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ON CERTAIN POINT-COUNTABLE COVERS

DENNIS BURKE AND ERNEST MICHAEL

In recent years, there have been a number of results about
spaces with a point-countable cover satisfying various as-
sumptions. In this paper, these results are generalized and
unified by showing that the assumptions used can be significantly
weakened. We are mostly concerned with consequences of the
following condition: There is a point-countable cover 3> of the
space X such that, if JC, y G X with x ̂  y, then 0> has a finite
subcollection 9 such that x G (U 9)° and y £ U 9.

1. Introduction. The purpose of this note is to make some
contributions to the study of point-countable1 covers. We will consider
topological spaces X with the following properties.

(1.1) X has a point-countable base.
(1.2) X has a point-countable open cover SP which separates points

(i.e., if JC, y G X with x^ y, then there is a P E 0> such that x E F and
y g P ) .

(1.3) X has a point-countable cover 0> such that, if x G W with W
open in X, then there is a finite subcollection 2F of 3P such that
x G ( U ̂ )°, U ^ C l V , a n d x 6 Π ^ .

(1.4) Same as (1.3), but without requiring x E Π 2P.
(1.5) X has a point-countable cover £P such that if x, y G X with

x^ y, there is a finite subcollection ^ of ^ such that x G (U ^)° and
y £ U ^ .

We have the following implications for a space X:

regular

metrizable > (1.1) ± = 7 (1.3) < > (1.4)+ fc-space > (1.4)

IT, IT,

(1.2) > (1.5)

Gδ -diagonal

+ paracompact

σ -space
paracompact

1 A collection 9J> of subsets of X is point-countable if every JC E X is in at most countably many

PESP.
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The implications (1.1)->(1.3)->(1.4)-^ (1.5) and (1.1)^(1.2)
-> (1.5) are clear. The Nagata-Smirnov or the Bing metrization theorem
implies that metrizable spaces satisfy (1.1). That (1.3)—>(1.1) was
proved by the authors in [6]; hence (1.3) implies that X is first-countable2

and thus a k -space. That (1.4) implies (1.3) if X is a regular k -space will
be established in Theorem 6.2. J. Nagata observed in [18] that paracom-
pact3 spaces with a Gδ-diagonal satisfy (1.2). All Hausdorff σ-spaces
(see §5) have a Gδ-diagonal because their closed subsets are Gδ's and the
product of two σ-spaces is a σ-space. Finally, Theorem 5.2 will show
that every Tλ σ-space satisfies (1.5)4.

Spaces satisfying (1.1) have been characterized as the open s-images5

of metric spaces by V. I. Ponomarev [21] and S. Hanai [10], as the
bi-quotient6 s-images of metric spaces by V. V. Filippov [9], and (if
Hausdorff) as the compact-covering7 open s-images of metric spaces by
K. Nagami and the second author [14]. A simpler proof of Filippov's
main result (that (1.1) is preserved by bi-quotient 5 -maps) was given by
the authors in [6]; the crucial step in that proof was to show that
(1-3)^ (1.1).

In a different direction, it has been shown that, in certain kinds of
spaces, (1.1) or even (1.2) is equivalent to metrizability. Thus A. S.
Miscenko [15] and M. E. Rudin (unpublished8) showed that (1.1) is
equivalent to metrizability in compact Hausdorff spaces, and V. V.
Filippov [8] extended this to paracompact p-spaces (= paracompact
M-spaces). In [18], J. Nagata then showed that Filippov's theorem (and
thus also the Miscenko-Rudin theorem) remains valid with (1.1)
weakened to (1.2), and the second author showed in [11] that a regular
strong Σ-space (see §5) satisfying (1.2) is a σ-space9; we will show in
Theorems 3.1, 4.2, and 5.2 that, in all these results, (1.2) can be weakened
to (1.5).

2 This is easily verified directly.

Paracompact can be weakened to meta-Lindelδf (i.e., every open cover has a point-countable

open refinement).
4 By contrast, it was shown in [5, Example 2.4.5] (see also [4]) that a <τ-space — in fact, a locally

compact Moore space — need not satisfy (1.2). This implies that, even in a locally compact Moore

space, (1.5) need not imply (1.2), in striking contrast to the fact that (1.4) implies (1.1) in any regular

k -space.
5 A map f: X—> Y is an s-map if every f~\y) has a countable base.
6 A map /: X -» Y is bi-quotient if, whenever y E Y and ^ is a cover of / '(y) by open subsets

of X, then y G (/(U 9))° for some finite % C <U.
7 A map /: X—> Y is compact-covering if every compact K C Y is the image of some compact

ccx.
8 A modification of Rudin's proof (which also works for countably compact spaces) is given in

[7, Proposition 2.1].

