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THE CENTRALISER OF E®; F

A. W. WICKSTEAD

If E is a real Banach space then <Z(E) is the space of
all bounded linear operators on FE, and Z(FE) the subspace
of M-bounded operators, i.e. the centraliser of E. Two
Banach spaces & and F' are considered as well as the tensor
product £ ®; F'. There is a natural mapping of the algebraic
tensor product Z(E)® Z(F') into Z(F ®,F). It is shown
that 2°(F Q, F') is precisely the strong operator closure, in
ZB(EQ; F), of its image.

1. Definitions and statement of results. A linear operator T
on a real Banach space E is M-bounded if there is A>0 such that
if eeF and D is a closed ball in E containing »e and — \e, then
Tee D. The centraliser of E, % (E), is the commutative Banach
algebra of all M-bounded linear operators on E. Let K denote the
unit ball of E*, the Banach dual of E, equipped with the weak*
topology. We denote the set of extreme points of a convex set C
by &(C). In [2], Theorem 4.8 it is shown that a bounded linear
operator 7 on K is M-bounded if and only if each point of & (K)
is an eigenvalue for T*, the adjoint of 7. Thus there is a real
valued function T on & (K) such that T*p = T(p)p(p € £ (K)).

An L-ideal in a real Banach space is a subspace I with a com-
plementary direct summand J such that ||<|| + ||7]l = 1l? + jll(t e,
jedJ). The sets IN & (K) for I a weak*-closed L-ideal in E* form
the closed sets of the structure topology on & (K). The map T— T
is an isometric algebra isomorphism of 2 () onto the bounded
structurally continuous real valued functions on & (K) with the sup-
remum norm and pointwise multiplication ([2], Theorem 4.9).

We shall consider two Banach spaces E and F, K will retain its
meaning and M will denote the corresponding subset of F*. We
use E (O F to denote the algebraic tensor product of E and F. We
shall consider the norm

l:sup{ ék(e,)m(fi) :lceK,meM} .

E ©, F will denote E () F' with this norm, and E @, F' its completion.

We may identify EF @, F' concretely in a number of ways. The
formula (k, m)+— -, k(e;)m(f;) defines a real valued function on
K x M. Such functions are continuous and affine in each variable.
13, e; @ fill; is the same as the supermum norm for such a func-
tion, so we may identify E @, F with a subspace H, the closure of
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these functions, in C(K x M), the continuous real valued functions
on K X M. We shall have need to call upon:

LEMMA. Every extreme point of the wunit ball of H* is of the
form h— h(p, ¢)(p € & (K), ¢ € & (M)).

Let R: C(K x M)* — H* Dbe the restriction map, and let B be
the unit ball of C(K x M)*. If f is an extreme point of the unit
ball of H*, then Rf N B is a weak* closed face of B which is
nonempty by the Hahn-Banach theorem. By the Krein-Milman
theorem, R™'f N B has an extreme point, which must be extreme
in the unit ball of C(Kx M)*, so is of the form h+ *+h(p,q) for
peK,geM. By replacing p by —p, if necessary, we may ensure
a positive sign. If p (say) is not extreme, then p = 1/2(p, + p,),
Dy D€ K, D, # Do WD, q) = 1/2h(D,, q) + 1/2h(py, q)(h € H) as these
functions are affine in each variable. As the functions of H separate
the points of K x M, this contradicts the extremality.

COROLLARY.

S e ®f.| = sup{| 3 peda(s)|: ez ), qe g0} .
We consider the centraliser of E@; F. We have quite easily:

ProposiTiON., If S, e Z(E), T;e 2 (F)Y1 <1< n) there is Uec
Z(EQ; F) such that if e; e K, f;e F(L < 7 £ m) then US ;R f;) =
Z;',;l ?:1 (Sie:i) ® (Tie:i)'

To show that U exists (as a bounded linear operator) we need
only show that the linear operator defined on E (9, F' by this formula
is bounded. This is so because,

|

S(Se) ® (1) |

~ sup {|z p(Sie,)a(Tee))

A

:pe(K), e & ()

5 SUp T P)plea(£)|: pe & (K), g e & (D)
< sup {31540 | T0)] | S plea(£)|: p e & (K), q e & ()]

= SISITdll sup || plea(s)
= SIS S e ® il -

:sup{

cpeZ(K), qe g(M)}
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It remains to show that each extreme point of the unit ball of
(EQ@; F)* is an eigenvalue for U*. If we denote by p®q the
functional >);e; & fi+ >, p(e;)q(f;) then we have

Ureeo(Sa®s) = eQ0U(See)
= (P % () ® (T.f)
= 5 p(S:e)a(T. )
= 2 8. Tdp)p(e)als)

- [250Tw ][ eeo(Sa01)).

