CHARACTERIZING FINSLER SPACES WHICH ARE PSEUDO-RIEMANNIAN OF CONSTANT CURVATURE

John K. Beem

Abstract

Let M be an indefinite Finsler space. The bisector of two points of M is the set of points equidistant from these two points. A bisector is called flat if with any pair of points it contains the extremals joining this pair. In this paper it is shown that M is pseudo-Riemannian of constant curvature if and only if M locally has flat bisectors. Another result is that M is pseudo-Riemannian of constant curvature if and only if M can be reflected locally in each nonnull extremal.

1. Introduction. Blaschke [6] has shown that if M is a two dimensional definite Finsler space in which the bisector of two points is an extremal then M is a Riemannian space of constant curvature. Busemann [7] has shown that among his G-spaces the requirement that bisectors contain with each pair of points a segment joining this pair characterizes the Euclidean, hyperbolic and spherical spaces of dimension greater than one. Phadke [8] has investigated the flat bisector condition in two dimensional G-spaces which have a distance which is not necessarily symmetric. In [4] we have shown that a pseudoRiemannian manifold locally has flat bisectors if and only if it is a space of constant sectional curvature.

In the present paper an ordinary or definite Finsler space with a symmetric distance is considered to be a special case of an indefinite Finsler space. Consequently, our arguments are valid for definite metrics as well as nondefinite metrics. The arguments are different from those of Busemann [7] because he does not make any differentiability assumptions and since a number of his arguments do not extend to indefinite metrics.
2. Indefinite Finsler spaces. Let M be an n dimensional connected and paracompact differentiable manifold of class C^{x}. The local coordinates of a point x will be denoted x^{1}, \cdots, x^{n}. In the tangent space $T(x)$ to M at x take the natural basis and let y^{1}, \cdots, y^{n} denote the components of a vector $Y \in T(x)$. The coordinates of Y are (x, y). Let $L(x, y)$ be a continuous function defined on the tangent bundle $T(M)$ of M which has the following properties:
(A) The function $L(x, y)$ is C^{x} for all (x, y) with $y \neq 0$.
(B) $L(x, k y)=k^{2} L(x, y)$ for all $k>0$.
(C) The metric tensor $g_{i j}(x, y)=\frac{1}{2} \partial^{2} L / \partial y^{\prime} \partial y^{\prime}$ has s negative eigenvalues and $n-s$ positive eigenvalues for all (x, y) with $y \neq 0$.
(D) $L(x,-y)=L(x, y)$.

The function $L(x, y)$ is called the basic metric function. It corresponds to the square of the fundamental function $F(x, y)$ usually studied in definite Finsler spaces (compare [10]).

The manifold M together with the basic metric function $L(x, y)$ is called an indefinite Finsler space of signature $n-2 s$. If $L(x, y)$ is replaced with $-L(x, y)$, then M becomes a space of signature $2 s-n$. In the special case $s=0$ the manifold M is a definite Finsler space. In this paper we do not exclude the case $s=0$.

When M has a metric tensor $g_{i j}(x, y)$ which does not depend on y, then M is called pseudo-Riemannian. A pseudo-Riemannian space is Riemannian when $s=0$ or n. If M is R^{n} and the metric tensor is constant, then M is called pseudo-Euclidean.

Let W, Y, Z be three tangent vectors at $x \in M$. Using the natural basis let $(x, w),(x, y)$ and (x, z) be the respective coordinate representations of these vectors. The scalar product of Y and Z with respect to W is defined by

$$
W(Y, Z)=g_{i j}(x, w) y^{i} z^{j}
$$

If Y is a nonzero vector, then we say Y is perpendicular to Z when $Y(Y, Z)=0$. When Y is perpendicular to Z we write $Y \nmid Z$. This relation is not, in general, symmetric. When M has dimension at least three we have shown [5] that perpendicularity is symmetric on M if and only if M is pseudo-Riemannian.

The norm squared of a vector Y is defined by $|Y|^{2}=Y(Y, Y)$. The quantity $|Y|^{2}$ may be positive, negative or zero. A vector Y with $|Y|^{2}= \pm 1$ is called a unit vector. If $|Y|^{2}=0$, then Y is called a null vector. A vector is nonzero as long as it is not the origin of the tangent space at which it is attached.

