ON THE CONSTRUCTION OF ONE-PARAMETER SEMIGROUPS IN TOPOLOGICAL SEMIGROUPS

John Yuan

Abstract

Let S be a topological Hausdorff semigroup and $s \in S$ be a strongly root compact element. Then there are an algebraic morphism $f: Q_{+} \cup\{0\} \rightarrow S$ with $f(0)=e, f(1)=s$, and a oneparameter semigroup $\phi: H \rightarrow S$ which satisfy the following properties: If $K=\cap\{f(] 0, \varepsilon[q): 0<\varepsilon<1\}$, then K is a compact connected abelian subgroup of $\mathscr{H}(e), \phi(0)=e, \phi(\boldsymbol{H})$ is in the centralizer $Z=\{x \in e S e: x k=k x$ for all $k \in K\}$ of K in $e S e$, and $\phi(t) \in f(t) K$ for each $t \in Q_{+}$. Furthermore, if \mathscr{U} is any neighborhood of s in S, then ϕ may be chosen so that $\phi(1) \in \mathscr{U}$: and, in fact, if K is arcwise connected, then ϕ may be chosen so that $\phi(1)=s$. The above statements also hold for strongly p th root compact elements almost everywhere.

1. Introduction. We are concerned with the question of when a divisible element in a topological semigroup can be embedded in a one-parameter semigroup which has many applications in Probability theory (cf. [4], [8]).

The first result about the existence of one-parameter semigroups in a compact semigroup which we call the One-Parameter Semigroup Theorem is due to Mostert and Shields [7], 1957. In 1960, an independent proof based on the local nature of the compact semigroup was given by Hoffmann (cf. [5], [6]). In 1970, a global proof was presented by Carruth and Lawson [1]. The first result of a generalized one-parameter semigroup theorem dealing with the embedding problems which we will call the Embedding and Density Theorem is indicated by Hofmann in [4] and later proved by Siebert [8]. Siebert's proof is based on the notion of a local semigroup called ducleus (cf. [6]). We will present in this paper a global proof of this theorem by applying the One-Parameter Semigroup Theorem.

Throughout this paper, we maintain that R_{+}, Q_{+}and Z_{+}are the totalities of strictly positive real numbers, rational numbers and integers, respectively, $H=R_{+} \cup\{0\}$ and $Q_{+}^{p}=\left\{n / p^{m}: n \in Z_{+}\right.$, $\left.m \in Z_{+} \cup\{0\}\right\}$ for a prime p. For convenience, we will use $\left.] a, b\right]_{Q}$ (resp. $] a, b\left[Q_{Q}, \quad\right.$ etc.) and $\left.] a, b\right]_{Q^{p}}($ resp. $] a, b\left[Q_{Q^{p}}\right)$ to denote $\left.] a, b\right] \cap Q_{+}$ (resp. $] a, b\left[\cap Q_{+}\right.$, etc.) and $\left.] a, b\right] \cap Q_{+}^{p}$ (resp. $] a, b\left[\cap Q_{+}^{p}\right.$) respectively. We also maintain that S is a topological (Hausdorff) semigroup and $\mathscr{H}(e)$ is the maximal group of units in the closed subsemigroup eSe for an idempotent $e \in S$.
2. On the existence of a one-parameter semigroup in $\overline{f(A)}$ where $f: A \rightarrow S$ is an algebraic morphism with $A=Q_{+}, Q_{+}^{p}$. Throughout this section, we will always assume that $f: Q_{+}$(resp. $\left.Q_{+}^{p}\right) \rightarrow S$ is an algebraic morphism so that $\overline{\left.f(] 0, d]_{Q}\right)}$ (resp. $\left.\overline{\left.f(] 0, d]_{Q^{p}}\right)}\right)$ is compact for some $d>0$ unless mentioned otherwise. As the discussions for Q_{+}and for Q_{+}^{p} would be almost the same, we will concentrate on Q_{+}only.

