ANOTHER MARTINGALE CONVERGENCE THEOREM

A. G. Mucci

Abstract

A classical martingale theorem is generalized to "martingale like" sequences. The method of proof is a generalization of Doob's proof by "downcrossings".

Introduction. Let (Ω, B, P) be a probability space, $\left\{B_{n}\right\}$ an increasing sequence of sub sigma fields of B. Let $\left\{f_{n}, B_{n}, n \geqq 1\right\}$ be an adapted sequence of P-integrable random variables.

The sequence is said to be a martingale in the limit if

$$
\lim _{n \rightarrow \infty} \sup _{n>n}\left|f_{n}-E\left(f_{\bar{n}} \mid B_{n}\right)\right|=0 \quad P \quad \text { a.e. }
$$

If was proven in an earlier paper, Mucci [3] that every uniformly integrable martingale in the limit converges both L_{1} and P a.e., generalizing the corresponding martingale theorem. The purpose of the present note is to prove that every L_{1}-bounded martingale in the limit converges pointwise to an integrable random variable, thereby generalizing another classical martingale theorem. We recall that a sequence $\left\{f_{n}\right\}$ is said to be L_{1}-bounded if $\sup _{n} \int\left|f_{n}\right|<\infty$.

The Theorem. Let $\left\{f_{n}, B_{n}, n \geqq 1\right\}$ be an L_{1}-bounded martingale in the limit. Then there exists $f \in L_{1}$ with $f_{n} \rightarrow f P$ a.e.

Proof. Fix $a<b$, two arbitrary real numbers. We define, following the classical proof:
$\varphi(a, b)$ is the number of "downcrossings" of $\left\{f_{n}\right\}$ from above b to below a. Our objective will be to show that $P(\varphi(a, b)=\infty)=0$ so that $P\left(\lim f_{n} \leqq a<b \leqq \lim f_{n}\right)=0$, thereby determining that $f=\lim _{n} f_{n}$ exists almost everywhere, and since

$$
\int|f|<\underline{\lim } \int\left|f_{n}\right|<\infty ; \quad \text { that } \quad f \in L_{1} .
$$

Our procedure consists in defining a "modified" number of downcrossings $\bar{\varphi}(a, b)$ and showing that $P(\bar{\varphi}(a, b)=\infty)=0$ and further that, almost everywhere,

$$
\bar{\varphi}(a, b)<\infty \quad \text { implies } \quad \varphi(a, b)<\infty .
$$

We begin by defining a sequence of stopping times:

$$
\tau_{0}=0
$$

Now let $\left\{\alpha_{n}\right\}$ be a decreasing sequence of positive numbers with $\sum \alpha_{n}<\infty$, and let N be a fixed positive integer.

Define $\tau_{2 n-1}$ as the first $m \leqq N$ such that:
(1) $m>\tau_{2 n-2}$
(2) $f_{m}>b$
(3) $\sup _{\bar{m}>m}\left|f_{m}-E\left(f_{m} \mid B_{m}\right)\right|<\alpha_{n}$.

If no such m exists, set $\tau_{2 n-1}=N$.
Likewise, define $\tau_{2 n}$ as the first $m \leqq N$ such that:
(지) $m>\tau_{2 n-1}$
(2) $f_{m}<a$
(푸) $\sup _{\bar{m}>m}\left|f_{m}-E\left(f_{\bar{m}} \mid B_{m}\right)\right|<\alpha_{n}$.
If no such m exists, set $\tau_{2 n}=N$. We have

$$
\begin{aligned}
\int f_{\tau_{2 n-1}}-\int f_{\tau_{2 n}}= & \sum_{1}^{N} \int_{\left(\tau_{2 n-1}=k\right)}\left(f_{k}-E\left(f_{N} \mid B_{k}\right)\right) \\
& +\sum_{1}^{N} \int_{\left(\tau_{2 n}=k\right)}\left(E\left(f_{N} \mid B_{k}\right)-f_{k}\right)<2 \alpha_{n}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{1}^{\infty} \int\left(f_{\tau_{2 n-1}}-f_{\tau_{2 n}}\right)<2 \sum_{1}^{\infty} \alpha_{n}=2 \alpha \tag{*}
\end{equation*}
$$

