SUBORDINATING FACTOR SEQUENCES AND CONVEX FUNCTIONS OF SEVERAL VARIABLES

James Miller

Abstract

In this paper we consider univalent holomorphic maps of E^{n}, the unit disk in C^{n}. We generalize Wilf's subordinating factor sequences to functions on E^{n} and use this characterization to obtain a covering theorem and bounds for convex mappings in C^{n}.

1. Introduction. Let K^{n} denote the class of functions F which are holomorphic and univalent in $E^{n}=\left\{z=\left(z_{1}, \cdots, z_{n}\right)\right.$: $\left.\operatorname{Max}_{1 \leq i \leq n}\left|z_{i}\right|<1\right\}$, maps E^{n} onto a convex region in C^{n}, and satisfy $F(0)=0$ and the Jacobian J of the mapping F is nonsingular. Let G and H be holomorphic in E^{n}. If $G\left(E^{n}\right) \subset H\left(E^{n}\right)$, then G is subordinate to $H(G \prec H)$. If $F=\left(F_{1}, \cdots, F_{n}\right) \in K^{n}$ then each F_{i} has an expansion of the form

$$
F_{i}(Z)=\sum_{k=1}^{\infty} \sum_{\nu_{1}+\cdots+\nu_{n}=k} \alpha_{\nu_{1} \cdots \nu_{n}}(i) \boldsymbol{z}_{1}^{\nu_{1}} \cdots \boldsymbol{z}_{n}^{\nu_{n} n} .
$$

In this paper we characterize the sequences $\left\{c_{\nu_{1} \cdots \nu_{n}}(i)\right\}(i=1, \cdots, n)$ such that the mapping

$$
H=\left(H_{1}, \cdots, H_{n}\right)
$$

where

$$
H_{i}(Z)=\sum_{k=1}^{\infty} \sum_{\nu_{1}+\cdots+\nu_{n}=k} c_{\nu_{1} \cdots \nu_{n}}(i) a_{\nu_{1} \cdots \nu_{n}}(i) z^{\nu_{1}} \cdots z^{\nu_{n}}
$$

is subordinate to F, for all $F \in K^{n}$. Then we obtain a covering theorem and bounds for convex mappings.

For $n=1$, the class K^{1} is the classical family of univalent functions $F(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ which maps the unit disk onto a convex domain. Wilf [4] has characterized the sequences $\left\{c_{k}\right\}$ (subordinating factor sequences) such that $h(z)=\sum c_{k} \alpha_{k} z^{k}$ is subordinate to $f(z)=$ $\sum_{k=1}^{\infty} a_{k} z^{k}$ whenever $f \in K^{1}$. For $n>1$, Suffridge [3] has given the following characterization of the class K^{n}.

Theorem A. Suppose $F: E^{n} \rightarrow C^{n}$ is holomorphic, $F(0)=0$, and that J is nonsingular for all $Z \in E^{n}$. Then F is a univalent map of E^{n} onto a convex domain if and only if there exists univalent mappings $f_{j} \in k^{1}(1 \leqq j \leqq n)$ such that $F(Z)=T\left(f_{1}\left(z_{1}\right), \cdots, f_{n}\left(z_{n}\right)\right)$ where T is a nonsingular linear transformation.

From Theorem A we see that if $F=\left(F_{1}, \cdots, F_{n}\right) \in K^{n}$ then

$$
F_{i}\left(z_{1}, \cdots, z_{n}\right)=\sum_{k=1}^{\infty}\left(a_{i 1}^{k} z_{1}^{k}+\cdots+a_{i n}^{k} z_{n}^{k}\right)
$$

Thus we could represent $F \in K^{n}$ by the column vector

$$
F(Z)=\sum_{K=1}^{\infty} A_{k} Z^{k}
$$

where

$$
A_{k}=\left[\begin{array}{ccc}
a_{i 1}^{k} & \cdots & a_{i n}^{k} \\
\vdots & & \\
a_{n 1}^{k} & & a_{n n}^{k}
\end{array}\right] \quad Z^{k}=\left[\begin{array}{c}
\boldsymbol{z}_{1}^{k} \\
\vdots \\
\boldsymbol{z}_{n}^{k}
\end{array}\right]
$$

2. Subordinating factor sequences. An infinite sequence $\left\{C_{k}\right\}$ of $n \times n$ matrices of complex numbers will be called a subordinating factor sequence if for each $F(Z)=\sum A_{k} Z^{k} \in K^{n}$ we have $\sum C_{k} \odot A_{k} Z^{k}<$ $F(Z)$, where $C_{k} \odot A_{k}$ is the Hadamard product. If $C=\left(c_{i j}\right)$ and $A=\left(\alpha_{i j}\right)$ then $C \odot A=\left(c_{i j} \alpha_{i j}\right)$. Let \mathscr{F}^{n} denote the collection of subordinating factor sequences.

