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NON-HAUSDORFF MULTIFUNCTION GENERALIZATION
OF THE KELLEY-MORSE ASCOLI THEOREM

GEOFFREY Fox AND PEDRO MORALES

The paper generalizes the Kelley-Morse theorem to continu-
ous point-compact multifunction context. The generalization,
which is non-Hausdorf, contains the Ascoli theorem for continu-
ous functions on a k;-space by the authors and the known
multifunction Ascoli theorems of Mancuso and of Smithson.

1. Introduction. The Kelley-Morse theorem [3, p. 236] is
central among the topological Ascoli theorems for continuous functions
on a k-space. It generalizes to the k;-space theorem of [1], which contains
all known Ascoli theorems for k-spaces or kj-spaces.

Obviously a multifunction generalization depends on a multifunc-
tion extension of “‘even continuity”. One such extension is that of Lin
and Rose [5], but this was not applied in Kelley-Morse context. Another
which was so applied [7, p. 24] is two-fold and leads to a two-fold
multifunction Kelley-Morse theorem which, however, does not contain
the Mancuso theorem [6, p. 470], nor the Smithson theorem [9, p. 259].
This paper gives a natural multifunction extension of the definition and
leads to a multifunction theorem containing all the above-mentioned
theorems.

2. Tychonoff sets. Let X and Y be nonempty sets. A
multifunction is a point to set correspondence f: X — Y such that, for all
x € X, fx is a nonempty subset of Y. For A C X, B C Y it is customary
to write f(A)= U,eafx, f (B)={x: x € X and fx N B# J}and f*(B) =
{x:x€X and fx CB}. If Y is a topological space, a multifunction
f: X =Y is point-compact if fx is compact for all x € X.

Let {Y,}.ex be a family of nonempty sets. The m-product P{Y,: x €
X} of the Y, is the set of all multifunctions f: X — U,cx Y, such that
fx C Y, forallx € X. Inthecase Y, =Y forall x € X, the m-product
of the Y,, denoted Y™, is the set of all multifunctions on X to Y. In
particular, if Y is a topological space, the symbol (Y™*), will denote the
set of all point-compact members of Y™ For x € X, the x-projection
pr.: P{Y,: x € X}— Y, is the multifunction defined by pr,f = fx. If the
Y, are topological spaces, the pointwise topology 7, on P{Y,: x € X} is
defined to be the topology having as open subbase the sets of the forms
pr:(U;), pri(U,), where U, is open in Y,, x € X.

For FC Y™ x € X, we write F[x] = Urfx. Let Y be a topologi-
cal space. A subset F of Y™ is pointwise bounded if F[x] has compact
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closure in Y for all x € X. A subset T of Y™ is Tychorioff if, for every
pointwise bounded subset F of T, T N P{F[x]: x € X} is ,-compact.
The following sets are Tychonoff:

(1) YX by the classical Tychonoff theorem.

(2) Y™ by the theorem of Lin [4, p. 400].

(3) The set of all point-closed members of Y™, by Corollary 7.5 of
[7, p. 17].

(4) (Y™), by Corollary 7.6 of [7, p. 17].

LEmMMA 2.1. If Fis a poiniwise bounded subset of a Tychonoff set T,
then the 7,-closure of F in T is compact.

Proof. Let F denote the 7,-closure of F in T. Since TN
P{F[x]: x € X} is a 7,-compact subset of T, it suffices to show that
F C P{F[x]: x € X}. But this follows from Lemma 7.7 of [7, p. 17].

3. Even continuity. Let X and Y be topological spaces. A
multifunction f: X—Y is lower semi-continuous (upper semi-
continuous) if f(U)(f*(U))is open in X whenever U isopenin Y. If f
is both lower semi-continuous and upper semi-continuous it is called
continuous. Henceforth, the set of all continuous multifunctions on X to
Y will be denoted 4 (X, Y). The multifunction (f, x)— fx on Y™ X X to
Y, or any restriction, will be denoted by the symbol w. Let FC Y™ A
topology 7 on F is said to be jointly coniinuous if w: (F,7)X X —Y is
continuous.