The indicatrix $K(x)$ consists of all of the unit vectors in $T(x)$. The light cone $C(x)$ consists of the null vectors in $T(x)$.

If $Y \in K(x)$, then $Y \nmid Z$ if and only if Z is parallel to the tangent hyperplane to $K(x)$ at Y, compare [10, p. 26].
3. The bisector condition. The Christoffel symbols $\gamma_{l k}^{\prime}(x, y)$ are defined in the usual way. The extremals are the solutions of the differential equations

$$
\ddot{x}^{\prime}+\gamma_{i k}^{\prime}(x, \dot{x}) \dot{x}^{\prime} \dot{x}^{k}=0
$$

An extremal $x(t)$ with velocity vector of length zero is called a null extremal.

A result of Whitehead [9] implies that for each point x there is a simple convex neighborhood $U(x)$. Given two points p and q in $U(x)$ there is a unique extremal $\operatorname{arc} \alpha(p, q)$ from p to q which lies in $U(x)$. In $U(x)$ the separation between two points p and q is defined by

$$
d(p, q)=\int L^{1 / 2}(x, \dot{x}) d t
$$

The integral is taken along $\alpha(p, q)$. The quantity $L^{1 / 2}(x, y)$ is either real and nonnegative or pure imaginary. Hence, $d(p, q)$ is either nonnegative or imaginary. The function d is continuous on the domain $U(x) \times U(x)$. In indefinite metric spaces the local distance function $d(p, q)$ is usually only defined for points sufficiently close together.

The bisector of p and q with respect to $U(x)$ is defined by

$$
B(p, q)=\left\{p^{\prime} \in U(x) \mid d\left(p, p^{\prime}\right)=d\left(q, p^{\prime}\right)\right\}
$$

We say locally M has flat bisectors if for each $x \in M$ there is a simple convex neighborhood $U(x)$ such that for all $p, q \in U(x)$ with $d(p, q) \neq 0$ the bisector $B(p, q)$ contains with any pair of points the extremals in $U(x)$ containing this pair.
4. The two dimensional case. In this section and the next we always assume M satisfies the bisector condition. If $n=2$, then this is the assumption that $B(p, q)$ lies on an extremal of M.

Proposition 1. Let M be a two dimensional indefinite Finsler space which locally has flat bisectors. Then M is a pseudo-Riemannian space of constant curvature.

Proof. If M has signature two or minus two, then the metric is definite and the proposition follows from the result of Blaschke [6] which was mentioned in the introduction.

Let M have signature zero. The metric tensor must have one negative eigenvalue and one positive eigenvalue for all (x, y) with $y \neq 0$. For each fixed $x \in M$, the light cone $C(X)$ consists of a finite number m of lines passing through the origin of the tangent space $T(x)$. When M is pseudo-Riemannian, the light cone consists of two lines. When M is an indefinite Finsler space, the number of lines m may be larger than two, see [2].

