SUBORDINATING FACTOR SEQUENCES AND CONVEX FUNCTIONS OF SEVERAL VARIABLES

JAMES MILLER

In this paper we consider univalent holomorphic maps of E^n , the unit disk in C^n . We generalize Wilf's subordinating factor sequences to functions on E^n and use this characterization to obtain a covering theorem and bounds for convex mappings in C^n .

1. Introduction. Let K^n denote the class of functions F which are holomorphic and univalent in $E^n = \{z = (z_1, \dots, z_n) : \operatorname{Max}_{1 \le i \le n} |z_i| < 1\}$, maps E^n onto a convex region in C^n , and satisfy F(0) = 0 and the Jacobian J of the mapping F is nonsingular. Let G and H be holomorphic in E^n . If $G(E^n) \subset H(E^n)$, then G is subordinate to $H(G \prec H)$. If $F = (F_1, \dots, F_n) \in K^n$ then each F_i has an expansion of the form

$$F_i(Z) = \sum_{k=1}^{\infty} \sum_{\nu_1+\cdots+\nu_n=k} a_{\nu_1\cdots\nu_n}(i) z_1^{\nu_1}\cdots z_n^{\nu_n}$$
.

In this paper we characterize the sequences $\{c_{\nu_1\cdots\nu_n}(i)\}$ $(i = 1, \dots, n)$ such that the mapping

$$H=(H_1, \cdots, H_n)$$

where

$$H_{i}(Z) = \sum_{k=1}^{\infty} \sum_{\nu_{1}+\dots+
u_{n}=k} c_{
u_{1}\dots
u_{n}}(i) a_{
u_{1}\dots
u_{n}}(i) z^{
u_{1}} \cdots z^{
u_{n}}$$

is subordinate to F, for all $F \in K^n$. Then we obtain a covering theorem and bounds for convex mappings.

For n = 1, the class K^1 is the classical family of univalent functions $F(z) = \sum_{k=1}^{\infty} a_k z^k$ which maps the unit disk onto a convex domain. Wilf [4] has characterized the sequences $\{c_k\}$ (subordinating factor sequences) such that $h(z) = \sum c_k a_k z^k$ is subordinate to f(z) = $\sum_{k=1}^{\infty} a_k z^k$ whenever $f \in K^1$. For n > 1, Suffridge [3] has given the following characterization of the class K^n .

THEOREM A. Suppose $F: E^n \to C^n$ is holomorphic, F(0) = 0, and that J is nonsingular for all $Z \in E^n$. Then F is a univalent map of E^n onto a convex domain if and only if there exists univalent mappings $f_j \in k^1 (1 \le j \le n)$ such that $F(Z) = T(f_1(z_1), \dots, f_n(z_n))$ where T is a nonsingular linear transformation. From Theorem A we see that if $F = (F_1, \dots, F_n) \in K^n$ then

$$F_i(\boldsymbol{z}_1, \ \cdots, \ \boldsymbol{z}_n) = \sum_{k=1}^\infty \left(a_{i1}^k \boldsymbol{z}_1^k + \ \cdots + a_{in}^k \boldsymbol{z}_n^k
ight)$$

Thus we could represent $F \in K^n$ by the column vector

$$F(Z) = \sum_{K=1}^{\infty} A_k Z^k$$

where

$$A_k = egin{bmatrix} a_{i_1}^k \cdots a_{i_n}^k \ dots \ a_{n_1}^k & a_{n_n}^k \end{bmatrix} \qquad Z^k = egin{bmatrix} z_1^k \ dots \ z_n^k \end{bmatrix}.$$

2. Subordinating factor sequences. An infinite sequence $\{C_k\}$ of $n \times n$ matrices of complex numbers will be called a subordinating factor sequence if for each $F(Z) = \sum A_k Z^k \in K^n$ we have $\sum C_k \odot A_k Z^k \prec F(Z)$, where $C_k \odot A_k$ is the Hadamard product. If $C = (c_{ij})$ and $A = (a_{ij})$ then $C \odot A = (c_{ij}a_{ij})$. Let \mathscr{F}^n denote the collection of subordinating factor sequences.

THEOREM 1. If $\{C_k\} \in \mathscr{F}^n$, then for each k the rows of $C_k = (c_{ij}^k)$ are identical, that is, for each k $(k = 1, 2, \cdots)$ and each j $(j=1, \cdots, n)$ we have $c_{1j}^k = c_{2j}^k = \cdots = c_{nj}^k$.

