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ON THE CONSTRUCTION OF ONE-PARAMETER
SEMIGROUPS IN TOPOLOGICAL SEMIGROUPS

JOHN YUAN

Let S be a topological Hausdorff semigroup and s€S be a
strongly root compact element. Then there are an algebraic
morphism f: Q. U {0} > S with f(0)=¢, f(1)=s, and a one-
parameter semigroup ¢: H— S which satisfy the following
properties: If K= N{f( 10,e[y):0 <e <1}, then K is a com-
pact connected abelian subgroup of 5#7e), ¢(0) = e, ¢(H) is in
the centralizer Z = {xceSe: 2k = kx for all kcK} of K in
eSe, and ¢(t) € f(t)K for each t€Q.. Furthermore, if 7 is
any- neighborhood of s in S, then ¢ may be chosen so that
é(1)eZ: and, in fact, if K is arcwise connected, then ¢ may
be chosen so that ¢(1) =s. The above statements also hold
for strongly pth root compact elements almost everywhere.

1. Introduction. We are concerned with the question of when
a divisible element in a topological semigroup can be embedded in a
one-parameter semigroup which has many applications in Probability
theory (cf. [4], [8]).

The first result about the existence of one-parameter semigroups
in a compact semigroup which we call the One-Parameter Semigroup
Theorem is due to Mostert and Shields [7], 1957. In 1960, an in-
dependent proof based on the local nature of the compact semigroup
was given by Hoffmann (cf. [5], [6]). In 1970, a global proof was
presented by Carruth and Lawson [1]. The first result of a
generalized one-parameter semigroup theorem dealing with the
embedding problems which we will call the Embedding and Density
Theorem is indicated by Hofmann in [4] and later proved by Siebert
[8]. Siebert’s proof is based on the notion of a local semigroup
called ducleus (cf. [6]). We will present in this paper a global
proof of this theorem by applying the One-Parameter Semigroup
Theorem.

Throughout this paper, we maintain that RB,, Q. and Z. are
the totalities of strictly positive real numbers, rational numbers
and integers, respectively, H = R_U{0} and Q2 = {n/p™ncZ,,
meZ, U{0}} for a prime p. For convenience, we will use la, b,
(resp. Ja, blg, etc.) and Ja, bles (resp. la, bler) to denote e, b1 N Q.
(resp. Ja, b[ N Q,, ete.) and la, b] N Q2 (resp. la, b] N Q%) respectively.
We also maintain that S is a topological (Hausdorff) semigroup and
&% (e) is the maximal group of units in the closed subsemigroup eSe
for an idempotent ec S.
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2. On the existence of a one-parameter semigroup in m
where f: A— S is an algebraic morphism with 4= Q,, Q3.
Throughout this section, we will always assume that f: Q. (resp.
Q2)— S is an algebraic morphism so that f(]0, d]o) (resp. f(]0, dle»))
is compact for some d > 0 unless mentioned otherwise. As the
discussions for @, and for Q2 would be almost the same, we will
concentrate on @, only.

DEFINITION. For each s€ S and each n =1, let W,(s)={teS:
t"=3s}, Wns)={t™m1=<m=mn,t"=s}. s is said to be divisible
(resp. p-divisible) if W,(s) = @ (resp. W,.(s) #= @) for all n = 1; root
compact (resp. pth root compact) if W,(s) (resp. W,«(s)) is in addition
compact for each n = 1; strongly root compact (resp. strongly pth root
compact) if W.(s) = U {W(n;s):n =1} (resp. W,o=(s) = U {W(p"; s):
n = 1}) is in addition relatively compact.

ProroSITION 2.1. Let s be a root compact (resp. pth root compact)
element in S. Then there is an algebraic morphism f: Q. (resp.
Q2)— S so that f(1) = s. If s is strongly root compact (resp. strongly
pth root compact), then f may be chosen so that f(]0, 1]o) (resp. £(]0, 1]os))
is compact.