We want an inequality in the other direction.
Define

$$
\bar{\varphi}(N, a, b)=\sum_{1}^{\infty}\left(I_{\left(f_{f_{2 n}-1} \geqq b\right)} \cdot I_{\left(f_{r_{2 n}} \leqq a\right)} \cdot I_{\left(\text {sup }_{m} \geq 0\left|E\left(f_{r_{2 n}+m} \mid B_{r_{2 n}}\right)-f_{r_{2 n}}\right|<\alpha_{n}\right)}\right.
$$

the number of times we make a "downcrossing" subject to conditions (3),
$(\overline{3})$ on our stopping times.
We have

$$
\sum_{1}^{\infty}\left(f_{\tau_{2 n-1}}-f_{\tau_{2 n}}\right) \geqq(b-a) \bar{\varphi}(N, a, b)-|b|-\left|f_{N}\right|
$$

Taking integrals, defining

$$
\bar{\varphi}(a, b)=\lim _{N \rightarrow \infty} \bar{\varphi}(N, a, b),
$$

and using Fatou's lemma and (*), we have

$$
(* *) \quad \int \bar{\varphi}(a, b)<\frac{1}{b-a}\left[|b|+2 \alpha+\sup _{n} \int\left|f_{n}\right|\right]<\infty
$$

Therefore $P(\bar{\varphi}(a, b)<\infty)=1$.
Let us now define

$$
\Omega_{0}=(\bar{\varphi}(a, b)<\infty) \cap\left(\lim _{n \rightarrow \infty} \sup _{\bar{n}>n}\left|f_{n}-E\left(f_{\bar{n}} \mid B_{n}\right)\right|=0\right) .
$$

Clearly $P\left(\Omega_{0}\right)=1$ and we will be finished if we can show that $\varphi(a, b)<\infty$ on Ω_{0}. Now, for a particular $\omega \in \Omega_{0}$, let $\bar{\varphi}(a, b)=M$. Suppose $\varphi(a, b)=$ ∞.

Then we can find a sequence $\left\{n_{k}\right\}$ where $f_{n_{2 k-1}} \geqq b, f_{n_{2 k}} \leqq a$ and where (3), ($\overline{3}$) hold. This contradicts $\bar{\varphi}(a, b)=M$.

Corollary 1. Let $\left\{f_{n}, B_{n}, n \geqq 1\right\}$ be a martingale in the limit, and let $r \geqq 1$. Then there exists $f \in L_{r}$ such that $f_{n} \rightarrow f$ both P a.e. and in the L_{r}-norm $\Leftrightarrow\left\{\left|f_{n}\right|^{\prime}\right\}$ is uniformly integrable.

Proof. If $\left\{\left|f_{n}\right|^{r}\right\}$ is uniformly integrable, then $\left\{f_{n}, B_{n}\right\}$ is L_{1}-bounded, hence $f_{n} \rightarrow f P$ a.e. The rest follows by the usual classical arguments. (See Neveu, p. 57.)

Corollary 2. Let $s_{n}=\sum_{1}^{n} \xi_{k}$ where $\left\{\xi_{k}\right\}$ is an independent sequence. Then $s_{n} \rightarrow s \in L_{1}$ both P a.e. and L_{1} provided $\left\{s_{n}\right\}$ is Cauchy in the L_{1}-norm.

Proof. The Cauchy condition is equivalent to $\left\{s_{n}, B_{n}, n \geqq 1\right\}$ being a martingale in the limit (here $B_{n}=\sigma\left(\xi_{1} \cdots \xi_{n}\right)$). Further,

$$
\sup _{n} \int\left|s_{n}\right| \leqq \int\left|s_{M}\right|+\sup _{n \cong M} \int\left|s_{n}-s_{M}\right|<\infty .
$$

References

1. L. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., 35 (1970), 279-283.
2. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden Day (1965).
3. A. G. Mucci, Limits for martingale-like sequences, Pacific J. Math, 48 (1973), 197-202.
4. R. Subramanian, On a generalization of martingales due to Blake, Pacific J. Math., 48 (1973), 275-278.

Received July 28, 1975 and in revised form January 13, 1976.