Proof. Let $\{C_k\} \in \mathscr{F}^n$. First consider k = 1. Pick $\zeta = (\zeta_1, \dots, \zeta_n) \in E^n$ where $\zeta_i \neq 0$ and if $c_{jj}^1 \neq 0$ then $\zeta_j = 1/2e^{-i\alpha}$ with $\alpha = \arg c_{jj}^1$ if $c_{jj}^1 = 0$ then $\zeta_j = 0$. Let $\delta = (c_{ji}^1 - c_{ii}^1)\zeta_i$. If $\delta = 0$, then $c_{ji}^1 = c_{ii}^1$. If $\delta \neq 0$, let $M = 1/\delta$. Then define the mapping $F = (F_1, \dots, F_n)$ where $F_i(Z) = Mz_i, F_j(Z) = Mz_i + z_j$, and $F_k(Z) = z_k$ when neither $k \neq i$ or $k \neq j$. The mapping F is a convex univalent map by Theorem A. Thus since $\{C_k\} \in \mathscr{F}^n$ the mapping $H = (H_1, \dots, H_n)$, where $H_i(Z) = Mc_{ii}^1 z_i, H_j(Z) = Mc_{ji}^1 z_i + c_{jj}^1 z_j$ and $H_k(Z) = c_{kk}^1 z_k$ for $k \neq i$ or $k \neq j$, is subordinate to F. In particular, there is a $Z \in E^n$ such that $H(\zeta) = F(Z)$, which says

$$Mz_i = Mc_{ii}^1 \zeta_i$$

and

$$Mz_i + z_j = Mc_{ji}^1\zeta_i + c_{jj}^1\zeta_j$$
 .

Solving for z_j we obtain

$$z_j = \mathit{M}(c_{j_i}^{_1} - c_{i_i}^{_1})\zeta_i + c_{j_j}^{_1}\zeta_j = 1 + rac{1}{2}|c_{i_j}^{_1}| \geqq 1 \; .$$

This contradicts the fact that |Z| < 1. Thus we have $\delta = 0$ or $c_{1j}^{1} = c_{2j}^{1} = \cdots = c_{nj}^{1}$ for $j = 1, \dots, n$.

For k > 1 we define the mapping $F = (F_1, \dots, F_n)$ where

for neither $k \neq i$ or $k \neq j$. Then the proof that $c_{1j}^k = c_{2j}^k = \cdots = c_{\pi j}^k$ is similar to the proof for k = 1.

From Theorem 1 we have that if $\{C_k\} \in \mathscr{F}^n$, then for each k the rows of C_k are indentical. For the $n \times n$ matrices C_k we will use the notation

$$C_k = egin{bmatrix} c_1^k \cdots c_n^k \ dots \ c_1^k \cdots c_n^k \end{bmatrix} = (c_1^k, \, \cdots, \, c_n^k) \; .$$

Using Theorem 1 we are now able to characterize class \mathcal{F}^n .

THEOREM 2. The following are equivalent:
(i)
$$\{C_{\kappa}\} \in \mathscr{F}^{n}$$
 where $C_{\kappa} = (c_{1}^{k}, \dots, c_{n}^{k})$.
(ii) For each $j = 1, \dots, n$ we have

$$\operatorname{Re}\left\{1+2\sum\limits_{k=1}^{\infty}c_{j}^{k}z_{j}^{k}
ight\}>0 \hspace{1em} for \hspace{1em} |z_{j}|<1$$
 .

(iii) For each $j = 1, \dots, n$ there is a nondecreasing function Ψ_j on $[0, 2\pi]$ such that

$$c_j^k = rac{1}{2\pi} \int_0^{2\pi} e^{-ik heta} dar Y_j(heta) \quad and \quad c_j^{ heta} = 1 \; .$$

Proof. The Herglotz's integral representation for positive harmonic functions proves that (ii) and (iii) are equivalent. Let $\{C_k\} \in \mathscr{F}^n$, where $C_k = (c_1^k, \dots, c_n^k)$. Let $f_i(z_i) = z_i/(1-z_i)$. Then by Theorem A the mapping F is in K^n . We may write

$$F(Z) = \sum_{k=1}^{\infty} A_k Z^k$$

where $A_k = (a_{ij}^k)$ and $a_{ji}^k = 0$ if $i \neq j$ and $a_{ii}^k = 1$ then the mapping

$$H(Z) = \sum\limits_{k=1}^\infty C_k \odot A_k Z^k$$

is subordinate to F. The mapping H has components $H_i(Z) = \sum_{k=1}^{\infty} c_i^k z_i^k$. Since H < F we have that $H_i(F_i) \subset f_i(E_i)$ or Re $\{H_i(E_i)\} \ge -1/2$ where $E_i = \{z_i \colon |z_i| < 1\}$. Thus Re $\{\sum_{k=1}^{\infty} c_i^k z_i^k\} > -1/2$ for i = 1/2