A subset F of Y™ is evenly connnuous if, whenever x € X, K is a
compact subset of Y and V is a neighborhood of K, there exist
neighborhoods U, W of x, K, respectively, such that

(@) fEF and fx NW# Y imply U C f(V), and

(b) fEF and fx CW imply U C f*(V).

This extends the original Kelley-Morse definition [3, p. 235] by the
substitution of compact subsets of Y for points of Y. It is easily verified
that every member of an evenly continuous subset of Y™ is lower
semi-continuous. Moreover, every member of an evenly continuous
subset of (Y™), is also upper semi-continuous, hence continuous.

LEmMMA 3.1. Let Y be a regular space. If F is an evenly continuous
subset of Y™, then the 7,-closure of F in Y™ is evenly continuous.

Proof. Let F denote the 7,-closure of F in Y™ Letx € X, let K
be a compact subset of Y and let V be a closed neighborhood of
K. There exist open neighborhoods U, W of x, K, respectively, such
that, for all fEF, fx N W# & implies U C f (V) and fx C W implies
U Cf*(V). Let g €F be such that gx N W# &. Let {g,} be a net in F
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which is 7,-convergent to g. Since {h: h € Y™ and hx N W# J} is a
7,-neighborhood of g, g.x N W# J eventually, so U C g, (V) eventu-
ally. Suppose that UZ g™(V). Then, for some u € U, gu C Y -V, so
g.u C Y — V eventually, which is a contradiction.

Now let g € F be such that gx C W. Let {g.} be a net in F which is
m,-convergent to g Since {h:h€Y™ and hxC W} is a 7,
neighborhood of g, g.x C W eventually, so U C gi(V) eventually. Sup-
pose that UZ g*(V). Then, for some u € U, gu N(Y — V)#J, so
g.u N (Y — V) #J eventually, which is a contradiction.

LemMA 3.2. If Fis an evenly continuous subset of (Y™),, then 7, on
F is jointly continuous.

Proof. Let w: (F,7,) X X— Y. Suppose that (f, x) €  (G), where
G isopenin Y. Choose y € fx N G. There are neighborhoods U, W of
x, y, respectively, such that g € F and gx N W# J imply U C g (G).
Then {h: h € F and hx N W# J} X U is a neighborhood of (f, x) which
is contained in o (G).

Now suppose that (f, x) € w*(G), where G is open in Y. There are
neighborhoods U, W of x, fx, respectively, such that g € F and gx C W
imply U C g*(G). Then {h: h € F and hx C W} x U is a neighborhood
of (f, x) which is contained in " (G).

The following lemma generalizes an implicit lemma of Noble [8],
stated explicitely as Lemma 1.4 in [7, p. 7]:

LemMmA 33. Letf€ €(X XY, Z). If X is compact and Z is regular,
then the set F = {f(x,-): x € X} is evenly continuous.

Proof. Lety €Y, let K be a compact subset of Z and let V be an
open neighborhood of K. Let W be a closed neighborhood of K which
is contained in V. We construct a neighborhood U of y as follows:
Since f(-,y) is continuous, K, = f(-,y) (W) and K, = f(-,y) (W) are
closed in X, therefore compact. Thus the second projections pr,: K, X
Y—Y, pr.: K, X Y=Y are closed, so that

U=Y-po[(KiXY)=f(V), U=Y-pr[(KiXY)—f"(V)]

are open in Y. Because K,C f(-,y)(V), K,Cf(-,y)(V), we have
Kix{y}Cf(V), Kix{y}Cf" (V). Hence y&pr[(KiXY)=-f (V)]
YE pr[(Ky X Y)—f(V))], that is, y € U,N U, = U.

We show that the neighborhoods U, W of y, K, respectively, satisfy
the required implications: Let g € F be such that gy N W# (J, so that
g =f(x,-)forsome x € K,. Let u € U, so that u& pr,[(K; X Y)—f(V)].
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Then (x,y)€ f(V), that is, gu N V# . Now let g € F be such that
gy C W, so that g =f(x,-) for some x €X,. Let u € U, so that
uZpr,[(K,; X Y)—f*(V)]. Then (x,u) € f*(V), that is, gu C V.