It is immediate that U*(» ® g) = [3: S.(0) Td»)(» ® ).

We thus have an embedding of 2(F)©® 2(F) in Z(EQ, F)
in an obvious way. The remainder of this paper is devoted to a
proof of the following result.

THEOREM. 2 (E @, F') is the closure, for the stromg operator
topology, of the camonical copy of Z(E)® Z(F) in & (EQ;F).

2. The proof. For this proof we shall identify the element
6. Qfie EOF with the function k> 3%, k(e;,)f; from K into
F. This is continuous affine function vanishing at 0. The set of
all F-valued continuous affine functions of K which vanish at 0 we
shall denote by A,(K, F'), and norm it by ||a|| = sup {||a(k)||: k € K},
which corresponds to the norm on E (), F. We may thus identify
E @; F' whith the closure, H, in A(K, F) of the functions with finite
dimensional range.

If St.S,Q@T,e2(E)® 2 (F) then 7:p— 3, S(p)T, is a
function from & (K) into 2Z°(F) which is bounded and continuous
for the structure topology on & (K) and the strong operator topology
on Z(F). If Uis the image of >, S, Q@ T, in 2 (H) (using the
proposition and the identification of H with E ), F) then we have

(Uh)(p) = n(p)h(p) (heH, pe&(K)).

This is because, if ¢ >0, we may find >7,¢; ® f;e EC F with
[[h — 7 e; ® fill; < e and then

1(URXD) = =R = | (U0E) - U(3, 0 ® £;) )|
Ho(E e 8w - monm ||

But
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U(S & ®£)(B) = 5 (Sie) ® (Tees)(p)

= IZ] p(S:e:)(Te;)

= % S.(p)p(e)T.e;)
(2501 )(S pes;)

wo)(Z e ® 7)) -

Il

i

Thus [[( Uk)(p) — zm(p)h(p) || = [|Ulle + |z(p) ]| | X1 6; @ f5 — W) || =
(1Tl + l|7(p)|])e, which can be made as small as desired, so that
(TR)(p) = w(p)h(p).

Let V(K) denote the set of extreme points, p, of K for which
there is x € F with p(z) = ||z||, then V(K) is weak* dense in & (K).
To show this it will suffice to prove that K = co(V(K)), the weak*
closed convex hull of V(K), for then & (K)c V(K) by Milman’s
theorem. If co(V(K)) = K we may, by Hahn-Banach separation,
find x € £ with k(z) < a < k(x) for some real a, all ke co(V(K)) and
some k,e€ K. Then {ke K:k(x) = ||z|]} is a nonempty weak* closed
face of K. This possesses an extreme point, which cannot lie in
co (V(K)), yet which is in V(K) by its construction, a contradiction.

If pe V(K),qe V(M) then p® q is extreme in the unit ball of
(E@: F)*. Fix eckE, feF with |e|| =e(p)=1, || f]=/f(p) =1
Define injections P: E—~EQ,F,Q: F-E®,F by Px)=2® f,Q(y) =
e®1vy. P,Q are isometric injections so the image of the unit ball
of (£ @, F)* under P* (respectively @*) is K (respectively M). P*,
Q* are continuous and affine, so P* '(p) and Q* '(q) intersect the
unit ball of (E @, F)* in weak* closed faces, as must P*'(p) N @*(q).
This intersection is nonempty, for P*(» ® ¢) = », @*(» ®¢q) = ¢. This
is because for ze K, (P*(p Q@)@ = (@R )(Pr) =R f) =
2(2)g(f) = p(x), with a similar proof for @*. This face must have an
extreme point which is extreme in the unit ball of (E @, F)*, so is
P @ ¢ for p' e &(K), ¢’ e & (M). Butnow p=P*(pRq)=P*(» ®q)=
p' and also ¢ = ¢, so that »p ® ¢ is itself extreme.