Definition. For each $s \in S$ and each $n \geqq 1$, let $W_{n}(s)=\{t \in S$: $\left.t^{n}=s\right\}, W(n ; s)=\left\{t^{m}: 1 \leqq m \leqq n, t^{n}=s\right\} . \quad s$ is said to be divisible (resp. p-divisible) if $W_{n}(s) \neq \varnothing\left(\right.$ resp. $\left.W_{p^{n}}(s) \neq \varnothing\right)$ for all $n \geqq 1$; root compact (resp. p th root compact) if $W_{n}(s)$ (resp. $W_{p n}(s)$) is in addition compact for each $n \geqq 1$; strongly root compact (resp. strongly p th root compact) if $W_{\infty}(s)=U\{W(n ; s): n \geqq 1\} \quad\left(r e s p . W_{p^{\infty}}(s)=U\left\{W\left(p^{n} ; s\right)\right.\right.$: $n \geqq 1\}$) is in addition relatively compact.

Proposition 2.1. Let s be a root compact (resp. pth root compact) element in S. Then there is an algebraic morphism $f: Q_{+}$(resp. $\left.Q_{+}^{p}\right) \rightarrow S$ so that $f(1)=s$. If s is strongly root compact (resp. strongly p th root compact), then f may be chosen so that $\overline{\left.f(10,1]_{Q}\right)}\left(\operatorname{resp} \cdot \overline{\left.f(10,1]_{Q^{p}}\right)}\right)$ is compact.

Proof. For each $n \geqq 1$ and $i \geqq 0$, pick an $s_{n+i} \in W_{(n+i)!}(s)$ (resp. $s_{n+2} \in W_{\left.p^{(n+i)}(s)\right)}$ and let

$$
\begin{gathered}
a_{n}=\left(s_{n}^{n!}, s_{n}^{n!/ 2!}, \cdots, s_{n}, s_{n+1}, \cdots\right) \\
\left(\operatorname{resp} . a_{n}=\left(s_{n}^{p^{n}}, s^{p^{n-1}}, \cdots, s_{n}, s_{n+1}, \cdots\right)\right)
\end{gathered}
$$

Then $\left\{a_{n}\right\}$ is a sequence in the compact set $\Pi_{n \geqq 1} W_{n!}(s)$ (resp. $\left.\Pi_{n \geqq 1} W_{p n}(s)\right)$. Hence there is a convergent subnet $\left\{a_{n(k)}\right\}$ converging to $a=\left(t_{1}, t_{2}, \cdots\right) \in \Pi_{n \geqq 1} W_{n!}(s)\left(r e s p . \Pi_{n \geqq 1} W_{p^{n}}(s)\right)$.

Then

$$
\begin{aligned}
t_{q+1}^{q+1} & =\left(\lim s_{n(k)}^{n(k)!/(q+1)!}\right)^{q+1} \\
& =\lim s_{n(k)}^{n(k)!/ q!}=t_{q} \\
\left(\text { resp. } t_{q+1}^{p}\right. & =\left(\lim s_{n(k)}^{p^{n}(k)-q}\right)^{p} \\
& \left.=\lim s_{n(k)}^{p^{n(k)}-q+1}=t_{q}\right)
\end{aligned}
$$

for all $q \geqq 1$, and $t_{1}=s$. If $n / m!=b / a!\left(\right.$ resp. $\left.n / p^{m}=b / p^{a}\right)$, then

$$
\begin{gathered}
t_{m}^{n}=\left(t_{m}^{m!/ a!}\right)^{b}=t_{b}^{a} \\
\left(\text { resp. } t_{m}^{n}=\left(t_{m}^{p m-a}\right)^{b}=t_{a}^{b}\right)
\end{gathered}
$$

Hence $f: Q_{+}\left(\right.$resp. $\left.Q_{+}^{p}\right) \rightarrow S$ given by $f(n / m!)=t_{m}^{n}\left(\operatorname{resp} . f\left(n / p^{m}\right)=t_{m}^{n}\right)$
is well-defined. If $n / m!, b / a!\in Q_{+}\left(\right.$resp. $\left.n / p^{m}, b / p^{a} \in Q_{+}^{p}\right)$, assuming $a \geqq m$, then

$$
\begin{aligned}
f(n / m!+b / a!) & =f\left(\frac{n(a!/ m!)+b}{a!}\right) \\
& =t_{a}^{n(a!/ m!)} t_{a}^{b}=t_{m}^{n} t_{a}^{b} \\
\operatorname{resp} . f\left(n / p^{m}+b / p^{a}\right) & =f\left(\frac{n p^{a-m}+b}{p^{a}}\right) \\
& \left.=t_{a}^{n p^{a-m}} t_{a}^{b}=t_{m}^{n} t_{a}^{b}\right),
\end{aligned}
$$

whence f is an algebraic morphism so that $f(1)=s$. The rest is simple.