Proof. For each m» =1 and 7 = 0, pick an s,.; € W1 (s) (resp.
Sp1s € Wotnrn(s)) and let

@, = (SZLL!’ 32112!7 t 0ty Suy Spgry 0 ')
(reSp' a, = (371:”, Spn_—ly ctty Suy Snrn t ')) .

Then {a,} is a sequence in the compact set [[... W,(s) (resp.
I1.s: Woi(s)). Hence there is a convergent subnet {a,,} converging

to a = (tly t27 . ') € anl Wn!(s) (resP' H'ngl Wp”(s))'
Then

g7t = (lim sy o)
= lim s3(5)"" = ¢,
(resp. 2., = (lim sZiy' ~9)?
= lim 820" ™" = 1,)
for all ¢ =1, and ¢t, = s. If n/m! = b/a! (resp. n/p™ = b/p®), then
b = (tn"*) =t
(resp. 7, = (t2"") = ti) .

Hence f: Q. (resp. Q}) — S given by f(n/m!) = t7, (resp. f(n/p™) = t7)
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is well-defined. If #n/m!, b/a! € Q. (resp. n/p™, b/p* <€ Q%), assuming
a = m, then

flnjm! + blal) = f(ﬁ(a!/+!)+_b>

!
— t'z(a!/m.)tg — t:tntg

vesp. fln/p" + bjp) = f(PE—EL)
= 2" = tath)

whence f is an algebraic morphism so that f(1) =s. The rest is
simple.

LEMMA 2.2. for each x > 0, let S(x) = f(10, x[g). Then

(1) S(x+ y) = S(x)S(y) for all z, y >0. In particular, S(z)
s compact for each x > 0

(2) A(Q)) has the identity e so that K= N{Sx):xcQ.} is a
divisible compact abelian subgroup of 57 (e). In particular, we may
extend f to Q. U {0} so that f(0) = e

(3) Kf(lx, ylo) = Az, ylo) for all x <yeQ..

Proof. Straightforward (ef. §3, Chapter B, [6]).

LemMMA 2.3. The following statements are equivalent:
(1) K={f(0)

(2) f 1is continuous at 0

(3) f is continuous.

Proof. (cf. 8.9, p. 102, [6].)

LEMMA 2.4. If f is contimuous, then there is a unique one-
parameter semigroup ¢ so that ¢|(Q. U{0}) = f.

Proof. Given a d > 0, there is a net {x,} in ]0,d + 1[, with
lim 2, = d. Since {(f(x,)} is a net in S(d + 1), there is a convergent
subnet {fx;)}. Define F(d) = lim f(x;). It is straightforward to
check that F': H— S is a well defined morphism so that U {#'(]0, «[):
x > 0} = {f(0)}, whence F' is continuous (cf. 3.9, p. 102, [6]).

LEMMA 2.5. Let ¢: H— S be a nontrivial one-parameter semi-
group. Then there is a de€]0,1] so that ¢]|[0,d] is injective.
Moreover, 1f ¢> 0, one may reparameterize ¢ so that ¢[0, c] s
injective (cf. 3.9, p. 102, [6]).
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Since K acts on f(Q,) and f([x, y[o), one has the orbit spaces
AQL)/K and f([v, ylo)/K. We will use the same letter = to denote
the orbit maps.

LEMMA 2.6. f(Q.)/K is a topological monoid under the multipli-
cation K- -yK = xyK.

LEmMA 2.7, If Q) Z K, then wof: Q, U {0} — fAQ,)/K is non-
trivial continuous morphism so that w(f(zx, ylo) = f(x, vlo)/K for
ell x <ye@, UJ{0}.

Proof. The continuity of 7o f follows from 2.3. The rest follows
from the closedness of x.

In the remainder of this section, we maintain that f(1)¢ K and
so mof extends to a unique one-parameter semigroup g: H— f(Q.)/K
that ¢][0, 2] is injective by a suitable reparameterization of g or f,
i.e. the following diagram commutes:

10, 2[, L S@)

S

[0, 2] —— S@)/K.