Theorem 1. If $\left\{C_{k}\right\} \in \mathscr{F}^{n}$, then for each k the rows of $C_{k}=\left(c_{i j}^{k}\right)$ are identical, that is, for each $k(k=1,2, \cdots)$ and each $j(j=1, \cdots, n)$ we have $c_{1 j}^{k}=c_{2 j}^{k}=\cdots=c_{n j}^{k}$.

Proof. Let $\left\{C_{k}\right\} \in \mathscr{F}^{n}$. First consider $k=1$. Pick $\zeta=\left(\zeta_{1}, \cdots\right.$, $\left.\zeta_{n}\right) \in E^{n}$ where $\zeta_{i} \neq 0$ and if $c_{j j}^{1} \neq 0$ then $\zeta_{j}=1 / 2 e^{-i \alpha}$ with $\alpha=\arg c_{j j}^{1}$ if $c_{j j}^{1}=0$ then $\zeta_{j}=0$. Let $\delta=\left(c_{j i}^{1}-c_{i i}^{1}\right) \zeta_{i}$. If $\delta=0$, then $c_{j i}^{1}=c_{2 i}^{1}$. If $\delta \neq 0$, let $M=1 / \delta$. Then define the mapping $F=\left(F_{1}, \cdots, F_{n}\right)$ where $F_{i}(Z)=M z_{i}, F_{j}(Z)=M z_{i}+z_{j}$, and $F_{k}(Z)=z_{k}$ when neither $k \neq i$ or $k \neq j$. The mapping F is a convex univalent map by Theorem A. Thus since $\left\{C_{k}\right\} \in \mathscr{F}^{n}$ the mapping $H=\left(H_{1}, \cdots H_{n}\right)$, where $H_{i}(Z)=M c_{\imath \imath}^{1} z_{i}, H_{j}(Z)=M c_{j i}^{1} z_{i}+c_{j j}^{1} z_{j}$ and $H_{k}(Z)=c_{k k}^{1} z_{K}$ for $k \neq i$ or $k \neq j$, is subordinate to F. In particular, there is a $Z \in E^{n}$ such that $H(\zeta)=F(Z)$, which says

$$
M z_{i}=M c_{i i}^{1} \zeta_{i}
$$

and

$$
M z_{i}+z_{j}=M c_{j i}^{1} \zeta_{i}+c_{j j}^{1} \zeta_{j}
$$

Solving for z_{j} we obtain

$$
z_{j}=M\left(c_{j \imath}^{1}-c_{i i}^{1}\right) \zeta_{i}+c_{j j}^{1} \zeta_{j}=1+\frac{1}{2}\left|c_{i j}^{1}\right| \geqq 1
$$

This contradicts the fact that $|Z|<1$. Thus we have $\delta=0$ or $c_{1 j}^{1}=c_{2 j}^{1}=\cdots=c_{n j}^{1}$ for $j=1, \cdots, n$.

For $k>1$ we define the mapping $F=\left(F_{1}, \cdots, F_{n}\right)$ where

$$
F_{i}(Z)=M z_{i}+\frac{M z_{j}^{k}}{k^{2}}, F_{j}(Z)=M z_{\imath}+\frac{M z_{i}^{k}}{k^{2}}+z_{j}, \quad \text { and } \quad F_{k}(Z)=z_{k}
$$

for neither $k \neq i$ or $k \neq j$. Then the proof that $c_{1 j}^{k}=c_{2 j}^{k}=\cdots=c_{n j}^{k}$ is similar to the proof for $k=1$.

From Theorem 1 we have that if $\left\{C_{k}\right\} \in \mathscr{F}^{n}$, then for each k the rows of C_{k} are indentical. For the $n \times n$ matrices C_{k} we will use the notation

$$
C_{k}=\left[\begin{array}{ccc}
c_{1}^{k} \cdots & c_{n}^{k} \\
\vdots \\
c_{1}^{k} & \cdots & c_{n}^{k}
\end{array}\right]=\left(c_{1}^{k}, \cdots, c_{n}^{k}\right) .
$$

Using Theorem 1 we are now able to characterize class \mathscr{F}^{n}.

