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LINKS WHICH ARE UNKNOTTABLE BY MAPS

HOWARD LAMBERT

Let L be a piecewise linear (PL) link of two components
in the Euclidean 3-sphere S® (i.e., L = L, U L, where L, L, are
disjoint polygonal simple closed curves in S°. In Theorem 1
of this paper we give a geometric condition on L which im-
plies it is unknottable. In Thecrem 2, we show that there
is an infinite class of links of two components which are
unknottable.

We call a continuous (PL) map f: S*— S® strongly 1 —1 on L
if f|L is a homeomorphism onto f(L), f(S*— L)NJf(L)= @ and
S islocally 1 — 1 at each point of L. In Theorem 1 of [3], the link
L,= Ly,U L, where L, is unknotted and L, is the square knot is
shown to have the property that there is no strongly 1 —1 map f
on L, such that f(L,) and f(L,) are unknotted. Call L “unknottable”
if there does not exist a strongly 1 — 1 map f on L such that f(L,)
and f(L,) are unknotted. This paper and [3] resulted from an at-
tempt to generalize Hempel’s result [2] that given any knot K in
S?® there exists a strongly 1 —1 map f on K such that f(K) is
unknotted.

Let S, be a (PL) orientable surface such that Bd S, = L, and L,
intersects and pierces S, in a finite number of points. Let N(L) =
N(L,) U N(L;) be a regular neighborhood of L such that S, N N(L))
is an annulus and S, N N(L,) consists of transverse digsks. Call S,
essential if S, — Int N(L) is incompressible [7] and boundary incom-
pressible {7] in S® — Int N(L).

DEFINITION 1. L is boundary incompressibly unlinked with re-
spect to L, (B.I.U.) if, whenever S, is essential, we have S,N L, =
@. L is said to be 1-linked [5] if L,, L, do not bound disjoint
orientable surfaces in S°.

THEOREM 1. If L is l-linked, B.L.U. and L, is knotted, then
L is unknottable.

Proof. Suppose there exists a f: S*— S*® which is strongly 1 — 1
on L and f(L)), f(L,) are unknotted. Let D, be a disk in S® such that
Bd D, = f(L,)) and f(L,) intersects and pierces D, in a finite number
t of points. Suppose also that ¢ is chosen to be smallest possible.
Now, following the techniques used in [7], we adjust f so that it
is transverse to D,, in particular D; = f~%(D,) N (S® — Int N(L)) is an
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orientable surface with one boundary component in Bd N(L,) which
is a longitude of N(L,) and ¢ boundary components in Bd N(L,), each
of which is a meridian of N(L,). Now suppose D; is compressible
in S® — Int N(L), i.e. there exists a disk @ in S® — Int N(L) such
that QN D;=BdQND; =BdQ and BdQ does not bound a disk in
D{. Now if the loop f(Bd Q) separates a point of D, N f(L,) from
Bd D,, we may apply Dehn’s lemma [4] to conclude that ¢ was not
minimal. If f(Bd @) separates no point of D, N f(L,) from Bd D,
then we may cut out a small regular neighborhood of Bd @ in D;
and add two parallel copies of @ to form a new orientable surface
D; with less genus than D;. We may then redefine the map f so
that D' = fY(D) N (S® — Int N(L)). If D; is boundary compressible,
then there exists a disk @ such that Int @ N D; = @ and Bd Q con-
sists of two arcs, one in Bd N(L,), the other in D; and the arc in
D; together with any arc in Bd D; do not bound a disk in D;. In
this case we may use a modified version of the loop theorem (see
[6]) on the loop f(Bd Q) in S® — Int f(N(L)) to conclude that ¢ was
not minimal. Hence we may assume that D; is incompressible and
boundary incompressible. Since L is B.I.U. we have ¢t = 0. Then
f(Ly) bounds a disk D, which is disjoint from D,. We may adjust
f so that f~Y(D,), f(D,) are disjoint orientable surfaces, contradict-
ing the assumption that L is 1-linked, and the proof is complete.

We now define the class of links L; U L,; illustrated in Figures
1 and 2. Each L,; is a curve with 5 full twists (J is any positive
or negative integer and one of the full twists is shown in the figure).
If 7 0, then in [1] it is shown that L,; is knotted.
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LEMMA 1. L; U L,; vs 1-linked for all j.

Proof. Suppose L,;, L,; bound disjoint orientable surfaces S,
S:;, respectively. Let D’ be a disk bounded by L,; such that L;
intersects and pierces D’ in two points and the two components of
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L,; — D' self link each other. By cut and paste techniques (see [7]
or we used some of these methods in Theorem 1) we may assume
that (Int D')N S,; = @ and D' N S,; consists of one arc connecting
the two points of D' N L,;. Let D” be a disk whose boundary con-
sists of the arc D' N S,; and one of the two arcs of L,; — D'. Assume
D" ND =D'"NS,; and the other arc of L,; — D’ intersects and pierces
D” in one point. But it now follows that there is a curve in S,; N D"
which is not homologous to zero in S® — L,;, contradicting that S,; N
Szj = .

In Figure 3 we view L,; as being contained in a cube with two
handles C where N(L;)cIntCc S® — L,;. Let H,, H, be the two
annuli illustrated in Figure 3, where H, N H, is an arc.

FIGURE 3

LEMMA 2. FEach link L,; U Ly;, 7 # 0, 18 boundary incompressibly
unlinked (B.1.U.).

Proof. Suppose S’ is an orientable surface in the solid torus
T = S® — Int N(L,;) with one boundary component L,; and each of
the remaining ¢ boundary components is a meridian of N(L,;) in
Bd N(L,;). Suppose algo that S =S — Int N(L,;) is incompressible
and boundary incompressible in 7' — Int N(L,;). We may choose the
cube with two handles C so that S’ N C consists of an annulus A4,
and s disks A4, ---, 4, (see Figure 3). Now, by following the tech-
niques used in Lemma 1 of [3], we may adjust S’ so that S'NH,
is one arc parallel to H, N H, in H,. (To see this, put S’ in general
position relative to H, and push arcs of S’ N H, with both endpoints
in the same component of Bd H, off H, and then off C, i.e. we reduce
s by 1 or 2 and hence we may suppose s = 0.) By the same re-
asoning we may suppose further that S’ N H, consists of one arc
parallel to H, N H, in H,. Let N(H,), N(H,) be regular neighborhoods
of H, H, resp., taken in T — IntC. Let T’ be the solid torus
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CUN(H) U N(H,). Then T — Int T" is homeomorphic to the product
space (S* x S') x I. None of the three simple closed curves of S'N
Bd 7" is homotopic to the ¢ curves of S'NBdT. (Note that one
component of S’ N Bd 1" bounds a disk in Bd 7' and the other two
go once around the longitude of 7" and j times, j # 0, around the
meridian of 7".) Since S is incompressible and boundary incom-
pressible, it follows that z,(S N (T — Int T")) injects into the abelian
group 7(T — Int 7"). Hence SN (T — Int 7") consists of one disk and
one annulus, so ¢ = 0 and the proof of Lemma 2 is finished.
Theorem 1, Lemma 1 and Lemma 2 now imply the following:

THEOREM 2. Fach of the links L,; U L,;, 7 # 0, s unknottable,
i.e. there does mot exist a stromgly 1 —1 map f on L,; U Ly; such
that f(Ly) and f(L.;) are unknotted.
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