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NON-HAUSDORFF MULTIFUNCTION GENERALIZATION
OF THE KELLEY-MORSE ASCOLI THEOREM

GEOFFREY FOX AND PEDRO MORALES

The paper generalizes the Kelley-Morse theorem to continu-
ous point-compact multifunction context. The generalization,
which is non-Hausdorff, contains the Ascoli theorem for continu-
ous functions on a k37 space by the authors and the known
multifunction Ascoli theorems of Mancuso and of Smithson.

1. Introduction. The Kelley-Morse theorem [3, p. 236] is
central among the topological Ascoli theorems for continuous functions
on a k -space. It generalizes to the fc3-space theorem of [1], which contains
all known Ascoli theorems for k -spaces or fe3-spaces.

Obviously a multifunction generalization depends on a multifunc-
tion extension of "even continuity". One such extension is that of Lin
and Rose [5], but this was not applied in Kelley-Morse context. Another
which was so applied [7, p. 24] is two-fold and leads to a two-fold
multifunction Kelley-Morse theorem which, however, does not contain
the Mancuso theorem [6, p. 470], nor the Smithson theorem [9, p. 259].
This paper gives a n^turaΓ multifunction extension of the definition and
leads to a multifunction theorem containing all the above-mentioned
theorems.

2. Tychonoff sets. Let X and Y be nonempty sets. A
multifunction is a point to set correspondence /: X—> Y such that, for all
x E X, fx is a nonempty subset of Y. For A C X, B C Y it is customary
to write /(A) = UxEA fx, f(B) = {x: x E X and fx Π B / 0} and f+(B) =
{x:xEX and fx C JB}. If Y is a topological space, a multifunction
/: X-> Y is point-compact if fx is compact for all x E X.

Let {YxKexbe a family of nonempty sets. The m-product P{YX: x E
X} of the Yx is the set of all multifunctions /: X-> U x G X Yx such that
fx C Yx for all x E X. In the case Yx = Y for all x E X, the m -product
of the Yx, denoted YmX, is the set of all multifunctions on X to Y. In
particular, if Y is a topological space, the symbol (YmX)o will denote the
set of all point-compact members of YmX. For x E X, the x-projection
prx: P{ Yx: JC E X}—> Yx is the multifunction defined by prx/ = /JC. If the
Yx are topological spaces, the pointwise topology τp on P{YX: JC EX} is
defined to be the topology having as open subbase the sets of the forms
pΓχ(tΛ), pr^(J7x), where Ux is open in YX9 x EX.

For F C YmX, JC E X, we write F[x] = U/eF/jc. Let Y be a topologi-
cal space. A subset F of YmX is pointwise bounded if F[JC] has compact
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closure in Y for all x E X. A subset T of YmX is Tychoήoff if, for every
pointwise bounded subset F of Γ, T Π P{F[x]: x E X} is τp-compact.
The following sets are Tychonoff:

(1) Yx, by the classical Tychonoff theorem.
(2) Ύm X, by the theorem of Lin [4, p. 400].
(3) The set of all point-closed members of YmX, by Corollary 7.5 of

[7, p. 17].
(4) (Ym X)0, by Corollary 7.6 of [7, p. 17].

LEMMA 2.1. If F is a pointwise bounded subset of a Tychonoff set T,
then the τp-closure of F in T is compact.

Proof. Let F denote the τp-closure of F in Γ. Since TO
P{F[x]: x E X} is a τp-compact subset of T, it suffices to show that
FCP{F[x]: x E X } . But this follows from Lemma 7.7 of [7, p. 17].

3. E v e n cont inui ty . Let X and Y be topological spaces. A
multifunction /: X—» Y is lower semi-continuous (upper semi-
continuous) if f'(U)(f+(U)) is open in X whenever U is open in Y. If /
is both lower semi-continuous and upper serni-continuous it is called
continuous. Henceforth, the set of all continuous multifunctions on X to
Y will be denoted <g(X, Y). The multifunction (/,*)->/* on YmX x X to
Y, or any restriction, will be denoted by the symbol ω. Let F C YmX. A
topology T on F is said to be jointly continuous if ω: (F, τ ) x X - * Y is
continuous.