It follows that if Ue 2°(H) then all points »p ® g for pe & (K),
qe & (M) are eigenvectors for U*. For let p, — p,q;—¢q be nets
with p, € V(K), ¢;€ V(M). The continuity of the map (k, m)— kX m
fsom Kx M into (EQ), F')* implies that p,Xq,— pXq. But U*(p,Q4q;)=
U(pr ® 0:)(»; @ ;). The reals U(p, ® ¢;) are bounded (by [|U]]) so
we may suppose (by choosing a subnet if necessary) that U(p, Q ¢;) —
A Now U*(p ® q) = limU*(», ® ¢;) = limU(p, ® ¢.)lim (p; ® ¢,) =
Mp ® ).

Suppose Uec 2 (H), pe £(K) and h, k' € H with h(p) = h'(p). If
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qe & (M) then

a(URY(®) = (p ® a)(Uh) = U(» ® ¢)((p ® q)(h))
= U(p ® ¢)(a((p)))
= U(p ® ¢)(a(%'(0))) = ¢((UL)(p)) .

‘Thus (Uh)p) = (UR')(p). We may thus define a linear operator 7(p)
on F' by n(p)y = (Uh)(p) whenever h(p) = y. n(p) is clearly linear,
is well defined, and has domain the whole of F since we may take
h = e®y where e(p) = 1.

7(p) has norm at most ||U]|, for we may find ¢, € E with e¢,(p) =
1, lle.l] £ (n + 1)/n, and then

z@)y |l = [[Ule, @ M)(@) || = || Ule, @ )]
= U e, @yl = Ul lyll(n + D/n .

Thus |[z(p)y]| < | U|||lyl]. In fact w(p)e & (F) because if yeF,
qe& (M) and ec E with p(e) = 1 then

q(@(P)y) = 9(Ule @ ¥)(p)) = (» ® a)(U(e Q ¥))
=T R e®y) = UnQ qaw) .

We thus have a function 7: & (K) — 2 (F') with (Uh)(p) = (p)h(p)(p €
& (K)). Also m is norm bounded, and we let ||7|| denote sup {||z(p)|]:
p €& (K)}

n is continuous for the structure topology on & (K) and the
weak operator topology on Z°(F'). Suppose ye F,ge F* and zc¢E
then %+ g(U(x @ y)(k)) is a continuous affine function on K vanishing
at 0, so may be identified with an element of E. If pe & (K) then

9(U(x ® y)(p)) = g(z(p)(x @ y)(p))
= g(n(p)x(p)y) = (p)9(z(p)y)) .

Thus z— g(U(x ® ¥)) is an element of 2°(E), so the function p+—
g(m(p)y) is structurally continuous.

By [2], Proposition 3.10 7 has an extension, 7, to & (K)\{0} which
is continuous for the weak* topology on Z(K)\{0} and the weak
operator topology on 2°(F') (the result there is stated for real valued
functions but the proof remains valid in this context). We note
for later reference that n& (K)) = (2 (K)\{0}). We propose now to
show 7 is still continuous when 2°(F') is given its strong operator
topology.

Provisionally we define #(k), for ke & (K)\{0}, to be that linear
operator on F such that

T(k)y = Ulx @ y)(k)/k(w)
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with « € E, k(x) > 0. This definition coincides with that of = if ke
#(K), and is well defined because if k, ¢ & (K) and k, —Fk for the
weak* topology then

f(k)y = Uz ® y)k)/k(z) = lim Uz & y)(k;)/k(x)
= lim n(k,)y .

Clearly #(k) acts linearly on F, and it is bounded because

I@EERW)|| = (| Ule @ y)(k) [I/ k()|
= lim [| U(z @ y)(k:) [|/| ko) |
= lim [[z(k)y || = =]l [|y]] .

Also {|Z|| = sup {||x(B)||: ke £ (K)\{0}} = |[x]|l. 7 is locally a quotient
of a function that is clearly strong operator continuous and a non-
vanishing scalar function, so is strong operator continuous. In fact
% is the same as T as both are extensions of 7 to & (K)\{0} which are
continuous for the weak* topology on & (K)\{0} and the weak operator
topology on 2°(F).