Let X and Y be topological spaces. The compact open topology .
on Y™ is defined to be the topology having as open subbase the sets of
the forms {f: f(K)C U}, {f: fx N U#J for all x €K}, where K is a
compact subset of X and U isopenin Y. Obviously, 7. is larger than ,.

A subset F of Y™ satisfies the condition (G) if, for every 7.-closed
subset Fy of F, Ner, f(U) and MNer, f7(U) are open in X whenever U is
open in Y. The following two lemmas relate this condition to even
continuity:

LEmMmA 3.4. If Y is regular, then every subset of Y™ satisfying the
condition (G) is evenly continuous.

Proof. Let F be a subset of Y™ which satisfies the condition
(G). Let x € X, let K be a compact subset of Y and let V be an open
neighborhood of K. Let W be an open neighborhood of K such that
KCWCWCV. Since F,={h:h€F and hxNW#J}, F,=
{h: h €F and hx C W} are r.-closed in F, U, = N,cr h (V) and U, =
ﬂ,,epzh+(V) are open in X. Then U = U,N U, is an open neighbor-
hood of «x.

Let f € F be such that fx N W# . Then f € F,, so that U C U, C
f (V). Now let fEF be such that fx CW. Then f€E€F, so that
UCU,C (V).

LemMMA 3.5. Every 7.-compact evenly continuous subset of (Y ™),
satisfies the condition (G).

Proof. Let F be a t.-compact evenly continuous subset of
(Y™ ), Since F is 7,-compact, it suffices, by Corollary 10.6 of [7, p. 23],
to show that 7, on F is jointly continuous. For this we apply Lemma 3.2.

Let X be a topological space and let Y =(Y, %) be a uniform
space. A subset F of Y™ is equicontinuous if, for (x, U)E X X 4,
there exists a neighborhood V of x such that, for all f € F, f(V) C U[fx]
and fz N Uly] # & whenever (z,y) € V X fx. The following two lemmas
relate equicontinuity to even continuity:

LEmMma 3.6. If Y =(Y,U) is a uniform space, then every equicon-
tinuous subset of Y™ is evenly continuous.

Proof. Let F be an equicontinuous subset of Y™*. Let x € X, let K
be a compact subset of Y and let U be a symmetric member of
. There is a neighborhood V of x such that, for all fE F, f(V)C



NON-HAUSDORFF MULTIPLICATION GENERALIZATION 141

Ulfx] and fx C U[fz] for all z € V. Write W = U[K]. Let f € F be
such that fx N W# . If z € V then fx C U[fz], so that U[fz]N W# I,
therefore V C f(UY[K]). Now let f€ F be such that fx C W. Then
f(V)C Ulfx] € UK], that is, V C f(U*[K]).

Lemma 3.7. If Y is a uniform space, then every evenly continuous
pointwise bounded subset of (Y™, is equicontinuous.

Proof. Let F be an evenly continuous pointwise bounded subset of
(Y™),. Let F denote the 7,-closure of F in (Y™),. By the Lemmas
31,32, 7, on_P_‘ is jointly continuous. Since (Y™*), is a Tychonoff set, by
Lemma 2.1, F is 7,-compact. Then, by the Lemma 8 of Smithson [9, p.
258], F is equicontinuous.

4. Ascoli theorem. Let X =(X,7) be a topological
space. The k-extension of 7 is the family k(7) of all subsets U of X
such that U N K is open in K for every compact subset K of X. Itis
clear that k(r) ig a topology on X which is larger than 7. The
topological space kX = (X, k(7)) is called the k-extension of X. A
topological space X is called a k-space if kX = X. For an arbitrary
topological space X, kkX = kX, so kX is a k-space. Familiar examples of
k -spaces are the locally compact spaces and the spaces satisfying the first
countability axiom.

Let X and Y be topological spaces. A function f: X — Y is called
k -continuous if its restriction to each compact subset of X is continuous.
Henceforth, the set of all continuous (k-continuous) functionson X to Y
will be denoted C(X, Y)(C.(X, Y)). It can be shown that a topological
space X is a k-space if and only if C,(X,Y)=C(X,Y) for every
topological space Y [7, p. 9]. A topological space X is a k;-space if
G(X,Y)=C(X,Y) for every regular space Y. Thus a k-space is a
ks-space but not conversely. In fact, the product of uncountably many
copies of the real line, which is not a k-space, is a ky-space. We write
€\(X, Y)=(Y™),N €(X, Y).