A more direct proof, which does not need regularity, was subsequently obtained by T. Shiraki

[22] and, independently, by F. G. Slaughter, Jr. (unpublished).
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Finally, a result of G. Aquaro [1] implies that the results involving
(1.2) which were stated in the previous paragraph remain valid with
compact weakened to countably compact (and thus with paracompact
M-space weakened to Hausdorff M-space, and with strong Σ-space
weakened to Σ-space). We will show in §7 that this also remains true if
(1.2) is weakened to (1.5), provided the space is a regular k -space or a
regular c-space (see §2 for definition). Whether some such additional
hypothesis is really necessary, however, remains an open question.

In §8 we include some remarks on two modifications of (1.5). One
of these modifications is formally weaker than (1.5) and the other is
formally stronger; it is shown, however, that the two modifications are
equivalent to (1.5) whenever the space is a c -space.

Section 2 is devoted to preliminary lemmas, while §§3-8 contain our
main results. Theorem 3.1 is used in the proofs of Theorems 4.2, 6.2 and
7.2, and Theorem 4.2 is used to prove Theorem 5.2.

We adopt the convention that regular spaces are Tx and paracom-
pact spaces are Hausdorff; however, no other separation axioms are
assumed unless otherwise stated.

2. Some lemmas. We record here five lemmas which are
needed in the sequel. Lemma 2.1 is applied in the proof of Theorem
3.1, and the other lemmas in later results.

LEMMA 2.1 (A. S. Miscenko [15]). If 9 is a point-countable cover
of a setX, then every A CXhas only countably many minimal finite covers
by elements of (3>.

Our next lemma, which was proved by the authors in [6, Remark
4.1], reduces to Lemma 2.1 when X is a discrete space. Recall that a
space X is a c-space (= space determined by countable subsets = space
of countable tightness) if a set A CX is closed whenever C CA for every
countable CCA. Every first-countable space (more generally, every
sequential space) and every hereditarily separable space is a c-
space. See [12, §8] for more details.

LEMMA 2.2 [6]. Suppose X is a c-space and A CX. If SP is any
point-countable collection of subsets of X, then there are at most countably
many minimal finite subcollections 9 C $P such that A C( U 2P)°. (Minimal
means that A £ ( U g ) ° if % C& and %ϊ 9).

It should be remarked that the c-space hypothesis cannot be omitted
from Lemma 2.2, even when X is compact. Consider, for example, the
space of ordinals X = [0, ωλ], with the usual order topology. Let &
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consist of {ωj and all open intervals (a, ωλ) with a < ωλ. Then SP is
point-countable, but the conclusion of Lemma 2.2 fails for A = {ωj.

The following two lemmas will sometimes be useful when applying
Lemma 2.2.

LEMMA 2.3. Suppose f: X—> Y is continuous and closed, with X
regular. If Y and all f~](y) are first-countable, so is X.

Proof. Let x E X. Let y = f(x), let (Vn)Γ be a decreasing local
base at y in Y, and let (£Λ)T be a decreasing local base at x in
/"'(y). Choose open Wn in X such that Wn Cf-\Vn), Wn Π / ' ( y ) C I/,,
and Wn+] C Wn for all n. We claim that (Wn)* is a local base at JC in X.

Suppose not. Then there is a neighborhood G of x in X such that
Wn - GV 0 for all n. Pick xn<ΞWn- G. It is easy to see that {xn: n E N}
has no cluster point in X, so all its subsets are closed. Choose n0 so that
WnΠf-\y)CG for all n > nih and let A={xn:n>n0}. Then A is

closed in X, but B = /(A) is not closed in Y because y E β - β . This
contradiction completes the proof.

For our next lemma, whose verification is left to the reader, recall
that a space X is a k -space if, whenever A C X and A Π K is closed in K
for every compact K CX, then A is closed in X.

LEMMA 2.4. // X is a k-space, and if every compact K C X is a
c-space (in particular, metrizable), then X is a c-space.