T

Let p = g7'om: S(2) — [0, 2. Then p is a continuous map such that
o(f(r)) = (g om)(f(r)) = » for all rel0, 2],

and that the following condition is satisfies:
oxy) = o(x) + o(y) for all =, yeS().

LEMMA 2.8. The following statements hold:

(1) 2e Kf(r) off xen(g(r)) for each re Q. U {0}

(2) xe8(2) iff there is a unique t<€[0, 2] so that x e x(g(t))
(3) = Hg([=, yD) = Kf(x, ylo) = f(z, ylo) for all x, y Q. U{0}
(4) SMKfQ) < Kf(1, 2le)

(5) SO\EAL) = S@\KATL, 2[o).

Piroof. Straightforward.

Define a multiplication on the space X obtained from S(1) by
collapsing Kf(1) to a point as follows:

wy if 2, y, vy e SA\Kf(Q1)

mu(®@, ¥) = Kf(l) otherwise.
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Let z': S(2) — X be defined via

" | SNKSQ) = = | S@\KS((1, 2[¢) and

(KA1, 2[o)) = {Kf(L)} ;
then

S(1) x S(1) — S(2)

ﬂ/Xﬂ'l lﬂ:'

XxX —X

mer

commutes, hence m; is a global multiplication on X.

LEMMA 2.9. X ¢s a compact abelian monoid in the quotient
topology.

Proof. Since 7’ is a closed map, m is continuous.

Let [0, 1], denote the space [0, 1] equipped with the multiplica-
tion x + ¥y = min {1, x + y}. Then [0, 1], is a compact monoid in the
usual topology. In particular, we have the following factorization:

S2) - [0, 2]

< I

X —— 10,1} = H1, =],

where 7: H— [0, 1], is the canonical map and p,: X —][0, 1], is the
unique continuous morphism making the diagram commute.

LEMMA 2.10. The following statements hold:

(1) X has exactly two tdempotents e and 0 = Kf(1)
(2) K is the maximal group of units in X

(8) K is not open in X

(4) X\{0} is isomorphic to S(A)\Kf(1).

Proof. (1) and (4) are clear. (2): We have X\K = 03(]0, 1))
which is an ideal. Thus K is maximal. (3): If K were open, then
X\K would be closed, hence compact, and thus Ex(X\K) = ]0, 1]
would be compact which is not the case.

PROPOSITION 2.11. There s a continuous morphism ¢.:[0,1], — X
so that ¢.(0) = e and ¢z ({0}) = {1}.
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Proof. By 2.10 we can apply the One-Parameter Semigroup
Theorem (Thm. 1, p. 510, [7]; [1]) to obtain ¢,.

PROPOSITION 2.12. (0z06, is the identity map on [0, 1]..

Proof. We observe first that 0po¢, is an endomorphism « of
[0, 1], with a™({1}) = {1} and is therefore the identity.

PROPOSITION 2.13. There is a one-parameter semigroup ¢: H— S
such that ¢(r)e Kf(r) for all re@..

Proof. For all re|0, [y, 7 = 0rob4(r) = pog.(r) and so ¢.(r)€
o0 (r) = Kf(r). Let ¢ be the unique lifting of ¢, to H. Then ¢(r) e
Kf(r) for all reQ,.

3. On the Embedding and Density Theorem.

PROPOSITION 3.1. Let G be a locally compact abelian group and
LG = Hom (R, G) the totality of ome-parameter subgroups in G. If
exp: LG — G denotes the map exp (f) = f(1), then

(1) exp(GL) = G,, where G, is the identity component of G

(2) exp(LG) = G, iff G, 1s arcwise connected.

Proof. (1) (25.20, p. 410, [3]). (2) (Thm. 1, p. 40, [2‘]).