Theorem 2. The following are equivalent:
(i) $\left\{C_{K}\right\} \in \mathscr{F}^{n}$ where $C_{K}=\left(c_{1}^{k}, \cdots, c_{n}^{k}\right)$.
(ii) For each $j=1, \cdots, n$ we have

$$
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} c_{j}^{k} z_{j}^{k}\right\}>0 \quad \text { for } \quad\left|z_{j}\right|<1
$$

(iii) For each $j=1, \cdots, n$ there is a nondecreasing function Ψ_{j} on $[0,2 \pi]$ such that

$$
c_{j}^{l}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k \theta} d \Psi_{j}(\theta) \quad \text { and } \quad c_{j}^{\theta}=1
$$

Proof. The Herglotz's integral representation for positive harmonic functions proves that (ii) and (iii) are equivalent. Let $\left\{C_{k}\right\} \in$ \mathscr{F}^{n}, where $C_{k}=\left(c_{1}^{k}, \cdots, c_{n}^{k}\right)$. Let $f_{i}\left(z_{i}\right)=z_{i} /\left(1-z_{i}\right)$. Then by Theorem A the mapping F is in K^{n}. We may write

$$
F(Z)=\sum_{k=1}^{\infty} A_{k} Z^{k}
$$

where $A_{k}=\left(a_{\imath j}^{k}\right)$ and $a_{j i}^{k}=0$ if $i \neq j$ and $a_{\imath i}^{k}=1$ then the mapping

$$
H(Z)=\sum_{k=1}^{\infty} C_{k} \odot A_{k} Z^{k}
$$

is subordinate to F. The mapping H has components $H_{i}(Z)=$ $\sum_{k=1}^{\infty} c_{i}^{k} z_{i}^{k}$. Since $H \prec F$ we have that $H_{i}\left(F_{i}\right) \subset f_{i}\left(E_{i}\right)$ or $\operatorname{Re}\left\{H_{i}\left(E_{i}\right)\right\} \geqq$ $-1 / 2$ where $E_{i}=\left\{z_{i}:\left|z_{i}\right|<1\right\}$. Thus $\operatorname{Re}\left\{\sum_{k=1}^{\infty} c_{i}^{k} z_{i}^{k}\right\}>-1 / 2$ for $i=$
$1, \cdots, n$, Now suppose (iii) holds. Let $F \in K^{n}$. Then by Theorem A there exists a nonsingular matrix T and functions $f_{1}, \cdots, f_{n} \in K^{1}$, where $f_{i}\left(z_{i}\right)=\sum_{k=1}^{\infty} a_{k}(i) z_{i}^{k}$, such that

$$
F(Z)=T\left[\begin{array}{c}
f_{1}\left(z_{1}\right) \\
\vdots \\
f_{n}\left(z_{n}\right)
\end{array}\right]
$$

where F is a column vector. Then

$$
\begin{aligned}
H(Z) & =\sum C_{k} \bigcirc A_{k} z^{k}=T\left[\begin{array}{l}
\sum_{k=1}^{\infty} c_{1}^{k} a_{k}(1) z_{1}^{k} \\
\vdots \\
\sum_{k=1}^{\infty} c_{n}^{k} a_{k}(n) z_{n}^{k}
\end{array}\right] \\
& =T\left[\begin{array}{l}
\sum_{k=1}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i k \phi} d \Psi_{1}(\phi) a_{k}(1) z_{1}^{k} \\
\vdots \\
\sum_{k=1}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i k \phi} d \psi_{n}(\phi) a_{k}(n) z_{n}^{k}
\end{array}\right] \\
& =T\left[\begin{array}{l}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{\infty} a_{k}(1) r_{1}^{k} e^{i j\left(\theta_{1}+\phi\right)} d \Psi_{1}(\phi) \\
\vdots \\
\frac{1}{2} \int_{0}^{2 \pi} \sum_{k=1}^{\infty} a_{k}(n) r_{n}^{k} e^{i k\left(\theta_{n}+\phi\right)} d \Psi_{n}(\phi)
\end{array}\right] \\
& =T\left[\begin{array}{l}
\frac{1}{2 \pi} \int_{0}^{2 \pi} f_{1}\left(r_{1} e^{i\left(\theta_{1}+\psi()\right.}\right) d \Psi_{n}(\phi) \\
\vdots \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} f_{n}\left(r_{n} e^{i\left(\theta_{n}+\phi\right)}\right) d \Psi_{n}(\phi)
\end{array}\right]
\end{aligned}
$$