LEMMA 2.5. If Xx and X2 satisfy (1.5), so does Xλ x X2.

Proof. Let ^ , and ^ 2 be covers of X, and X2, respectively,
satisfying (1.5). Then {Px x P 2: P, E 0\, P2 E 0>2} is a cover of Xι x X2

satisfying (1.5).

3. Compact spaces.

THEOREM 3.1. The following properties of a compact Hausdorff
space X are equivalent.

(a) X is metrizable.
(b) X satisfies (1.5).

(a)-*(b). Obvious,
(b)—»(a). Let ^ be a cover of X as in (1.5); we may assume that $P

is closed under finite intersections. Then SP has the following property,
which is formally stronger than required by (1.5): If A CX is finite and
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x E X - A, then there is a finite 9 C 9 such that x E (U ^)° and
A Π ( U f ) = 0 .

Let 0>' = U{$ C0>: $ is a minimal finite cover of X}. By Lemma
2.1, ί?' is countable. Let us show that 9*1 also satisfies the condition in
(1.5). So suppose x, y E X, with x ^ y. Then there is a finite 9C$P
such that xG(U 9)° and y £ U ̂  we may suppose that x£ (U %)° if
g C ̂  and g ^ ^. It will suffice to show that & C &'. Now for each
F<Ξ&, t h e r e is s o m e xFEFΠ(U^)° s u c h t h a t x F £ U {Ff E&iF'έ F}.
Let Λ = { x F : F E ^}. For each z E X- A, there is a finite ^ z C0> such
that z E ( U ^ ) ° and A ΓΊ(U^ z ) = 0 . Define <3ϊ C$f> by

9? = ^ U ( U { ^ 2 : z E X - A } ) .

Then the interiors of finite unions of elements of 91 cover X, so 9? has a
finite subcover $ which we may take to be minimal. Clearly ^ C ί?\ If
F E 2P, then F is the only element of 3? containing xF, so F G ̂ . Hence

We have shown that 0*' is a countable cover of X satisfying (1.5). Let

S3 = {X - (U ^)°: 9 C φ\ & finite}.

Then S3 is a countable, closed, point-separating cover of X. Since X is
compact (countably compact would suffice), the collection of all finite
intersections of elements from 39 is a countable network for X. Thus X
has a Gδ-diagonal and is therefore metrizable. That completes the
proof.

COROLLARY 3.2. Every Hausdorff k-space satisfying (1.5) is a
c- space.

Proof. This follows immediately from Lemma 2.4 and Theorem 3.1.

4. Paracompact Άf- spaces. K. Morita introduced M-
spaces in [16, §6], and showed that a space X is a paracompact M-space if
and only if it admits a perfect map onto a metrizable space M. The class
of paracompact M-spaces coincides with the class of paracompact
p-spaces defined by A. V. ArhangeΓskiϊ [2].

The proof of Theorem 4.2 below depends on Theorem 3.1 and the
following result due independently to C. R. Borges [3, Theorem 8.1] and
A. Okuyama [19].

THEOREM 4.1 (Borges-Okuyama). A space X is metrizable if and
only if it is a paracompact M-space and its diagonal Δ(X) is a Gδ subset of
XXX.
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J. Nagata [18] generalized Theorem 4.1 (as well as a result of V. V.
Filippov [8, Theorem 3]) by weakening "has a Gδ diagonal" to "satisfies
(1.2)". We now generalize Nagata's theorem, as well as Theorem 3.1
above, as follows.

THEOREM 4.2. The following properties of a space X are equivalent.
(a) X is metrizable.
(b) X is a paracompact M-space satisfying (1.5).

Proof (a)->(b). Clear.
(b)->(a). It will suffice to show that (b) implies that every closed

subset of X is a Gδ, for we can then apply this result to X x X to conclude
that the diagonal Δ(X) is a Gδ in X x X, so that X is metrizable by
Theorem 4.1. (Note that, if X satisfies (b), then so does X x X, since
X x X is a paracompact M-space by [16, Theorem 6.4] and satisfies (1.5)
by Lemma 2.5.)

