

Then there exists at least one set W such that

(iv) WEΨandί nliι(x)dμ(x) + μ(W - X)^ (a/2p)μ(W).
Jw

Moreover, if W is any set satisfying (iv), and if we set $ =
G = U % then

(v) ί eP

§(x)dμ(x)^aμ(XΠ G) and

(vi) (l-a)ΣV£,

Proof. From (i) and (ii) and the finiteness of μ(X), we infer the

finitenessof eP

γ(x)dμ(x) and μ ( U 5ίf). These facts and Lemma 2.1 tell

us that 0 ̂  np

w(x)dμ(je) < + °°; hence, because (p - \)q = p, we have

npχx E L(q)(μ). Thus S derives the μ-integral of np^λ as well as the
integral of the characteristic function of X = S - X. Accordingly, if we
define
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λ(M)= ί n^(x)dμ(x)+μ(M-X)
JM

for each MEM,, then it follows that 23 derives λ. From this fact and (iii)
we infer the existence of at least one point z E (X - H) for which

(1) Dλ(z)=n'x\z) + χk(z) = 0.

The existence of a set W satisfying (iv) follows at once from (1) and the
fact that Y is a 23-fine covering of X.

Next, we consider an arbitrary set W satisfying (iv). We observe that

μ(W -(X - H))= μ(W Π(X U H))^ μ(W - X)+ μ(W Π H)

=S μ(W-X) + j ni-ι(x)dμ(x) £ ^ μ(W),

from which it follows easily that

(2) ( l - ^ ) μ ( H O S μ ( W n ( X - H ) ; μ(W)* 2μ(W Π (X - H)).

From (iv) and (2) we obtain

(3) ί n^(x)dμ(x)^^-μ(W)^ξμ(WΓ)(X
Jw ip p

Using (i), (3), and Lemma 2.2, we see that

ί eψ)dμ(x)^ί ete(x)dμ(x) +
Js Js

^ a[μ(X ΠH)+μ(WD(X- H))] = aμ(X Π G),

which establishes (v).
From (ii) and (2) we obtain

μ(V) + ( l - α ) μ ( W )

= μ(XΠG),

and this completes the proof of the lemma.
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THEOREM 2.4. 93 is Lip)(μ)-strong.

ProofL We choose any set X C E with 0 < μ (X) <+<*>, select any
μ -cover X of X, let T denote an arbitrary 93-fine covering of X, and fix
an arbitrary number α, 0 < a < 1.

Because 93 derives the μ -integral of the characteristic function of X,
there exists at least one point z E X for which Dλ(z) = χ^(z) = 0, where

χ ^(x)dμ(x) = μ ( M - X) for each set M E Λί. Thus, becauseλ(M)=ί
JM

T is a 93-fine covering of X, there must be at least one set WET such
that

(1)

Let &λ denote the family of those sets WET that satisfy the relation (1).
Then 3 ^ / 0 ; also, it follows easily from (1) that 0 < ( l - a)μ(W)^
μ(XDW)^μ(X) if W E φx. Thus, if we set ζx = supwe9ιμ(W), it
follows that 0 < ζλ < +&>. We choose a member Vλ of &x with μ(Vι)>
Ki.We set #fi = {V!}, / * ! = U ^ Ί , and observe that %x satisfies the
conditions (i) and (ii) of Lemma 2.3.

We proceed inductively. We suppose k ^ 1 and that we have a
family %k = {Vu V2, - -, Vk} C Y, satisfying the conditions (i) and (ii) of
Lemma 2.3, with Hk = U %k. If μ ( X - H k ) = 0, we define ^ + 1 = 3ίfk,
U 3ίffc+1 = Hk+] = Hk. It is obvious that 2Ck+ί satisfies the conditions (i) and

(ii) of Lemma 2.3 because they hold for 3€k.
If μ(X - H f c ) > 0 , we use Lemma 2.3 to infer that the family 3Fk+u

consisting of those sets WET satisfying the relation

(2) ί
Jw

is nonempty. From (2), it follows easily that (1 - a/2p)μ(W)^
μ(WΠX)9 whence μ(W)^ 2μ(W Π X), whenever W E ?k+ι. Thus,
setting ζk+λ = supwE^+I μ (W), it follows that 0 < ζk+ι < + °°. We select a
member Vk+ι of &k+ί such that μ(Vfe+1)>Jfk+1, and we define fflk+ι =
Wk U{Vk+ι}, Hk+ι = U 2?k+ι. Lemma 2.3 now tells us that

(3) ί e^Xx)dμ(x)^aμ(XΓ)Hk+ι) and
Js
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Thus, whether μ(X-Hk) = 0 or μ(X - Hk)>0, we obtain a family
%tk+ι C V satisfying the relations (3).

In this way, we obtain inductively a sequence {2tk} of finite sub-
families of V, satisfying (3). We let ft = UΓ=1 ftk, H = U X. The
monotone convergence theorem applied to (3) yields

(4) f eί(x)dμ(x)^aμ(XΠH)^ aμ(X) < + oo and
Js

Σ =i μ(X Π H ) g μ ( X ) < +00,

from which it follows that

(5)

Because a is arbitrary, 0 < a < 1, it is clear from (4) and (5) that $f
can be chosen to satisfy conditions (ii) and (iii) of our definition of
L(p)(μ)-strength in §1. It remains to be shown that Sίf covers μ *-almost
all of X. Suppose, on the contrary, that μ(X - H)= β(X - H)>0.
Thus μ(X-Hk)^μ(X-H)>0 for k = 1,2, •• , which means that the
inductive process does not stop producing new sets, and so 3ft consists of
a countably infinite family of sets {VuV2, — ',Vk,m — } chosen from
V. The conditions (i), (ii) and (iii) of Lemma 2.3 are satisfied by $?;
hence, according to that lemma, there is a set W E V such that

(6) ί n^(x)dμ(x)+μ{W-X)^f-μ(W).
Jw ^P

From (6) and the fact that n$k | n$ as k -> -f °o9 it follows that

ί nϊ,-Λx)dμ(x)+μ(W-X)^f-μ(W)

for each positive integer fc, and therefore WEz$k+] for each such k.
Hence 0 < μ(W) g ζk+ι < 2μ(Vk+ι) for k = 1,2, . However, from (4)
we have

which implies that μ(Vfc+1)->0 as k —> + oo. This contradiction forces us
to conclude that μ (X - H) = 0, and completes the proof of the theorem.
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In [4] it is shown, under a relatively mild pre-topological (actually
dispensable) condition, that L(p)(μ)-strength is sufficient for a basis to
derive all the μ -integrals of L(<?)(μ)-functions. Accordingly, we now can
assert that L(p)(μ)-strength is both necessary and sufficient for this
purpose. One may still question whether or not there exists any basis at
all with exactly L(p)(μ)-strength; i.e., one that is L(p)(μ)-strong but not
L(p)(μ)-strong for any p' >p. Such a basis is known [3] with μ = plane
Lebesgue measure, p any given real number greater than 1.

The technique used herein appears to be applicable to dual Orlicz
spaces of more general character than the L(p)- and L(q)-spaces here
considered. However, a preliminary study indicates that some conditions
will have to be imposed on the Orlicz spaces. The writer is investigating
this problem. Recently, A. Cordoba obtained the result of the present
paper for the special case of a Euclidean derivation basis that is invariant
under translation, using methods of functional analysis. His proof is given
in [1].

The author of the present paper thanks C. Y. Pauc for several
helpful suggestions.
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