Let $m>2$ and let $U(x)$ be a simple convex neighborhood of x such that $B(p, q)$ is flat whenever $p, q \in U(x)$ with $d(p, q) \neq 0$. Each $p \in U(x)$ has at least three distinct null directions and there are three null extremals through p corresponding to these directions. At x, choose
three null vectors Y_{1}, Y_{2} and Y_{3} such that any pair $Y_{\iota}, Y_{,}$for $i \neq j$ is a linearly independent set. Since the null directions through a point vary continuously with the point, each null vector Y_{1} attached at x may be extended to a continuous and nonvanishing null vector field Y_{1} defined on a neighborhood $W(x)$ with $W(x) \subset U(x)$. For each $p \in W(x)$, let $\alpha_{i}(p)$ where $i=1,2,3$ be a null extremal through p with tangent vector Y_{1} at p. Assume without loss of generality that $W(x)$ and the extemals $\alpha_{i}(p)$ have been chosen such that each extremal has its endpoints outside of $W(x)$. Choose $q=x$. For all p sufficiently close to q we have $\alpha_{t}(p) \cap$ $\alpha_{l}(q) \neq \phi$ when $i \neq j$, since the tangent to $\alpha_{i}(p)$ converges to Y_{i} at q as $p \rightarrow q$ and the tangent to $\alpha_{l}(q)$ is Y, at q. Choose a fixed p with $\alpha_{i}(p) \cap \alpha_{l}(q) \neq \phi$ for $i \neq j$ and with $d(p, q) \neq 0$. Let $p_{1}=\alpha_{1}(p) \cap \alpha_{3}(q)$ and $p_{2}=\alpha_{2}(p) \cap \alpha_{3}(q)$. Since $d\left(p, p_{1}\right)=d\left(q, p_{1}\right)=0$. it follows that $p_{1} \in B(p, q)$ for $i=1,2$. The flat bisector condition implies $d(p, r)=$ $d(q, r)=0$ for all $r \in \alpha\left(p_{1}, p_{2}\right)$, since $\alpha\left(p_{1}, p_{2}\right)$ lies on the null extremal $\alpha_{3}(q)$. For each point $r \in \alpha\left(p_{1}, p_{2}\right)$, there is a null extremal $\alpha(p, r)$ which determines a null direction at p. Since $p \notin \alpha_{3}(q)$, distinct points of $\alpha\left(p_{1}, p_{2}\right)$ must determine distinct directions at p. This contradicts the fact that p has only a finite number of null directions.

Assume that $m=2$. A two dimensional indefinite Finsler manifold for which $C(x)$ always consists of two lines has been shown to be a doubly timelike surface, see [2, p. 1038]. Doubly timelike surfaces have been studied by the author in [1]. In particular, the doubly timelike surfaces which locally satisfy the flat bisector condition have been completely characterized by Theorems (IV. 36) and (VI. 17) of [1]. These two Theorems together with the differentiability of $L(x, y)$ imply that M is a pseudo-Riemannian manifold of constant curvature.
5. The bisector theorem. Let M have dimension at least three and satisfy the bisector condition. If $p, q \in U(x)$ with $d(p, q) \neq 0$, let r be the midpoint of $\alpha(p, q)$ so that $d(p, r)=d(q, r)$. The bisector $B(p, q)$ is a submanifold through r of codimension one. This implies that $B(p, q)$ has an $n-1$ dimensional tangent space $T_{r}(B(p, q))$ at r. The space $T_{r}(B(p, q))$ is naturally identified with an $n-1$ dimensional linear subspace of the tangent space $T(r)$.

Lemma 2. If r is the midpoint of the nonnull extremal $\alpha(p, q)$, then $\alpha(p, q)$ is a perpendicular to $B(p, q)$ at r.

Proof. Let W be the unit tangent to $\alpha(p, q)$ at r and let Y be a nonzero vector at r in the hyperplane $T_{r}(B(p, q))$. Let $a(s)$ be the solution of the extremal equations such that $a^{\prime}(0)=Y$. For each s (sufficiently small), let $x(t, s)$ represent the extremal $\alpha(p, a(s))$ for
$0 \leqq t \leqq 1$. Let \dot{x} denote the partial derivative of $x(t, s)$ with respect to t. Define

$$
f(x, \dot{x})=L^{1 / 2}(x, \dot{x})=\left[g_{i k} \dot{x}^{2} \dot{x}^{k}\right]^{1 / 2}
$$

For each fixed s, the value of $f(x, \dot{x})$ is either real or pure imaginary. Define

$$
I_{1}(s)=\int f(x, \dot{x}) d t=d(p, a(s))
$$

where the integral is from $t=0$ to $t=1$. Differentiation of this equation with respect to s yields

$$
I_{1}^{\prime}(s)=\int\left(\frac{\partial f}{\partial x^{j}} \frac{\partial x^{\prime}}{\partial s}+\frac{\partial f}{\partial \dot{x}^{\prime}} \frac{\partial \dot{x}^{\prime}}{\partial s}\right) d t
$$