Now assume (b). Since X is a paracompact M-space, there is a
perfect map / : X — > M from X onto a metrizable space M. Let
{Vn: n E N} be a sequence of locally finite open covers of M such that,
for every y E M, the collection {Sί(y, Tn): n E N) is a local base at y in
M. Let %n = {/-1(V): V E T J . Then {%: n E N} is a sequence of
locally finite open covers of X such that, if x E X and if 5X denotes the
compact set f~ι(f(x))> then {5ί(x, °Un): n E N} is a neighborhood base
about 5X in X.

It follows from Theorem 3.1 that every compact subset of X, and
thus in particular every Sx, is metrizable, so Lemma 2.3 implies that X is
first-countable and thus a c-space.

Now let A C X be closed, and let us show that it is a Gδ in X Let SP
be a cover of X satisfying (1.5). For each UCX, Lemma 2.2 implies
that there are at most countably many minimal finite & C 2P such that
(U Π A ) C ( U f ) ° ; label these collections {^([/, n): n E N}. (We may
assume X E ^ , so there is at least one such collection, and we permit

( ) for n/m.) Let

U(k)= ή ( U ^ f Π U (J7CX, kEN),

W;k - U{U(k): ί /e t } (n,/tEiV).

Since each L/(/c) contains U Π A, and ^ covers Λ, it is clear that WnΛ is
an open set about A. We will show that A = Π {WnΛ: n, /c E JV}.

Suppose x E X - A, and let us show that xgi WnΛ for some n and
/c. Since Sx Π A is compact, xξέ Sx Π A, and 5? satisfies (1.5), there must
exist a finite ^ C 0 > such that ( S x n A ) C ( U f ) ° and x ^ U i (If
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Sx IΊ A = 0, take 9 = 0). Let G = (X - A) U (U #)°. Then G is an
open set about SX9 so St(x, °Un) C G for some n. Let IΛ, , Us be the
elements of the locally finite collection %n which contain x. Then for
any i ^ s,

UiΠA C(St(x, l ) n A ) C ( G Π A ) C ( U ^)°,

so we can chose a minimal 9t C 9 such that l/ί ΠΛ C(Uf,)°. Then
9i = ^(14 fe() for some fc, E N. Let k = max{/ct: i ^ 5}. Now observe
that, if i ^ 5, then

Ut(k)C U9(Unkι) = U9t C Ό9.

Since x£ U ̂ , it follows that x£ C/(fe) whenever U E °Un and x E U.
But surely x£ U(k) if x ^ (7, so x£ U(k) for any U£ °Un. Hence
JC^ Ŵ jfe, and that completes the proof.

It should be remarked that, in general, a paracompact M-space
whose compact subsets are all metrizable need not itself be metrizable;
see [14, Example 5.2].

5. cr- spaces and Σ-spaces. A space X is a σ-space [20] if X
has a σ-locally finite closed network (i.e. a σ-locally finite cover d by
closed sets such that, if x E U with U open in X, then x E A C U for
some A E ^.) A space X is a strong X-space (resp., a Σ-space) [17] if
there is a σ-locally finite closed cover sέ of X, and a covering 9Γ of X by
compact (resp., countably compact) sets such that, if K C U with K £Ξ J{
and [/ open in X, than KCACU for some A G i The class of
Σ-spaces (resp., strong Σ-spaces) contains all σ-spaces and all M-spaces
(resp., paracompact M-spaces).

It was proved in [11, Theorem 3] that a regular strong Σ-space
satisfying (1.2) is a σ-space. We will show in Theorem 5.2 below that
(1.2) can be weakened to (1.5) in this result, thereby also enabling us to
state our theorem as an equivalence.

To prove Theorem 5.2, (b)->(a), we will need a result from [11,
13]. A continuous map /: X—> Y is called a σ-locally finite map if
every σ-locally finite cover d of X has a refinement 9i for which /(S?) is
σ-locally finite. The following characterization of σ-spaces and strong
Σ-spaces was given in [11, Theorem 2] and a proof is given in [13,
Theorem 1.3].

THEOREM 5.1 [11,13]. The following properties of a regular space Y
are equivalent.

(a) Y is a σ-space (resp., strong Σ-space).
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(b) Y is the image under a σ- locally finite map of a metrizable space
(resp., paracompact M-space).

Moreover, for (a)—>(b) the domain can be chosen to be a subset of
Y x M for some metrizable space M.

THEOREM 5.2. The following properties of a regular space Y are
equivalent.