A subset F of YrnX is evenly continuous if, whenever x E X, K is a
compact subset of Y and V is a neighborhood of K, there exist
neighborhoods [/, W of x, i£, respectively, such that

(a) fEF and fx ΠW^0 imply [/ C /"(V), and
(b) fEF and /JC C W imply (7 C f+(V).
This extends the original Kelley-Morse definition [3, p. 235] by the

substitution of compact subsets of Y for points of Y. It is easily verified
that every member of an evenly continuous subset of YmX is lower
semi-continuous. Moreover, every member of an evenly continuous
subset of (YmX)0 is also upper semi-continuous, hence continuous.

LEMMA 3.1. Let Y be a regular space. If F is an evenly continuous
subset of YmX, then the τp-closure of F in YmX is evenly continuous.

Proof. Let F denote the τp -closure of F in YmX. Let x E X, let K
be a compact subset of Y and let V be a closed neighborhood of
K. There exist open neighborhoods (7, W of x, K, respectively, such
that, for all f G F, fx_Π W^0 implies UCf~(V) and fx C W implies
U C /+(V). Let g E F be such that gx Π WV 0 . Let {gα} be a net in F
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which is Tp-convergent to g. Since {h: h E YmX and hx Π W^0} is a
τp-neighborhood of g, gαx Π WV0 eventually, so f/Cg;(V) eventu-
ally. Suppose that U£ g~(V). Then, for some u E 17, gu C Y - V, so
gαw C 7 - V eventually, which is a contradiction.

Now let g E F be such that gx C VK Let {gα} be a net in F which is
Tp-convergent to g. Since {h: h E YmX and fox C W} is a τp-
neighborhood of g, gαx C W eventually, so l/Cgi(V) eventually. Sup-
pose that [7£g+(V). Then, for some u E £7, g w n ( Y - V ) ^ 0 , so
gαw Π ( Y - V)τ^0 eventually, which is a contradiction.

LEMMA 3.2. JΓ/F is an evenly continuous subset of (YmX)0, ίfcen τp on
F is jointly continuous.

Proof. Let ω: (F, τp) x X-» Y. Suppose that (/, x) E ω"(G), where
G is open in Y Choose y E / x Π G . There are neighborhoods [/, W of
x, y, respectively, such that g E F and gx Π W^0 imply UCg~(G).
Then {h: hGF and /ix Π W^ 0} x [/ is a neighborhood of (/, x) which
is contained in ω~(G).

Now suppose that (/, x) E ω+(G), where G is open in Y There are
neighborhoods £/, W of x, /x, respectively, such that g £Ξ F and g x C l ^
imply U C g+(G). Then {h: Λ E F and hx C W} x t/ is a neighborhood
of (/, x) which is contained in ω+(G).

The following lemma generalizes an implicit lemma of Noble [8],
stated explicitely as Lemma 1.4 in [7, p. 7]:

LEMMA 3.3. Let f EL ^ ( X X Y, Z). I/X is compact and Z is regular,
then the set F = {/(x, -): x EX} is evenly continuous.

Proof Let y E Y, let K be a compact subset of Z and let V be an
open neighborhood of K. Let W be a closed neighborhood of /£ which
is contained in V. We construct a neighborhood C7 of y as follows:
Since /( , y) is continuous, Kx = f( , y)"(W) and K2 = f( , yT(W) are
closed in X, therefore compact. Thus the second projections pr2: Kx x
Y-» Y, pr2: K2x Y-> Y are closed, so that

t/t = Y - prJtfi^ x Y) - /"(V)], J72 = Y - pr2[(K2 x Y) - /*( V)]

are open in Y Because Jf, C/( , y)"(V), K2Cf( -, y)+(V), we have
KiX{y}C/-(V), K2x{y}C/+(V). Hence y j ί p ^ K , x Y)-/"(V)],
y^pr2[(iC2x Y)-/+(V)], that is, y E 17, Π U2= U.

We show that the neighborhoods [/, W of y, iC, respectively, satisfy
the required implications: Let g E F be such that gy Π W^ 0 , so that
g = /(x, ) for some x E ϋ^. Let u E 17, so that u^pr2[(UL, x Y)~Γ(V)].
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Then (x,y)e/-(V), that is, gu Π V-έ 0 . Now let gEF be such that
gy C W, so that g = /(x, ) for some x E X2. Let u E Uy so that
w£pr2[(X2x Y)-/+(V)]. Then (x, w)E/+(V), that is, gu C V.