Integrating by parts we obtain

$$
I_{1}^{\prime}(s)=\left.\frac{\partial f}{\partial \dot{x}^{j}} \frac{\partial x^{\prime}}{\partial s}\right|_{0} ^{1}+\int\left(\frac{\partial f}{\partial x^{\prime}}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}^{\prime}}\right)\right)\left(\frac{\partial x^{\prime}}{\partial s}\right) d t
$$

This last integral must vanish because the Euler-Langrange equations hold along each extremal. Furthermore, the derivative of x^{j} with respect to s is zero at $t=0$. Hence,

$$
I_{1}^{\prime}(0)=\left.\frac{\partial f}{\partial \dot{x}^{\prime}} \frac{\partial x^{\prime}}{\partial s}\right|_{t=1}
$$

The next equation (compare [10, p. 15]) results from the homogeneous assumption (B) together with the definition (C) of the metric tensor.

$$
\frac{\partial g_{i k}}{\partial \dot{x}^{\prime}} \dot{x}^{i}=0
$$

This last equation and the definition of $f(x, \dot{x})$ imply

$$
\frac{\partial f}{\partial \dot{x}^{j}}=\frac{g_{i j} \dot{x}^{\prime}}{f(x, \dot{x})}
$$

Consequently,

$$
I_{1}^{\prime}(0)=\frac{g_{i j} \dot{x}^{i}}{f(x, \dot{x})} \frac{\partial x^{\prime}}{\partial s}\left|=|W|^{-1} W(W, Y)\right.
$$

If $I_{2}(s)=d(q, a(s))$, then

$$
I_{2}^{\prime}(0)=-|W|^{-1} W(W, Y)
$$

The fact that $a(s) \in B(p, q)$ implies $I_{1}^{\prime}(0)=I_{2}^{\prime}(0)$. This implies $W \dashv Y$ and establishes the Lemma.

Lemma 3. Let r be the midpoint of the nonnull extremal $\alpha\left(p_{1}, q_{1}\right)$. If $p, q \in \alpha\left(p_{1}, q_{1}\right)$ and r is the midpoint of $\alpha(p, q)$, then $B(p, q)=B\left(p_{1}, q_{1}\right)$.

Proof. From Lemma 2 it follows that both $B(p, q)$ and $B\left(p_{1}, q_{1}\right)$ consist of the union of all extremals in $U(x)$ which pass through r and have the property that $\alpha(p, q)$ is perpendicular to them at r.

Let W and Y be nonzero vectors attached at x with coordinate representations (x, w) and (x, y) respectively. Then $W \dashv Y$ if and only if $g_{i j}(x, w) w^{i} y^{j}=0$. Since the metric tensor is nonsingular the vector W is always perpendicular to a hyperplane containing the origin of $T(x)$. This hold even if $|W|^{2}=0$ (as long as $W \neq 0$). This hyperplane varies continuously with W and may actually contain W.

Lemma 4. If M is an indefinite Finsler space which locally has flat bisectors, then perpendicularity is symmetric on M.

Proof. The nonnull vectors are dense in the set of nonzero vectors and a vector W is perpendicular to a hyperplane which varies continuously with W. Consequently, it is only necessary, to verify that $W+Y$ implies $Y \dashv W$ for nonnull vectors W and Y.

Let $\alpha(p, q)$ be a nonnull extremal with midpoint r and unit tangent W at r. Let Y be a nonnull vector at r with $W \dashv Y$. Using the notation of Lemma 2, we let $a(s)$ be an extremal with $a(0)=r$ and $a^{\prime}(0)=Y$. The extremal $\alpha(p, q)$ has an arclength representation $b(u)$ where $-|d(p, r)| \leqq u \leqq|d(p, r)|$ and $b^{\prime}(0)=W$. Choose some fixed s_{0} different from zero and let $x(t, u)$ represent the extremal $\alpha\left(a\left(s_{0}\right), b(u)\right)$ for $0 \leqq t \leqq 1$. The partial derivative of x with respect to t will be denoted by \dot{x}. Define

$$
I_{0}(u)=\int f(x, \dot{x}) d t=d\left(a\left(s_{0}\right), b(u)\right)
$$

The arguments used in the proof of Lemma 2 yield

$$
I_{0}^{\prime}(0)=\left.\frac{\partial f}{\partial \dot{x}^{i}} \frac{\partial x^{\prime}}{\partial u}\right|_{t=1}=|Y|^{-1} Y(Y, W) .
$$

Lemma 3 implies that $I_{0}(-u)=I_{0}(u)$. It follows that $I_{0}^{\prime}(0)=0$. Hence, $|Y|^{-1} Y(Y, W)=0$. This implies $Y+W$ and establishes the Lemma.