(a) Y is a σ-space.
(b) Y is a strong Σ-space satisfying (1.5).

Proof. (a)->(b). (Only need Y to be Tx.) Suppose Y is a σ-
space. Then Y is clearly a strong Σ-space, so we need only show that Y
satisfies (1.5).

Let si = U*=1 sίn be a closed network for Y, with each dn a locally
finite cover of Y. For all n and all 3ft Csίn, let

let 9>n = {Pn{β): $8 Cs£n), and let & = U;= 1 Φn. We will show that &
satisfies (1.5).

First, it is easy to check that each &n is a disjoint cover of Y, so & is
surely point-countable. Now suppose x, y E Y, x^ y. Pick n so that,
for some AQEsίn, y E A() and x£A0. For each z E Y, let S5Z =
{ A E i n : 2 E A } , and note that 0iz is finite. Let

Clearly ^ C ^ n C0\ and ^ is finite. We will show that y^ U & and
x E ( U ^)°.

If ® C0lx, then A 0 E ^ n - $ , so Pn($)CY- Λo, and thus
y^Pn(Sδ). Hence y £ U ^ . To show that x G ( U f ) ° , let [/=
Y - U (j2/π - Sδx); then JC E U and t/ is open in Y, so we need only show
that U = U #. But if z E U ̂ , then z E P n ($) for some 35 CSδx, so

Y - U ( ^ n - S 5 ) C Y - U ( ^ Π - 9 8 X ) = U.

In the other direction, if z E (7, then 38, C08,, so P,(^Z)E ^ since
z E PΠ(38Z), it follows that z E U ^

(b)-»(a). Suppose Y is a strong Σ-space satisfying (1.5). By
Theorem 5.1, there exists a metrizable space M, a paracompact M-space
X C Y x M, and a σ-locally finite map /: X—> Y By Lemma 2.5,
y x M also satisfies (1.5), and hence so does X. Hence X is metrizable
by Theorem 4.2, so Y is a strong Σ-space by Theorem 5.1. That
completes the proof.
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REMARK 5.3. In the proof of Theorem 5.2, (a)—>(b), we have
actually shown that every space with a σ-locally finite, point-separating
closed cover satisfies (1.5). (See also footnote 4 and Remark 8.3).

REMARK 5.4. We have derived Theorem 5.2, (b)->(a), from
Theorem 4.2, with the aid of Theorem 5.1. Conversely, Theorem 4.2
follows from Theorem 5.2 and Theorem 4.1, since every paracompact
M-space is a strong Σ-space and every Hausdorff σ-space has a Gδ-
diagonal.

6. Spaces with point-countable bases. The following
result was proved in [6, Theorem 1.2].

THEOREM 6.1 [6]. A space X has a point-countable base if and only
if it satisfies (the formally weaker) condition (1.3).

It was shown in [6, Remark 4.4] that Theorem 6.1 becomes false if
(1.3) is further weakened to (1.4). We do, however, have the following
result.

THEOREM 6.2. The following properties of a regular space X are
equivalent.

(a) X has a point-countable base.
(b) X is a k-space satisfying (1.4).
(c) X is a C'space satisfying (1.4).

Proof, (a)^(b). Clear, since spaces with a point-countable base
are first-countable.

(b)->(c). By Corollary 3.2.
(c)->(a). Let 9> be a cover of X satisfying (1.4). Let

Φ = {& C 0>: 9 is finite}. For f G Φ , let

It follows from Lemma 2.2 that, if x E X, then x E M(9) for only
countably many 9 E Φ. For each P E ί?, let

P' = P U ( U {M(^): ^ E Φ, P E ^}).

Then P'CP, for if xEM(&) for some ^ E Φ with _PEf, then
x E ( U ^ ) 0 while x £ (U {& - {P}))°, and thus x E P. Now let
^ ' = {P;: P E 0>}. To show that X has a point-countable base, it will
suffice, by Theorem 6.1, to show that &' satisfies (1.3).
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To see that &' is point-countable, let x G l Define sέx =
U { f £ Φ : xEM{&)}\ then sdx is countable by the remark after the

definition of M ( ^ ) . Since x E P' implies that x E P or P E dx, it
follows that x E Pf for only countably many P E $P.