where $z_{j}=r_{j} e^{i \theta_{j}}$. Since each integral in the left hand side is the centroid of a nonnegative mass distribution of total mass one on a convex curve, the value of each integral must lie inside its convex curve. Further since T is a nonsingular linear transformation $H(Z)$ lies inside the image of the polydisk of radius $\left(r_{1}, \cdots, r_{n}\right)$. (A polydisk or radius $\left(r_{1}, \cdots, r_{n}\right)$ is the set $\left\{\left(z_{1}, \cdots, z_{n}\right):\left|z_{i}\right| \leqq r_{i}\right.$ for $i=1, \cdots, n\}$.) Thus $H \prec F$.
3. Convex mappings in C^{n}. We now apply Theorem 2 to obtain some results for mapping in K^{n}.

Corollary 1. For $n>1$ let $G \in K^{n}$, where $G(Z)=\sum B_{k} Z^{k}$.

Then the mapping

$$
G_{F}^{*}(Z)=\sum B_{k} \odot A_{k} Z^{k},
$$

where $F(Z)=\sum A_{k} Z^{k} \in K^{n}$, is not subordinate to F for all $F \in K^{n}$.
Proof. If $G_{F}^{*} \prec F$ for all $F \in K^{n}$, then the sequence $\left\{B_{k}\right\}$ belongs to \mathscr{F}^{n}. This says that the rows of each B_{k} are indentical by Theorem 1. Hence the Jacobian of G will be identically zero. Thus G_{F}^{*} is not subordinate to F for all $F \in K^{n}$.

Let $T=\left(t_{i j}\right)$ be a $n \times n$ nonsingular matrix. Let K be the functions $f \in K^{1}$ where $f^{\prime}(0)=1$. Let $K T$ denote the subclass of K^{n} which is defined by $F \in K T$ if and only if there exist functions $f_{i} \in K(i=1,2, \cdots, n)$ such that

$$
F(Z)=T\left(\begin{array}{c}
f_{1}\left(z_{1}\right) \\
\vdots \\
f_{n}\left(z_{n}\right)
\end{array}\right)
$$

where F is represented as a column vector.
Corollary 2. The image of E^{n} under a mapping $F \in K T$ contains the polydisk $|w|<1 / 2\left(\sum_{j=1}^{n}\left|t_{i j}\right|, \cdots, \sum_{j=1}^{n}\left|t_{n j}\right|\right)$. The radius is sharp.

Proof. Since the sequence $\left\{C_{k}\right\}$ where $C_{1}=(1 / 2,1 / 2, \cdots, 1 / 2)$ and $C_{k}=(0, \cdots, 0)$ for $k \geqq 2$, belongs to \mathscr{F}^{n}, we see that the image of E^{n} under a mapping $F \in K T$ contains $|W|<1 / 2\left(\sum_{j=1}^{n}\left|t_{1 j}\right|, \cdots\right.$, $\left.\sum_{j=1}^{n}\left|t_{n k}\right|\right)$. The sharpness follows by using the function

$$
F(Z)=T\left[\begin{array}{c}
\frac{z_{1}}{1-z_{1}} \\
\vdots \\
\frac{z_{n}}{1-z_{n}}
\end{array}\right]
$$

Ruscheweyh and Sheil-Small [2] have proven Pólya and Schoenberg's [1] conjecture that if $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ and $g(z)=\sum b_{k} z^{k}$ are elements of K^{1} then so is the function $h(z)=\sum a_{k} b_{k} z^{k}$. In general for K^{n} this is not true as shown by the example $F(Z)=\binom{z_{1}-z_{2}}{z_{1}+z_{2}}=$ $G(Z)$. However, we do have the following Polya and Schoenberg tpye of theorem.