Theorem 5. Let M be an indefinite Finsler space. Locally M has flat bisectors if and only if M is pseudo-Riemannian of constant sectional curvature.

Proof. If M has dimension two, then Proposition 1 yields the result.
In [5] we have shown that an indefinite Finsler space of dimension at least three has symmetric perpendicularity if and only if it is pseudoRiemannian. In [4] we have shown that a pseudo-Riemannian manifold locally has flat bisectors if and only if it is a space of constant curvature. These two results together with the conclusion of Lemma 4 that M has symmetric perpendicularity complete the proof of the Theorem.
6. Reflections in extremals. In this section another theorem characterizing pseudo-Riemannian spaces of constant curvature is proven.

Let f be a diffeomorphism of M onto itself and let f_{*} denote the derivative map induced on the tangent bundle. The map f is an isometry if for all $x \in M$ and $W, Y, Z \in T(x)$ we have

$$
W(Y, Z)=f_{*}(W)\left(f_{*} Y, f_{*} Z\right)
$$

When f is a diffeomorphism of some open set U_{1} of M onto an open set U_{2} of M which satisfies the above equality, the map f is called a local isometry. When f is a local isometry different from the identity and such that f^{2} is the identity, then f is an involution.

Let x be an interior point of the nonnull extremal α. A reflection in α near x is said to exist, if there is a neighborhood $V(x)$ and a local isometry f defined on $V(x)$ such that f is an involution and the set of fixed points of f is exactly $\alpha \cap V(x)$.

If every nonnull extremal may be reflected near each interior point, then we say M may be locally reflected in each nonnull extremal.

Let f be a reflection in α near x. The tangent map f_{*} is a linear map of $T(x)$ onto $T(x)$ which preserves the metric induced on $T(x)$. Hence, f_{*} maps the indicatrix $K(x)$ onto itself and the light cone $C(x)$ onto itself. If W is a nonzero vector tangent to α at x, then $f_{*} W=W$ and

$$
W(W, Z)=W\left(W, f_{*} Z\right)
$$

for all $Z \in T(x)$. This implies that if W is perpendicular to the $(n-1)$ dimensional linear subspace H of $T(x)$ then $f_{*} H=H$.

Let (M, g) be a pseudo-Riemannian space of constant sectional curvature. It is known (see [11, p. 69]) that each $x \in M$ must have a neighborhood which is isometric to an open set of one of the model spaces S_{s}^{n}, R_{s}^{n} or H_{s}^{n}. When $s=0$, these model spaces are the classical models for spaces of constant curvature. The space S_{0}^{n} is an n dimensional sphere, the space R_{0}^{n} is n dimensional Euclidean space and H_{0}^{n} is an n dimensional hyperbolic space. The groups of motions of all of the model spaces are well known, compare [11, pp. 65-66]. In particular, each of the model spaces may be reflected over any nonnull geodesic G. This reflection may have more than G as its set of fixed points, however, the geodesic G will have a neighborhood U such that the fixed points of U are all on G. If follows that any pseudo-Riemannian space of constant curvature may be locally reflected in any nonnull extemal. In general, pseudo-Riemannian spaces of constant curvature cannot be reflected over null extremals.

Proposition 6. If M is a two dimensional indefinite Finsler space which may be locally reflected in all nonnull extremals, then M is pseudo-Riemannian of constant curvature.

Proof. If the metric on M is definite the result is well known, see [7, p. 350].