Lemma 2.2. for each $x>0$, let $S(x)=\overline{f(] 0, x[Q)}$. Then
(1) $S(x+y)=S(x) S(y)$ for all $x, y>0$. In particular, $S(x)$ is compact for each $x>0$
(2) $\overline{f\left(Q_{+}\right)}$has the identity e so that $K=\cap\left\{S(x): x \in Q_{+}\right\}$is a divisible compact abelian subgroup of $\mathscr{H}(e)$. In particular, we may extend f to $Q_{+} \cup\{0\}$ so that $f(0)=e$
(3) $\overline{K f([x, y[Q)}=\overline{f\left(\left[x, y\left[_{Q}\right)\right.\right.}$ for all $x<y \in Q_{+}$.

Proof. Straightforward (cf. § 3, Chapter B, [6]).
Lemma 2.3. The following statements are equivalent:
(1) $K=\{f(0)\}$
(2) f is continuous at 0
(3) f is continuous.

Proof. (cf. 3.9, p. 102, [6].)
Lemma 2.4. If f is continuous, then there is a unique oneparameter semigroup ϕ so that $\phi \mid\left(Q_{+} \cup\{0\}\right)=f$.

Proof. Given a $d>0$, there is a net $\left\{x_{\alpha}\right\}$ in $] 0, d+1\left[{ }_{Q}\right.$ with $\lim x_{\alpha}=d$. Since $\left\{\left(f\left(x_{\alpha}\right)\right\}\right.$ is a net in $S(d+1)$, there is a convergent subnet $\left.\left\{f x_{\beta}\right)\right\}$. Define $F(d)=\lim f\left(x_{\beta}\right)$. It is straightforward to check that $F: H \rightarrow S$ is a well defined morphism so that $\cup \overline{\{F(] 0, x[):}$ $x>0\}=\{f(0)\}$, whence F is continuous (cf. 3.9, p. 102, [6]).

Lemma 2.5. Let $\phi: H \rightarrow S$ be a nontrivial one-parameter semigroup. Then there is a $d \in] 0,1]$ so that $\phi \mid[0, d]$ is injective. Moreover, if $c>0$, one may reparameterize ϕ so that $\phi \mid[0, c]$ is injective (cf. 3.9, p. 102, [6]).

Since K acts on $\overline{f\left(Q_{+}\right)}$and $\overline{f\left(\left[x, y\left[Q^{\prime}\right)\right.\right.}$, one has the orbit spaces $\overline{f\left(Q_{+}\right)} / K$ and $\overline{f([v, y[Q)} / K$. We will use the same letter π to denote the orbit maps.

Lemma 2.6. $\overline{f\left(Q_{+}\right)} / K$ is a topological monoid under the multiplication $x K \cdot y K=x y K$.

Lemma 2.7. If $f\left(Q_{+}\right) \not \subset K$, then $\pi \circ f: Q_{+} \cup\{0\} \rightarrow \overline{f\left(Q_{+}\right)} / K$ is nontrivial continuous morphism so that $\pi(\overline{f([x, y[q)})=\overline{f([x, y[Q)} / K$ for all $x<y \in Q_{+} \cup\{0\}$.

Proof. The continuity of $\pi \circ f$ follows from 2.3. The rest follows from the closedness of π.