Let X and y be topological spaces. The compact open topology τc

on YmX is defined to be the topology having as open subbase the sets of
the forms {/: f(K)Q I/}, {/: fx Π U^0 for all xEK}, where X is a
compact subset of X and U is open in Y. Obviously, τc is larger than τp.

A subset F of YmX satisfies the condition (G) if, for every τc-closed
subset Fo of F, ΓΊ/eFo/"(£/) and Π / e F o/+(ί7) are open in X whenever ί/ is
open in Y. The following two lemmas relate this condition to even
continuity:

LEMMA 3.4. // Y is regular, then every subset of YmX satisfying the
condition (G) is evenly continuous.

Proof. Let F be a subset of YmX which satisfies the condition
(G). Let x E X, let K be a compact subset of Y and let V be an open
neighborhood of K. Let W be an open neighborhood of K such that
KCWCWCV. Since Fλ = {h:hGF and /ιxΠW^0}, F2 =
{/i ftEFandfoC W} are τc-closed in F, 17, = Πh(ΞFι h'(V) and C/2 =
f\eF2/ι+(V) are open in X. Then [/ = IΛ Π t/2 is an open neighbor-
hood of x.

Let / E F be such that fx Π WV 0 . Then / E Fu so that UCU.C
f~(V). Now let / E F be such that fxQW. Then / £ F 2 } so that
UCU2QΓ(V).

LEMMA 3.5. Every τc-compact evenly continuous subset of (YmX)0

satisfies the condition (G).

Proof. Let F be a τc-compact evenly continuous subset of
(YmX)0. Since F is τp-compact, it suffices, by Corollary 10.6 of [7, p. 23],
to show that τp on F is jointly continuous. For this we apply Lemma 3.2.

Let X be a topological space and let Y = (Y,ΰU) be a uniform
space. A subset F of YmX is equicontinuous if, for (x, t / j ε X x ΐ ί ,
there exists a neighborhood V of x such that, for all / E F, /(V) C ί/[/x]
and /z Π [/[y] 7̂  0 whenever (z, y) E V x /x. The following two lemmas
relate equicontinuity to even continuity:

LEMMA 3.6. // Y = (Y, °U) is a uniform space, then every equicon-
tinuous subset of YmX is evenly continuous.

Proof. Let F be an equicontinuous subset of YmX. Let x E X, let K
be a compact subset of Y and let [/ be a symmetric member of
°U. There is a neighborhood V of x such that, for all f E Fy f(V)C
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U[fx] and fx C U[fz] for all z G V. Write W = U[K], Let fGF be
such that / x n ^ 0 . I i z 6 V then /* C ί/[/z], so that l/[/z] Π W/ 0,
therefore VCf(U2[K]). Now let fEF be such that fxCW. Then
/(V)C [/[/x]C[/2[4 that is, VCf+(U2[K]).

LEMMA 3.7. 7/ Y is a uniform space, then every evenly continuous
pointwise bounded subset of (YmX)0 is equicontinuous.

Proof. Let F be an evenly continuous pointwise bounded subset of
(YmX)0. Let F denote the τp-closure of F in (YmX)0. By the Lemmas
3.1, 3.2, τp on_F is jointly continuous. Since (YmX)0 is a Tychonoff set, by
Lemma 2.1, F is τp-compact. Then, by the Lemma 8 of Smithson [9, p.
258], F is equicontinuous.

4. Ascoli theorem. Let X = (X, r) be a topological
space. The k-extension of r is the family fc(τ) of all subsets U of X
such that UΠK is open in X for every compact subset K of X. It is
clear that fe(τ) i§ a topology on X which is larger than T. The
topological space /cX = (X, k(τ)) is called the k-extension of X. A
topological space X is called a k-space if /cX = X. For an arbitrary
topological space X, kkX = /cX, so fcX is a /c-space. Familiar examples of
k -spaces are the locally compact spaces and the spaces satisfying the first
countability axiom.