Suppose now that x E W, with W open in X Pick an open U in X
such that JC E U C 17 C W. By (1.4), there is an f E Φ such that x E
(U 9)° and (U 9) C {7, and we may suppose that x E M(&). Let
^ ' = {P': P E ^} . We need only show that x E (U ̂ ')° and that xEP'C
W for every F E Ŝ .

Since P'DP for all P e S ? , it is clear that J C E ( U ^ ' ) ° . Since
x E M ( ^ ) , we have x E P ' for every P £ f . Finally, if P E ̂  then

and that completes the proof.

7. Countably compact spaces. In this section we will
slightly generalize the results of §§3-5. Our principal tool will be the
following lemma.

LEMMA 7.1. Suppose X is a countably compact c-space, and & is a
point-countable cover of X. If °U is an open cover of X consisting of
interiors of finite unions from Φ, then °lί has a finite subcover.

Proof Let Φ be the family of all finite subcollections 9 of & such
that ( U ^ ) ° C [ / for some [ / G t For 9 E Φ, let

{xE(U&)°:x£(U%)° if g C ^

and note that (U &)° = U{M(%): % C9}. For each x E X, let

T(x) = {( U 9)°\ &EΦ, xE Nf(&)}.

Clearly x E U V(x). Since X is a c-space, it follows from Lemma 2.2
that T(x) is countable.

Suppose now that °U did not have a finite subcover. Then the union
of finitely many of the V(x) cannot cover X, for if it did, X (being
countably compact) would be covered by finitely many (U 9)° with
9 E Φ, and hence also by finitely many U E °lί. By induction, we can
therefore pick a sequence xn E X such that xn^. U(V(xm)) if m < n.
These xn are distinct, and the sequence {xn}Γ has a cluster point x EX.
Since °U covers X, there is an 9 E Φ such that x E (U 9)°. Then (U 9)°
contains infinitely many xk. Also, since (U 9)° = U {M(%): % C 9} and
there are only finitely many ? C f , there must be an % C 9 such that
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contains infinitely many xk (even though x may not be an element

of M(%)\ Pick m, nEN with m <n such that xm, xn E M{%). Then

(U%)°EY(xm), so

xnEM{Έ)C{Ό%)°C U(T(xm)).

Since m <n, this contradicts the choice of xn, and that completes the
proof.

Lemma 7.1 should be compared to the following result of G. Aquaro
[1]. Every point-countable open cover of a countably compact space X
has a finite subcover. One need not assume, in Aquaro's result, that X is a
c -space, and we do not know whether that assumption is really necessary
in Lemma 7.1. If it can be omitted from Lemma 7.1, then one can also
omit the requirement that X is a c -space or a k -space from Theorems
7.2-7.4 below. It should be remarked ,that, by Aquaro's result,
Theorems 7.2-7.4 are valid without this requirement if (1.5) is replaced
by the stronger condition (1.2).

Our next result generalizes Theorem 3.1.

THEOREM 7.2. Suppose X is a countably compact Hausdorff space
which is a c-space or a k-space. Then the following are equivalent.

(a) X is metrizable (and thus compact).
(b) X satisfies (1.5).

Proof (a)-*(b). Clear.
(b)->(a). If X is a k -space, then it is a c-space by Corollary

3.2. We may therefore assume that X is a c-space. Observe now that
the whole proof of Theorem 3.1, (b)->(a), remains valid under our
hypothesis, with two modifications: That the cover <3ϊ has a finite
subcover is obvious in a compact space; in a countably compact c-space,
it follows from Lemma 7.1. Then, after the existence of a countable
network for X is established, it follows that X is Lindelόf and therefore
compact. That completes the proof.

Theorem 7.2 implies that a Hausdorff M-space (resp., Σ-space)
which satisfies (1.5), and which is either a c-space or a k -space, is a
paracompact M-space (resp., a strong Σ-space). We therefore obtain
the following results.

THEOREM 7.3. Theorem 4.2 remains true with "paracompact M-
space" weakened to "Hausdorff M-space which is a c-space or a
k-space".
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THEOREM 7.4. Theorem 5.3, (b)-^(a), remains true with "strong
X-space" changed to "Σ-space which is a c-space or a k-space".

8. Modifications of property (1.5). Consider the follow-
ing natural modifications of property (1.5).

(1.5)". X has a point-countable cover SP such that if x, y E X with
x^ y, there is a finite subcollection 9 of 9 such that x E (U 9)° and

(1.5)+. X has a point-countable cover 3? such that if x, y E X with
x-̂  y, there is a finite subcollection ^ of 9 such that x E (U ^)° = U 9
and y £ ( U ^ ) .