1, ..., n, Now suppose (iii) holds. Let $F \in K^n$. Then by Theorem A there exists a nonsingular matrix T and functions $f_1, \dots, f_n \in K^1$, where $f_i(z_i) = \sum_{k=1}^{\infty} a_k(i) z_i^k$, such that

$$F(Z) = Tegin{bmatrix} f_1(z_1)\dots\ f_n(z_n)\ f_n(z_n) \end{bmatrix}$$

where F is a column vector. Then

$$egin{aligned} H(Z) &= \sum C_k \odot A_k z^k = T egin{bmatrix} \sum & \sum & c_1^k a_k(1) z_1^k \ dots & \sum & \sum & c_n^k a_k(n) z_n^k \end{bmatrix} \ &= T egin{bmatrix} \sum & \sum & c_n^k a_k(n) z_n^k \ dots & \sum & c_n^k a_k(n) z_n^k \end{bmatrix} \ &= T egin{bmatrix} \sum & \sum & c_n^{12} a_k(1) z_1^k & \ dots & \ddots & \ddots & c_n^k a_k(n) z_n^k \end{bmatrix} \ &= T egin{bmatrix} \frac{1}{2\pi} \int_0^{2\pi} e^{ik\phi} d\Psi_n(\phi) a_k(n) z_n^k \end{bmatrix} \ &= T egin{bmatrix} \frac{1}{2\pi} \int_0^{2\pi} \sum & a_k(1) r_1^k e^{ij(\theta_1 + \phi)} d\Psi_1(\phi) & \ dots & \ \dots & \ dots & \ \dots & \ dots & \ \dots &$$

where $z_i = r_j e^{i\theta_j}$. Since each integral in the left hand side is the centroid of a nonnegative mass distribution of total mass one on a convex curve, the value of each integral must lie inside its convex curve. Further since T is a nonsingular linear transformation H(Z) lies inside the image of the polydisk of radius (r_1, \dots, r_n) . (A polydisk or radius (r_1, \dots, r_n) is the set $\{(z_1, \dots, z_n): |z_i| \leq r_i \text{ for } i = 1, \dots, n\}$.) Thus $H \prec F$.

3. Convex mappings in C^n . We now apply Theorem 2 to obtain some results for mapping in K^n .

COROLLARY 1. For
$$n > 1$$
 let $G \in K^n$, where $G(Z) = \sum B_k Z^k$.

Then the mapping

$$G_{\scriptscriptstyle F}^*(Z) = \sum B_k \odot A_k Z^k$$
 ,

where $F(Z) = \sum A_k Z^k \in K^n$, is not subordinate to F for all $F \in K^n$.

Proof. If $G_F^* \prec F$ for all $F \in K^n$, then the sequence $\{B_k\}$ belongs to \mathscr{F}^n . This says that the rows of each B_k are indentical by Theorem 1. Hence the Jacobian of G will be identically zero. Thus G_F^* is not subordinate to F for all $F \in K^n$.

Let $T = (t_{ij})$ be a $n \times n$ nonsingular matrix. Let K be the functions $f \in K^1$ where f'(0) = 1. Let KT denote the subclass of K^n which is defined by $F \in KT$ if and only if there exist functions $f_i \in K(i = 1, 2, \dots, n)$ such that

$$F(Z) = Tegin{pmatrix} f_1(z_1)\dots\ f_n(z_n)\end{pmatrix}$$

where F is represented as a column vector.

COROLLARY 2. The image of E^n under a mapping $F \in KT$ contains the polydisk $|w| < 1/2(\sum_{j=1}^n |t_{ij}|, \dots, \sum_{j=1}^n |t_{nj}|)$. The radius is sharp.