Theorem 3. Let $T_{1}=\left(p_{i j}\right)$ and $T_{2}=\left(q_{i j}\right)$ be $n \times n$ nonsingular matrices such that $T=T_{1} \odot T_{2}=\left(p_{i j} q_{i j}\right)$ is nonsingular. If $F(Z)=$
$\sum_{k=1}^{\infty} A_{k} Z^{k} \in K T_{1}$ and $G(Z)=\sum_{k=1}^{\infty} B_{k} Z^{k} \in K T_{2}$, then $H(Z)=\sum_{k=1}^{\infty} A_{k} \odot$ $B_{k} Z^{k}$ belongs to $K T$.

Proof. Let $F \in K T_{1}$ and $G \in K T_{2}$. Then there exists functions $f_{i}, g_{i} \in K(i=1, \cdots, n)$ such that

$$
F(Z)=T_{1}\left[\begin{array}{c}
f_{1}\left(z_{1}\right) \\
\vdots \\
f_{n}\left(z_{n}\right)
\end{array}\right]
$$

and

$$
G(Z)=T_{2}\left[\begin{array}{c}
g_{1}\left(z_{1}\right) \\
\vdots \\
g_{n}(z)_{n}
\end{array}\right]
$$

The mapping $H(Z)=\sum_{k=1}^{\infty} A_{k} \odot B_{k} z^{k}$ may be written as

$$
H(Z)=T\left(\begin{array}{c}
z_{1}+\sum_{k=1}^{\infty} a_{k}(1) b_{k}(1) z_{1}^{k} \\
\vdots \\
z_{n}+\sum_{k=2}^{\infty} a_{k}(n) b_{k}(n) z_{k}^{n}
\end{array}\right)
$$

Thus $H \in K T$ since $z_{i}+\sum a_{k}(i) b_{k}(i) z_{i}^{k}$ belongs to K for each i [2].
4. Bounds on Mapping in K_{n}. Let $F \in K^{n}$. Then by Suffridge's representation of mappings in K^{n} (Theorem A), there exist an $n \times n$ nonsingular matrix $T=\left(t_{i j}\right)$ and functions $f_{i}\left(z_{i}\right)=\sum_{k=1}^{\infty} a_{k}(i) z_{i}^{k}(i=1, \cdots, n)$ in K^{1} with $f_{1}^{\prime}(0)=1$ such that

$$
F(Z)=T\left(\begin{array}{c}
f_{1}\left(z_{1}\right) \\
\vdots \\
f_{n}\left(z_{n}\right)
\end{array}\right)
$$

Then

$$
A_{k}=\left(a_{i j}\right)=T\left(\begin{array}{c}
a_{k}(1) \\
\vdots \\
a_{k}(n)
\end{array}\right)
$$

where $F(z)=\sum_{k=1}^{\infty} A_{k} Z^{k}$. Since

$$
\left|a_{k}(i)\right|<1 \quad \text { and } \quad \frac{\left|z_{i}\right|}{1+\left|z_{i}\right|}<\left|f_{i}\left(z_{i}\right)\right|<\frac{\left|z_{i}\right|}{1-\left|z_{i}\right|}
$$

we have the following theorem.

Theorem 4. Let $F(z)=\sum_{k=1}^{\infty} A_{k} Z^{k}$ belongs to K^{n}. Let T be an $n \times n$ nonsingular matrix and let $f_{1}, \cdots, f_{n} \in K^{1}$ such that

$$
F(Z)=T\left(\begin{array}{c}
f_{1}\left(z_{1}\right) \\
\vdots \\
f_{n}\left(z_{n}\right)
\end{array}\right) .
$$

Then

$$
\left|a_{i j}^{k}\right|<\left|t_{i j}\right|
$$

for each k, i, and j, where $A_{k}=\left(a_{i j}^{k}\right)$. Let $F=\left(F_{1}, \cdots, F_{n}\right)$. Then

$$
\sum_{j=1}^{n}\left|t_{i j}\right| \frac{\left|z_{j}\right|}{1+\left|z_{j}\right|} \leqq\left|F_{\imath}(Z)\right|<\sum_{j=1}^{n}\left|t_{i j}\right| \frac{\left|z_{j}\right|}{1-\left|z_{j}\right|} .
$$

Both inequality are sharp.

References

1. G. Pólya and I. J. Schoenberg, Remarks on de la Vallie Poussin means and convex conformal maps of the unit circle, Pacific J. Math., 8 (1958), 295-334.
2. St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973), 119-135.
3. T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., 33 (1970), 241-248.
4. H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.

Received April 30, 1975.
West Virginia University