It is clear that (1.5)" is formally weaker than (1.5), and (1.5)+ is
formally stronger than (1.5). The next theorem shows that, in c-spaces,
(1.5)", (1.5), and (1.5)+ are equivalent.

THEOREM 8.1. For any c-space X the following are equivalent.
(a) X satisfies (1.5)".
(b) X satisfies (1.5).
(c) X satisfies (1.5)+.

Proof, (c) -> (b) -> (a). Trivial.
(a)—»(c). Let 9 be a point-countable cover of X as given in

(1.5)". Let Φ be the collection of all finite subcollections of 9. For
f E Φ , let

and note that (U9)°= \J{M(%)\% C&}. If 0>' = {M(9): & E Φ}, it
follows from Lemma 2.2 that every x E X is in at most countably many
elements of 3Pr, and therefore &' is point-countable. To show that &'
satisfies (1.5)+, let x, y E X with x ^ y then there is some f E Φ such
that x E (U 9)° and y £ (U 9)°. Let 9' = {M (g): g C &}. Then ^ ' is a
finite subcollection of ί?', and

U ^ ' = U {Λί (»): ϊ C ̂ } = ( U 9)°.

Hence x E (U 9')° = U ̂ ' , and y ̂  (U 9)° = U ̂ ' . That completes the
proof.

The authors do not know whether Theorem 8.1 remains true without
the c-space assumption, or even whether (1.5) can be weakened to (1.5)"
in Theorems 3.1 and 4.2. We do, however, have the following result,
which follows immediately from Theorem 8.1 and Corollary 3.2.
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COROLLARY 8.2. In any Hausdorff k-space, properties (1.5) and
(1.5)+ are equivalent.

The following remark follows from the proof of Theorem 5.2,

REMARK 8.3. Every space with a σ-locally finite, point-separating
closed cover satisfies (1.5)+.

As mentioned earlier, one of the reasons for showing the equival-
ence (1.1) <-> (1-3) is to provide a simple proof that property (1.1) (and
hence (1.3)) is preserved under a perfect map (more generally, a
bi-quotient s-map). The authors do not know if condition (1.2) is
preserved under a perfect map, but we have the following result for (1.5)
and (1.5)+.

THEOREM 8.4. Let f: X-> Y be a perfect map. If X satisfies (1.5)
(resp., (1.5)+), then so does Y.

Proof We prove the theorem for property (1.5); the proof for (1.5)+

is similar.
Assume $P is a point-countable cover of X as given in (1.5). Let Φ

be the family of all finite subcollections of SP. For 2ft E Φ, let

= {y E Y: & is a minimal cover of f~ι(y)},

and let 9>' = {M(&): & E Φ}. It follows from Lemma 2.1 that 0>' is a
point-countable collection of subsets of Y\ let us show that 9>f satisfies
(1.5). If z, y G y with z ^ y, pick a fixed point x E f~λ(y). Using the
compactness of f~ι(z) and property (1.5), we can find an & E Φ such that
f'ι(z)C(U@)° and x£ \J &. Let ^ ' = {Λf(£): « C ^ } ; then 9' is a
finite subcollection of <3> and U ̂ ' = {u E Y: f'ι(u)C U ̂ } . Hence
y ^ U ^ ' . If W = Y - / ( X - (U ̂ )°), then W is open in y, z E Wand
l ^ C U f ' Thus z E (U ̂ ')°, and the theorem is proved.

PROPOSITION 8.5. // X is a c-space satisfying (1 .5) , then every

x E X is a Gδ in X.

Proof Let & be as in (1.5)~. For each x E X, let Φx be the family
of all minimal finite & C ̂  such that JC E ( U ^)°. By Lemma 2.2, Φx is
countable. But (1.5)" implies that Π {(U 2ft)°: ̂ E Φ J = {x}, and that
completes the proof.

REMARK 8.6. Proposition 8.5 and Corollary 3.2 can be combined
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with Theorem 7.3 of [12] to obtain various analogues of Theorem
4.2. (For example, one can conclude that a Hausdorff space satisfying
(1.5) is of pointwise countable type if and only if it is first-countable).
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