Proof. Since the sequence $\{C_k\}$ where $C_1 = (1/2, 1/2, \dots, 1/2)$ and $C_k = (0, \dots, 0)$ for $k \geq 2$, belongs to \mathscr{F}^n , we see that the image of E^n under a mapping $F \in KT$ contains $|W| < 1/2(\sum_{j=1}^n |t_{1j}|, \dots, \sum_{j=1}^n |t_{nk}|)$. The sharpness follows by using the function

$$F(Z) = Tegin{bmatrix} rac{z_1}{1-z_1}\dots \ rac{z_n}{1-z_n}\end{bmatrix}$$

Ruscheweyh and Sheil-Small [2] have proven Pólya and Schoenberg's [1] conjecture that if $f(z) = \sum_{k=1}^{\infty} a_k z^k$ and $g(z) = \sum b_k z^k$ are elements of K^1 then so is the function $h(z) = \sum a_k b_k z^k$. In general for K^n this is not true as shown by the example $F(Z) = \begin{pmatrix} z_1 - z_2 \\ z_1 + z_2 \end{pmatrix} =$ G(Z). However, we do have the following Pólya and Schoenberg type of theorem.

THEOREM 3. Let $T_1 = (p_{ij})$ and $T_2 = (q_{ij})$ be $n \times n$ nonsingular matrices such that $T = T_1 \odot T_2 = (p_{ij}q_{ij})$ is nonsingular. If F(Z) = $\sum_{k=1}^{\infty} A_k Z^k \in KT_1$ and $G(Z) = \sum_{k=1}^{\infty} B_k Z^k \in KT_2$, then $H(Z) = \sum_{k=1}^{\infty} A_k \odot B_k Z^k$ belongs to KT.

Proof. Let $F \in KT_1$ and $G \in KT_2$. Then there exists functions f_i , $g_i \in K(i = 1, \dots, n)$ such that

$$F(Z) = T_1 egin{bmatrix} f_1(z_1) \ dots \ f_n(z_n) \end{bmatrix}$$

and

$$G(Z) = T_2 \begin{bmatrix} g_1(z_1) \\ \vdots \\ g_n(z)_n \end{bmatrix}$$

The mapping $H(Z) = \sum_{k=1}^{\infty} A_k \odot B_k z^k$ may be written as

$$H(Z) = \left. T\!\! \begin{pmatrix} \!\! z_1 + \sum\limits_{k=1}^\infty a_k(1)b_k(1)z_1^k \ dots \ z_n + \sum\limits_{k=2}^\infty a_k(n)b_k(n)z_k^n
ight)
ight.$$

Thus $H \in KT$ since $z_i + \sum a_k(i)b_k(i)z_i^k$ belongs to K for each i [2].

4. Bounds on Mapping in K_n . Let $F \in K^n$. Then by Suffridge's representation of mappings in K^n (Theorem A), there exist an $n \times n$ nonsingular matrix $T = (t_{ij})$ and functions $f_i(z_i) = \sum_{k=1}^{\infty} a_k(i) z_i^k (i=1,\dots,n)$ in K^1 with $f'_1(0) = 1$ such that

$$F(Z) = Tigg(egin{array}{c} f_1(z_1) \ dots \ f_n(z_n) \end{pmatrix} igg).$$

Then

$$A_{\scriptscriptstyle k} = (a_{\scriptscriptstyle ij}) = \mathit{T} egin{pmatrix} a_{\scriptscriptstyle k}(1) \ dots \ a_{\scriptscriptstyle k}(n) \end{pmatrix}$$

where $F(z) = \sum_{k=1}^{\infty} A_k Z^k$. Since

$$|a_k(i)| < 1 \quad ext{and} \quad rac{|z_i|}{1+|z_i|} < |f_i(z_i)| < rac{|z_i|}{1-|z_i|}$$
 ,

we have the following theorem.

THEOREM 4. Let $F(z) = \sum_{k=1}^{\infty} A_k Z^k$ belongs to K^n . Let T be an $n \times n$ nonsingular matrix and let $f_1, \dots, f_n \in K^1$ such that

$$F(Z) = Tigg(egin{array}{c} f_1(m{z}_1) \ dots \ f_n(m{z}_n) \end{pmatrix} .$$

Then

$$|a_{ij}^k| < |t_{ij}|$$

for each k, i, and j, where $A_k = (a_{ij}^k)$. Let $F = (F_1, \dots, F_n)$. Then

$$\sum_{j=1}^n |t_{ij}| \, rac{|z_j|}{1+|z_j|} \leq |F_{\imath}(Z)| < \sum_{j=1}^n |t_{ij}| \, rac{|z_j|}{1-|z_j|} \; .$$

Both inequality are sharp.

References

1. G. Pólya and I. J. Schoenberg, Remarks on de la Vallie Poussin means and convex conformal maps of the unit circle, Pacific J. Math., 8 (1958), 295-334.

2. St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973), 119-135.

3. T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., **33** (1970), 241-248.

4. H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., **12** (1961), 689-693.

Received April 30, 1975.

WEST VIRGINIA UNIVERSITY