Assume the metric is not definite and let W be a nonnull vector in $T(x)$. There is a local reflection f in the extremal α determined by W. Furthermore, $f_{*} W=W$ and f_{*} is an involutoric motion on $T(x)$. Letting W vary, it follows that there exist infinitely many motions of $T(x)$ holding the origin fixed. The metric on $T(x)$ is Minkowskian and it is known [3, p. 533] that a two dimensional Minkowskian space has an infinite group of motions holding one point fixed if and only if the metric is the ordinary two dimensional Lorentz metric. Letting x vary, it follows that M is pseudo-Riemannian.

Let $\alpha(p, q)$ be a nonnull extemal from p to q. For each positive integer k, there is a set of equally spaced points $\left\{p_{0}, p_{t}, \cdots, p_{k}\right\}$ on $\alpha(p, q)$ with $\quad d .\left(p, p_{m}\right)=m d(p, q) / k \quad$ where $\quad m=1,2, \cdots, k$. Each extremal $\alpha\left(p_{t}, p_{t+1}\right)$ has a midpoint r_{i}. Let $\alpha^{\perp}\left(r_{t}\right)$ be the nonnull extremal perpendicular at r_{1} to $\alpha\left(p_{1}, p_{t+1}\right)$. Let F_{1} be the local reflection over $\alpha^{\perp}\left(r_{t}\right)$. The map F_{t} takes points of $\alpha\left(p_{t}, p_{t+1}\right)$ to points of $\alpha\left(p_{t}, p_{t+1}\right)$. For sufficiently large k each F_{1} may be defined on all of $\alpha\left(p_{i}, p_{t+1}\right)$ and this map interchanges p_{\imath} and p_{t+1}. Consequently, the composite map

$$
F=F_{k} \circ F_{k-1} \circ \cdots \circ F_{1}
$$

is a local isometry taking p to q whenever k is sufficiently large. It follows that M has the same curvature at p and q.

To conclude that M has the same curvature at all points we observe that any pair of points of M may be joined by a path consisting of a finite sequence of nonnull extremals. This establishes the Proposition.

Lemma 7. Let W be a unit vector at x which is tangent to α and let f be a reflection in α near x. Then $W \dashv Z$ implies $f_{*} Z=-Z$.

Proof. Let W be perpendicular to Z. Then W is also perpendicular to $f_{*} Z$ since f_{*} preserves the metric on $T(x)$. Assume $f_{*} Z \neq-Z$ and let $Y=Z+f_{*} Z$. Then Y is nonzero. Also, $f_{*} Y=f_{*} Z+f_{*}^{2} Z=$ $f_{*} Z+Z=Y$ and $W+Y$.

If $|Y|^{2} \neq 0$, let β be the extremal through x with tangent Y at x. Then f leaves β pointwise fixed near x which contradicts the assumption that f only leaves $\alpha \cap V(x)$ fixed.

If $|Y|^{2}=0$, let P be the two dimensional linear subspace of $T(x)$ spanned by Y and W. The map f_{*} is the identity on P since $f_{*} Y=Y$ and $f_{*} W=W$. For sufficiently small positive ϵ, the vector $X=W+\epsilon Y$ is a nonnull vector in P. Letting β be an extremal tangent to X at x, it follows as before that f leaves β pointwise fixed near x. This last contradiction establishes the Lemma.

Theorem 8. If M is an indefinite Finsler space, then M may be reflected locally in each nonnull extremal if and only if M is a pseudoRiemannian space of constant curvature.

Proof. Because of Proposition 6, we only consider $n \geqq 3$.
Let W be a nonnull vector tangent to α at x. Assume that f is a local reflection in α and that Z is any vector with $W \dashv Z$. Let (x, w) and (x, z) be the respective coordinate representations of W and Z. Lemma 7 and the fact that f_{*} must preserve the metric induced on the tangent space $T(x)$ yield $g_{\psi \prime}(x, w+\epsilon z)=g_{l \prime}(x, w-\epsilon z)$ for all real ϵ. This implies the derivative of $g_{i j}(x, w+\epsilon z)$ with respect to ϵ must vanish at $\epsilon=0$. The function $g_{i j}(x, y)$ is homogeneous of degree zero in y because of conditions (B) and (C). Thus, the derivative of $g_{i j}(x, w+\epsilon w)$ with respect to ϵ must vanish at $\epsilon=0$. We conclude that

$$
\frac{\partial g_{i j}(x, w)}{\partial \dot{x}^{k}}=0
$$

for all $k=1,2, \cdots, n$. This equation must hold for all nonnull vectors W.