We do not know if & itself is continuous when 2°(F) is given
the strong operator topology. All that we shall require is that if
Dc#(K) and 0 does not lie in the weak* closure of D, then x|,
is continuous for the structure topology on D and the strong operator
topology on Z°(F'). For suppose d,, d € D and d, — d for the structure
topology, then n(d,) — w(d) for the weak operator topology whenever
(d;s) is a subnet of (d,). Let (d;) be a weak* convergent subnet of (d,)
with limit d' 0, which exists as K is weak* compact. Then n(d, .)—
w(d) for the weak operator topology whilst =(d,.) = 7(d,)— T(d’)
for the strong operator topology, and hence also for the weak operator
topology. Thus 7#(d) = 7(d’) and 7(d,.) — 7(d) for the strong operator
topology. I.e. every subnet of (7(d,)) has a subnet converging to
7(d), so in fact 7(d,) — n(d) for the strong operator topology.

We now seek, given h;€cH(t =1,2,---,n) and ¢ >0, to find
' &(K)— 2 (F) which is of finite dimensional range and continuous
for the structure topology, such that

7' (p)h(p) — T(P)h(p)]| =¢ (pe&(K),1=1i=m).
7' is the image of an element of 2°(E) () 2 (F) so defines an element
U’ of the copy of Z(E)® Z2(F) in &(E@,;F). We then have
[(U'h)(p) — (Uh)(p)|| =¢ (pe&(K),1=i=mn).

The function k— [|(U'h ) (k) — (Uh;)(k)| on K is continuous and convex,
so by [1], Lemma IL.7.1, [(U'R,) — (Uh)|| £ (1 £ 7 < n). This will
show that U is in the strong operator closure of the copy of 2 (E)(®
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Z((F)in 2EQ,F).

We first prove that [3], Proposition 4.8 remains valid in this
context. lL.e. if xe F then P = {pe & (K):|p(x)| = a} is structurally
compact provided a > 0. If (C,),cs is a family of nonempty strue-
turally closed subsets of P with the finite intersection property, let
C,= PN F, with each F, a weak* closed L-ideal in E*. Set @ =
{ke K: |k(z)| = a} then each F, N @ is nonempty and this family has
the finite intersection property. As Q is weak* compact and these
sets are weak* closed, N(F.NQ) = (NFINQ = @. NF, is a weak*
closed L-ideal and for some ke K N (N F,)|k(x)| = . But 2 attains
its supremum at an extreme point, p, of KN (M F,) which is an
extreme point of K by [2], Proposition 1.15. As KN (N F,) is sym-
metric, p(x) = a sothat pe E(K)N (N F,) =N@nNF,)=NC,. We
note also that such a set P does not contain 0 in its weak* closure,
S0 7|, is continuous for the strong operator topology.

Given h, € H,0 > 0, we may find a weak* closed subset @, of
& (K), not containing 0 and with Q, N & (K) structurally compact,
such that ||k, (k)]| <0 if ke & (K)\Q;,. For we can find 37, ¢; Q f; €
E O F with || 2%, k(e;) f;—h(k) || < 6/2(k € K). Now let P;={ke & (K):
[k(e;)| | f51l = 6/2m}, which is weak* closed, does not contain 0, and
is such that P; N & (K) is structurally compact. Define Q, = U™, P;,
then @, will have all the desired properties except possibly that on
the norm. If ke & (K)\Q, then

m

h®)| = [ ks,

j=1

+ H ﬁ K(e,)f; — hl(lc)H

< 3% ke 1511+ /2
= m(d/2m) + 6/2 =0 .