We note that if Y is regular, then (€,(X, Y), 7.) is a regular space for
every topological space X.

In a regular space there was introduced in [7, p. 11] the following
equivalence relation R: xRy if every open neighborhood of x contains
y. For a subset F of such a space, F* denotes its R-saturation, that is, the
smallest R-saturated set containing F.

THEOREM 4.1. Let X, Y be topological spaces, let T be a Tychonoff
subset of (Y™ ), and let FC(TN€(X,Y),7.). If Y is regular, the
following conditions are sufficient for the compactness of F:
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(@) F* is closed in TN €(X,Y).

(b) F is pointwise bounded, and

(c) F is evenly continuous.
If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

Proof. Sufficiency. Let F denote the 7,-closure of F in T. Since
T C (Y™),, (c) implies, by Lemmas 3.1 and 3.2, that w: (F,7,)Xx X > Y
is continuous, and, in particular, that FcC €(X,Y). By Lemma 8.1 of [7,
p. 18], @: (F,7,)— (€(X, Y),7.) is continuous. Since T is a Tychonoff
set, (b) implies, by Lemma 2.1, that F is 7,-compact, so &(F)=F is a
7.-compact subset of TN € (X, Y). But (a) implies F C F C F*, so, by
Theorem 4.1 (b) of [7, p. 11], F is 7.-compact.

Necessity. By Theorem 4.1 (c) of [7, p. 11], F* is closed in
(TN€(X,Y), ). Itis clear that F is pointwise bounded. Since X is a
k-space, by Theorem 9.4 of [7, p. 21], w: (F, 7.) X X — Y is continuous.
So by Lemma 3.3, F ={w(f,-): f € F} is evenly continuous.

COorROLLARY 1. Let FC(6«(X, Y), 7). If Y is regular, the following
conditions are sufficient for the compactness of F:

(@) F* is closed in €,(X, Y),

(b) F is pointwise bounded, and

(c) F is evenly continuous.
If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

COROLLARY 2. Let FC(C(X,Y),.). If Y-is regular, the following
conditions are sufficient for the compactness of F:

(a) F* is closed in C(X,Y),

(b) F is pointwise bounded, and

(c) F is evenly continuous.
If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

CoroLLARY 3. If Y is regular, a subset F of (Ci(X,Y),7.) is
compact if and only if

(a) F* is closed in C, (X, Y),

(b) F is pointwise bounded, and

(c) F is evenly continuous on compacta.

Proof. For the sufficiency, we note that G, (X, Y) = C(kX, Y) and
apply the Lemma 3.4 of [7, p. 11]. For the necessity, we consider F as a
subset of (C(kX, Y), 7.) and deduce from Corollary 2 the conditions (a),
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(b) and the even continuity of F. Then it is clear that F, considered as a
subset of (G.(X, Y), 7.), is evenly continuous on compacta.

CoroLLARY 4. ([1,p. 635]). Let FC(C(X, Y),7.). If Y is regular,
the following conditions are sufficient for the compactness of F:

(a) Fis closed in C(X,Y),

(b) F is pointwise bounded, and

(c) F is evenly continuous.
If X is a k+-space and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

Proof. For the necessity, we note that, since Y is regular,
G (X, Y)=C(X, Y); then we apply Corollary 3 and Lemma 3.4 of [7, p.
11}.

ReEMARKS. (1) By Lemmas 3.4, 3.5, the Corollary 1 is equivalent to
the Theorem 10.10 of [7, pp. 23-24], which contains the Ascoli theorem
of Gale [2, p. 304] and the multifunction Ascoli theorem of Mancuso [6,
p. 470].

(2) Let Y be a uniform space. By Lemmas 3.6, 3.7 and Theorem
12.2 of [7, p. 28], the Corollary 1 in this context is equivalent to the
Theorem 12.8 of [7, p. 31], which contains the multifunction Ascoli
theorem of Smithson [9, p. 259].
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