Since the nonnull vectors at x are dense in $T(x)$, we find $g_{i j}(x, \dot{x})$ is independent of \dot{x}. Hence, M is pseudo-Riemannian.

Consider a nondegenerate two dimensional linear subspace E of $T(x)$ with sectional curvature $K(x, E)$. Let E be spanned by vectors Y and Z. The two dimensional sections of $T(x)$ have a natural topology induced from the Grassmann manifold of 2-planes in $T(x)$. If $Y_{t} \rightarrow Y$ and $Z_{t} \rightarrow Z$, then the subspace spanned by Y_{\imath} and Z_{i} converges to E.

If f is the reflection in the nonnull extremal α through x, then $K(x, E)=K\left(x, f_{*} E\right)$. In general, given two arbitrary sections E_{1} and E_{2} at x there may not be a reflection f such that $E_{2}=f_{*} E_{1}$. In fact, it may happen that the metric is definite on one section and indefinite on the other.

Let Y^{\prime} be a vector attached at x and let E^{\prime} denote the section spanned by Y^{\prime} and Z. If Y^{\prime} is chosen sufficiently close to Y, then there is a reflection f in some nonnull extremal α such that $E^{\prime}=f_{*} E$. It follows easily that all sections sufficiently close to E have the same curvature. This implies that two nondegenerate sections E_{1} and E_{2} will have the same curvature if there is a continuous family of nondegenerate sections from E_{1} to E_{2}. It follows that the sectional curvature $K(x, E)$ is independent of E. However, when $n \geqq 3$ the sectional curvature is only constant at each x when the curvature is independent of x, see [11, p. 57]. Therefore, M is a space of constant curvature.

Theorems 5 and 8 yield our final Proposition.
Proposition 9. If M is an indefinite Finsler space, then the following conditions are equivalent.
(i) $\quad M$ is pseudo-Riemannian of constant curvature.
(ii) Locally M has flat bisectors.
(iii) M may be reflect locally in each nonnull extremal.

Remark. If M has a definite Finsler metric, then Theorems 5 and 8 may be established without using the assumption of condition (D) that the metric be symmetric. Furthermore, by making some modifications of the arguments in [3] and in the proof of Theorem 8, we may establish Theorem 8 for indefinite metrics without assuming condition (D).

References

[^0]5. ___ Symmetric perpendicularity for indefinite Finsler metrics on Hilbert manifolds, Geometriae Dedicata, 4 (1975), 45-49.
6. W. Blaschke, Geometrische Untersuchungen zur Variationsrechnung, I. Über Symmetralen, Math.
Z., 6 (1920), 281-285.
7. H. Busemann, The Geometry of Geodesics, New York, Academic Press, 1955.
8. B. B. Phadke, Flatness of bisectors and the symmetry of distance, J. Geometry, 4 (1974), 35-51.
9. J. H. C. Whitehead, Convex regions in the geometry of paths - addendum, Quart. J. Math. Oxford Ser., 4 (1933), 226-227.
10. H. Rund, The Differential Geometry of Finsler Spaces, Berlin, Springer-Verlag, 1959.
11. J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, 1967.

Received July 9, 1974 and in revised form January 30, 1976.

University of Missouri-Columbia

[^0]: . J. K. Beem and P. Y. Woo, Doubly timelike surfaces, Mem. Amer. Math. Soc. No. 92, 1969.
 . - Indefinite Finsler spaces and timelike spaces, Canad. J. Math., 22 (1970), 1035-1039.
 3. -, Motions in two dimensional indefinite Finsler spaces, Indiana Univ. Math. J., 21 (1971), 551-555.
 4. -, Pseudo-Riemannian manifolds with totally geodesic bisectors, Proc. Amer. Math. Soc., 49 (1975), 212-215.