EMBEDDING AND DENSITY THEOREM 3.2. Let s be strongly root
compact in S. Then there are an algebraic morphism f: Q. U {0} — S
with f(0) =e, f(1) =s, and a one-parameter semigroup ¢: H — S
which satisfy the following properties: If K = N{f(]0, efo): 0 < e < 1},
then K 1s a compact connected abelian subgroup of #(e), ¢(0) = e,
s(H) is in the centralizer Z = {x ceSe:xk = kx for all ke K} of K
in eSe, and ¢(t) € Kf(t) for each te Q..

Furthermore, +f Z is any neighborhood of s in S, then ¢ may
be chosen so that ¢(1) e Z; and, in fact, if K is arcwise connected,
then ¢ may be chosen so that ¢(1) = s.

Proof. By 2.1, there is an algebraic morphism f: Q. U {0}— S
such that f(0) =e, f(1) =s, f(10, 1]¢) is compact, KC 57(e) is a
compact connected abelian subgroup and f(Q.) C eSe.

If se K, then by 3.1 the assertion is true. If s¢ K, then by
2.13 there is a one-parameter semigroup ¢: H— S so that ¢(H)C
F(Q,) ceSe and 4(r) e Kf(r) for all re Q. U {0}). In particular, ¢(H)
is in the centralizer of K in eSe. Let % be a neighborhood of s in
S; then there is a neighborhood U of ¢ in K so that sUcC %Z. Pick
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a ke K so that ¢(1) = sk, by the fact that exp (LK) = K, there is
an ¥y e LK so that y(1) € Uk™'. Let ¢,: H— S be defined via ¢,(r) =
#(r)v(r). As ¢(H) is in the centralizer of K in e¢Se, then ¢, is a
well-defined one-parameter semigroup so that

$(1) = s()y (1) eskUk™ = sU .

It is easy to check that ¢, also satisfies the same properties as
stated above. If K is arcwise connected, by 3.1 v may be chosen
so that (1) = k™ and so ¢,(1) = s.

COROLLARY 3.3. If K is a Lie group, them there is a ome-
parameter semigroup ¢ so that ¢(1) = s (cf. Thm. 7, p. 141, [9]).

THEOREM 3.4. Let s be a strongly pth root compact element in
S. Then there are an algebraic morphism f: Q2 U {0} — S with f(0) = e,
f() = s, and a one-parameter semigroup ¢: H— S which satisfy the
following properties: If K, = N{f(]0, eler): 0< € < 1}, then K, is a
p-divisible compact abelian subgroup of S#°(e), #(0) = e, $(H) s in
the centralizer Z of K, in eSe, and ¢(r)€ K,f(r) for all re Q3.

REMARK. K, is in general not divisible (ef. p. 265, [5]; p. 117,
[6]).

PrOPOSITION 3.5. Let s be a strongly root compact (resp. strongly
pth root compact) element in S and f and ¢ be as stated in 3.2
(resp. 3.4). Then there is an algebraic morphic morphism h: @, — K
(resp. h: Q% — K,) so that ¢(r) = f(r)h(r) for all re Q. (resp. @2).

Proof. For each n=1,let 4, = {xc K: f(1/n!)x = ¢(1/n!)} (resp.
B(p; n) = {x € K,: f(1/p")x = ¢(1/p™)}). Clearly, A, (resp. B(p;n) is a
nonempty compact subset for each n = 1. The construction of h
then follows as in 2.1.

The following example shows that there are elements which are
not strongly root compact but which are neverthless embeddable in
one-parameter semigroups:

0 -1

divisible and Wy(s) D {(g (y)) Yz = —1} is not compact, whence s is

not even 2th root compact. But the map f: R — S defined via

EXAMPLE 3.5. Let S = SL(2; R) and s = (‘1 °>: then s is

ft) = (

cos 7t sin 7wt
—sin 7t cos
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is a one-parameter subgroup so that f(1) = s.
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