In the remainder of this section, we maintain that $f(1) \notin K$ and so $\pi \circ f$ extends to a unique one-parameter semigroup g : $\boldsymbol{H} \rightarrow \overline{f\left(Q_{+}\right)} / K$ that $g \mid[0,2]$ is injective by a suitable reparameterization of g or f, i.e. the following diagram commutes:

Let $\rho=g^{-1} \circ \pi: S(2) \rightarrow[0,2]$. Then ρ is a continuous map such that

$$
\rho(f(r))=\left(g^{-1} \circ \pi\right)(f(r))=r \quad \text { for all } \quad r \in[0,2]_{Q}
$$

and that the following condition is satisfies:

$$
\rho(x y)=\rho(x)+\rho(y) \quad \text { for all } \quad x, y \in S(1)
$$

Lemma 2.8. The following statements hold:
(1) $x \in K f(r)$ iff $x \in \pi^{-1}(g(r))$ for each $r \in Q_{+} \cup\{0\}$
(2) $x \in S(2)$ iff there is a unique $t \in[0,2]$ so that $x \in \pi^{-1}(g(t))$
(3) $\pi^{-1}(g([x, y]))=\overline{K \overline{f([x, y[Q)}}=\overline{f(] x, y[q)}$ for all $x, y \in Q_{+} \cup\{0\}$
(4) $S(1) K f(1) \subset K \overline{f\left(\left[1,2\left[_{Q}\right)\right.\right.}$
(5) $S(1) \backslash K f(1)=S(2) \backslash K \overline{f([1,2[Q)}$.

Proof. Straightforward.
Define a multiplication on the space X obtained from $S(1)$ by collapsing $K f(1)$ to a point as follows:

$$
m_{R}(x, y)= \begin{cases}x y & \text { if } \quad x, y, x y \in S(1) \backslash K f(1) \\ K f(1) & \text { otherwise } .\end{cases}
$$

Let $\pi^{\prime}: S(2) \rightarrow X$ be defined via

$$
\begin{aligned}
& \pi^{\prime}|S(1) \backslash K f(1)=\pi| S(2) \backslash K \overline{f\left(\left[1,2\left[_{Q}\right)\right.\right.} \quad \text { and } \\
& \left.\pi^{\prime}\left(\overline{f^{([1,2[Q}}\right)\right)=\{K f(1)\}
\end{aligned}
$$

then

commutes, hence m_{R} is a global multiplication on X.
Lemma 2.9. X is a compact abelian monoid in the quotient topology.

Proof. Since π^{\prime} is a closed map, m_{R} is continuous.
Let $[0,1]_{*}$ denote the space $[0,1]$ equipped with the multiplication $x+y=\min \{1, x+y\}$. Then $[0,1]_{*}$ is a compact monoid in the usual topology. In particular, we have the following factorization:

where $\tau: \boldsymbol{H} \rightarrow[0,1]_{*}$ is the canonical map and $\rho_{R}: X \rightarrow[0,1]_{*}$ is the unique continuous morphism making the diagram commute.

Lemma 2.10. The following statements hold:
(1) X has exactly two idempotents e and $0 \equiv K f(1)$
(2) K is the maximal group of units in X
(3) K is not open in X
(4) $X \backslash\{0\}$ is isomorphic to $S(1) \backslash K f(1)$.

Proof. (1) and (4) are clear. (2): We have $\left.\left.X \backslash K=\rho_{R}^{-1}(] 0,1\right]\right)$ which is an ideal. Thus K is maximal. (3): If K were open, then $X \backslash K$ would be closed, hence compact, and thus $\left.\rho_{R}(X \backslash K)=10,1\right]$ would be compact which is not the case.

Proposition 2.11. There is a continuous morphism $\phi_{*}:[0,1]_{*} \rightarrow X$ so that $\phi_{*}(0)=e$ and $\phi_{*}^{-1}(\{0\})=\{1\}$.

Proof. By 2.10 we can apply the One-Parameter Semigroup Theorem (Thm. 1, p. 510, [7]; [1]) to obtain ϕ_{*}.

Proposition 2.12. $\rho_{R^{\circ} \circ \phi_{*}}$ is the identity map on $[0,1]_{*}$.
Proof. We observe first that $\rho_{R} \circ \phi_{*}$ is an endomorphism α of $[0,1]_{*}$ with $\alpha^{-1}(\{1\})=\{1\}$ and is therefore the identity.