Let X and Y be topological spaces. A function /: X—> Y is called
k-continuous if its restriction to each compact subset of X is continuous.
Henceforth, the set of all continuous (k -continuous) functions on X to Y
will be denoted C(X, Y)(Ck(X, Y)). It can be shown that a topological
space X is a k -space if and only if (^(X, Y) = C(X, Y) for every
topological space Y [7, p. 9]. A topological space X is a k3-space if
G(X, Y)= C(X, Y) for every regular space Y. Thus a /c-space is a
fc3-space but not conversely. In fact, the product of uncountably many
copies of the real line, which is not a k -space, is a /c3-space. We write
«0(X, Y) = (YmX)oΠ^(X, Y).

We note that if Y is regular, then (^0(X, Y), τc) is a regular space for
every topological space X.

In a regular space there was introduced in [7, p. 11] the following
equivalence relation JR: xRy if every open neighborhood of x contains
y. For a subset F of such a space, F* denotes its JR-saturation, that is, the
smallest R -saturated set containing F.

THEOREM 4.1. Let X, Y be topological spaces, let T be a Tychonoff
subset of (YmX)0 and let FC (T Π «(X, Y), τc). // Y is regw/αr, ί/ie
following conditions are sufficient for the compactness of F:
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(a) F * is closed in T Π «(X, Y).
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

Proof Sufficiency. Let F denote the τp -closure of F in Γ. Since
T C (Ym X)0, (c) implies, by Lemmas 3._1 and 3.2, that ω: (F, τp) x X-> Y
is continuous, and, in particular, that F C ^ (X, Y). By Lemma 8.1 of [7,
p. 18], ώ: (F, τp)—>(^(X, Y),τc) is continuous. Since Γ is aTychonoff
set, (b) implies, by Lemma 2.1, that F is τp-compact, so ώ(F) = F is a
τc-compact subset of T Π <# (X, Y). But (a) implies FCFCF*, so, by
Theorem 4.1 (b) of [7, p. 11], F is τc-compact.

Necessity. By Theorem 4.1 (c) of [7, p. 11], F * is closed in
(T (Ί <#(X, Y), τ c). It is clear that F is pointwise bounded. Since X is a
k-space, by Theorem 9.4 of [7, p. 21], ω: (F, τ c )x X - » Y is continuous.
So by Lemma 3.3, F = {o>(/, ): / E F} is evenly continuous.

COROLLARY 1. Lei F C (^0(X, Y), τ c). // Y is regular, the following
conditions are sufficient for the compactness of F:

(a) F * is closed in <go(X, Y),
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

COROLLARY 2. Let F C (C(X, Y), τ c). // Y is regular, the following
conditions are sufficient for the compactness of F:

(a) F * is closed in C(X, Y),
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

COROLLARY 3. // Y is regular, a subset F of (Ck(X, Y), τc) is
compact if and only if

(a) F* is closed in Ck(X,Y),
(b) F is pointwise bounded, and
(c) F is evenly continuous on compacta.

Proof. For the sufficiency, we note that Ck (X, Y) = C(kX, Y) and
apply the Lemma 3.4 of [7, p. 11]. For the necessity, we consider F as a
subset of (C(kX, Y), τc) and deduce from Corollary 2 the conditions (a),
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(b) and the even continuity of F. Then it is clear that F, considered as a
subset of (Ck(X, y), τc), is evenly continuous on compacta.

COROLLARY 4. ([l,p. 635]). LβίFC(C(X, y),τ c). If Y is regular,
the following conditions are sufficient for the compactness of F:

(a) F is closed in C(X, Y),
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a kyspace and Y is regular, then the conditions (a), (b) and (c) are
necessary for the compactness of F.

Proof. For the necessity, we note that, since Y is regular,
Ck(X, Y) = C(X, y); then we apply Corollary 3 and Lemma 3.4 of [7, p.

REMARKS. (1) By Lemmas 3.4, 3.5, the Corollary 1 is equivalent to
the Theorem 10.10 of [7, pp. 23-24], which contains the Ascoli theorem
of Gale [2, p. 304] and the multifunction Ascoli theorem of Mancuso [6,
p. 470].

(2) Let y be a uniform space. By Lemmas 3.6, 3.7 and Theorem
12.2 of [7, p. 28], the Corollary 1 in this context is equivalent to the
Theorem 12.8 of [7, p. 31], which contains the multifunction Ascoli
theorem of Smithson [9, p. 259].
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