Proposition 2.13. There is a one-parameter semigroup $\phi: \boldsymbol{H} \rightarrow S$ such that $\phi(r) \in K f(r)$ for all $r \in Q_{+}$.

Proof. For all $r \in\left[0,1\left[{ }_{Q}, r=\rho_{R^{\circ}} \phi_{*}(r)=\rho \circ \phi_{*}(r)\right.\right.$ and so $\phi_{*}(r) \in$ $\rho^{-1}(r)=K f(r)$. Let ϕ be the unique lifting of ϕ_{*} to \boldsymbol{H}. Then $\phi(r) \in$ $K f(r)$ for all $r \in Q_{+}$.

3. On the Embedding and Density Theorem.

Proposition 3.1. Let G be a locally compact abelian group and $L G=\operatorname{Hom}(R, G)$ the totality of one-parameter subgroups in G. If $\exp : L G \rightarrow G$ denotes the $m a p \exp (f)=f(1)$, then
(1) $\overline{\exp (G L)}=G_{0}$, where G_{0} is the identity component of G
(2) $\exp (L G)=G_{0}$ iff G_{0} is arcwise connected.

Proof. (1) (25.20, p. 410, [3]). (2) (Thm. 1, p. 40, [2]).
Embedding and Density Theorem 3.2. Let s be strongly root compact in S. Then there are an algebraic morphism $f: Q_{+} \cup\{0\} \rightarrow S$ with $f(0)=e, f(1)=s$, and a one-parameter semigroup $\phi: \boldsymbol{H}-S$ which satisfy the following properties: If $K=\cap\left\{\overline{f(] 0, \varepsilon\left[{ }_{Q}\right)}: 0<\varepsilon<1\right\}$, then K is a compact connected abelian subgroup of $\mathscr{C}(e), \phi(0)=e$, $\phi(\boldsymbol{H})$ is in the centralizer $Z=\{x \in e S e: x k=k x$ for all $k \in K\}$ of K in $e S e$, and $\phi(t) \in K f(t)$ for each $t \in Q_{+}$.

Furthermore, if \mathscr{U} is any neighborhood of s in S, then ϕ may be chosen so that $\phi(1) \in \mathscr{U}$; and, in fact, if K is arcwise connected, then ϕ may be chosen so that $\phi(1)=s$.

Proof. By 2.1, there is an algebraic morphism $f: Q_{+} \cup\{0\} \rightarrow S$ such that $f(0)=e, f(1)=s, \overline{f\left([0,1]_{Q}\right)}$ is compact, $K \subset \mathscr{H}(e)$ is a compact connected abelian subgroup and $\overline{f\left(Q_{+}\right)} \subset e S e$.

If $s \in K$, then by 3.1 the assertion is true. If $s \notin K$, then by 2.13 there is a one-parameter semigroup $\phi: \boldsymbol{H} \rightarrow S$ so that $\phi(\boldsymbol{H}) \subset$ $\overline{f\left(Q_{+}\right)} \subset e S e$ and $\phi(r) \in K f(r)$ for all $r \in Q_{+} \cup\{0\}$. In particular, $\phi(\boldsymbol{H})$ is in the centralizer of K in $e S e$. Let \mathscr{U} be a neighborhood of s in S; then there is a neighborhood U of e in K so that $s U \subset \mathscr{U}$. Pick
a $k \in K$ so that $\phi(1)=s k$, by the fact that $\overline{\exp (L K)}=K$, there is an $\psi \in L K$ so that $\psi(1) \in U k^{-1}$. Let $\phi_{1}: \boldsymbol{H} \rightarrow S$ be defined via $\phi_{1}(r)=$ $\phi(r) \psi(r)$. As $\phi(\boldsymbol{H})$ is in the centralizer of K in $e S e$, then ϕ_{1} is a well-defined one-parameter semigroup so that

$$
\phi_{1}(1)=\phi(1) \psi(1) \in s k U k^{-1}=s U
$$

It is easy to check that ϕ_{1} also satisfies the same properties as stated above. If K is arcwise connected, by 3.1ψ may be chosen so that $\psi(1)=k^{-1}$ and so $\phi_{1}(1)=s$.

Corollary 3.3. If K is a Lie group, then there is a oneparameter semigroup ϕ so that $\phi(1)=s$ (cf. Thm. 7, p. 141, [9]).

Theorem 3.4. Let s be a strongly pth root compact element in S. Then there are an algebraic morphism $f: Q_{+}^{p} \cup\{0\} \rightarrow S$ with $f(0)=e$, $f(1)=s$, and a one-parameter semigroup $\phi: \boldsymbol{H} \rightarrow S$ which satisfy the following properties: If $K_{p}=\cap\left\{\overline{f(] 0, \varepsilon\left[Q^{p}\right)}: 0<\varepsilon<1\right\}$, then K_{p} is a p-divisible compact abelian subgroup of $\mathscr{H}(e), \phi(0)=e, \phi(\boldsymbol{H})$ is in the centralizer Z of K_{p} in $e S e$, and $\phi(r) \in K_{p} f(r)$ for all $r \in Q_{+}^{p}$.

Remark. K_{p} is in general not divisible (cf. p. 265, [5]; p. 117, [6]).

Proposition 3.5. Let s be a strongly root compact (resp. strongly p th root compact) element in S and f and ϕ be as stated in 3.2 (resp. 3.4). Then there is an algebraic morphic morphism $h: Q_{+} \rightarrow K$ (resp. $h: Q_{+}^{p} \rightarrow K_{p}$) so that $\phi(r)=f(r) h(r)$ for all $r \in Q_{+}$(resp. Q_{+}^{p}).

Proof. For each $n \geqq 1$, let $A_{n!}=\{x \in K: f(1 / n!) x=\phi(1 / n!)\}$ (resp. $\left.B(p ; n)=\left\{x \in K_{p}: f\left(1 / p^{n}\right) x=\phi\left(1 / p^{n}\right)\right\}\right)$. Clearly, $A_{n!}($ resp. $B(p ; n)$ is a nonempty compact subset for each $n \geqq 1$. The construction of h then follows as in 2.1.

The following example shows that there are elements which are not strongly root compact but which are neverthless embeddable in one-parameter semigroups:

Example 3.5. Let $S=S L(2 ; R)$ and $s=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$: then s is divisible and $W_{2}(s) \supset\left\{\left(\begin{array}{cc}0 & y \\ z & 0\end{array}\right): y z=-1\right\}$ is not compact, whence s is not even 2th root compact. But the map $f: R \rightarrow S$ defined via

$$
f(t)=\binom{\cos \pi t \sin \pi t}{-\sin \pi t \cos \pi t}
$$

is a one-parameter subgroup so that $f(1)=s$.
Acknowledgments. The author wishes to thank Drs. Karl H. Hofmann, Michael W. Mislove and John R. Liukkonen for many helpful suggestions.

References

1. J.H. Carruth and J.D. Lawson, On the existence of one-parameter semigroups, Semigroup Forum, 1 (1970), 85-90.
2. J. Dixmier, Quelques propriétés des groupes abélian localement compacts, Bull. Sci. Math. 2^{e} série, 85 (1957), 38-48.
3. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, Berlin-Heidelberg-New York, (1963/70).
4. H. Heyer, Infinitely divisible probability measures on compact groups, Lecture Notes in Mathematics 247, Springer-Verlag, Heidelberg (1973), 55-247.
5. K. H. Hofmann, Topologisches Halbgruppen mit dichter submonogener Unterhalbgruppe, Math. Zeitschrift, 74 (1960), 232-276.
6. K. H. Hofmann and P. S. Mostert, Elements of Compact Semigroups, Charless E. Merrill, Columbus, Ohio (1966).
7. P. S. Mostert and A. L. Shields, One-parameter semigroups in a semigroups, Trans. Amer. Math. Soc., 96 (1960), 510-517.
8. E. Seibert, Einbettung unendlich teilbarer Wahrscheinlichkeitsmasse auf topologischen Gruppen, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 28 (1974), 227-247.
9. Ph. Tondeur, Introduction to Lie Groups and Transformation Groups, Second Edition, Springer-Verlag. Berlin (1969).

Received November 13, 1975 and in revised form February 9, 1976.
National Tsing Hua University, Taiwan 300