We may thus find a weak* open neighbourhood of 0 in & (K), O,,
with structurally compact complement in & (K), such that O,C{ke
Z(K): || hk)]] < e/@l|z]] + 1)1 <7 <n)}). Indeed if we take 6 =
e/(2]|7 ]| + 1) and choose Q, as above we take O, to be Z(K)\U.Q.,
which has the desired properties. If ke & (K) we let U, = {T ¢ 2°(F):
I T(h(E)) < &/3(1 < ¢ < n)}, an open symmetric neighbourhood of the
origin in £°(F") for the strong operator topology. Thus 7 '(7Z(k) + U,) is
an open subset of & (K)\{0} (by the continuity of T for the strong oper-
ator topology) and hence of & (K). The set & (K)N N~ hi'(k.(k)+B)
(where B is the open ball in F of centre the origin and radius
&/(3(|m|| + 1)) is also weak* open, hence so is

O = @ @) + U) N () A (i) + B)
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for each ke & (K)\{0}, and we have k€O,. Now let {0, k, k., -+, k.}
be a finite set of distinct points of & (K) with & (K) = O, U Uj=: O;.

Let W = N;-.U:;, an open convex symmetric neighbourhood of
the origin in 2 (F) for the strong operator topology. Because
# (K)\O, is structurally compact and 7 is continuous on this for the
strong operator topology on 2°(F), n(£(K)\O,) is strong operator
compact. Thus there exist {T, T, ---, T,}) < 2 (F) such that
Ui (T, + W/2) o (& (K)\O,). Define G to be the linear span of
{T:1<1<s} in Z(F), and let @ be defined on #(&(K)\0,) with
values in 2% by

?(S) ={geG:lgll <zl + 1,9 — Se W/2}".

For some 7, T; — Se W/2 and T, e n(£ (K)\O,) so || T;|| < ||x|, so that
@(S) is certainly nonempty. It is clear that @(S) is closed and
convex.

We show that @ is lower semi-continuous, for the unique vector
topology on G, and the weak and strong operator topologies on
(£ (K)\O,) which coincide by the compactness of 7(& (K)\0,) for the
latter topology. If DCG is open we must show that {Sez(Z(K)\0,):
@(S) N D+ @} is open. Suppose S, € (L (K)\O,) with &(S,)nN D = Q.
By the definition of @, we can find x,€ D with ||z, <|7]| + 1,
2, — S, € W/2. As W is open, there is a symmetric strong operator
neighbourhood of the origin in Z°(F"), V, such that x, — S,+ V< W/2.
Now if Se(S,+ V)Na(&(K)\O,) we claim &(S)ND = @, for x, — S =
(@, — Sp) + (S, — S)e(x, — S)) + VcW/2. It is now clear that
2, € 0(S) N D, completing the proof that @ is lower semi-continuous.

As @ is finite dimensional we can apply a selection theorem (e.g.
[4], Theorem 3.2") to assert the existence of a continuous selection
for @, 6. We note that 4(z((K)\O,)) is contained in the closed ball
in G of centre the origin and radius ||z + 1. We extend ¢ to «
defined on the whole of 7(%(K)) with values in the same ball and
with 4 continuous for the weak operator topology on #(&°(K)). Let
B(r(&(K))) be the Stone-Cech compactification of (& (K)) (for the
weak operator topology), and o the natural injection of 7(Z(K))
into B(n(Z (K))). Since the weak operator topology is uniformisable
0 is a homeomorphism, so that ¢o0™" is a continuous function from
the closed set o(w(Z (K)\O,)) into G. Let o be a continuous extension
of ¢op™" to the whole of B(n(Z(K))) with values in the required ball
in G, which exists by Tietze’s extension theorem. Now + = gop is
the desired function. Define 7' = +rowr, a function from & (K) into
G that is bounded and continuous for the structure topology on
# (K), since 7 is continuous for the structure topology on & (K) and
the weak operator topology on 2°(F') whilst + is continuous for the
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weak operator topology on w(&(K)). We claim 7' has the required
property.

If pe & (KO, then peO,, for some j. E_en (o) — hi(k;)|| <
¢/3(|||| + 1) and we also have 7'(p) — w(p)e W/2C W. Thus for1<
1< n,

[[T(p)hi(p) — 7' (p)h (D) ||
= [[m(Dhd(p) — T(Dh(K;)|| + [|T(p)hk;) — 7' (p)h k)]
+ |7 (0 k;) — 7' ()R D) ]
< [z [[hp) — hi(ks)[| + (/3) + (|7’ (D) || Ri(ks) — hi(D)]|
(since 7(p) — 7'(p)e W Uy,)
< 7l =]l + 1)) + (¢/3) + ([l=w]| + 1)(e/3([ x|l + 1))
<e€.

On the other hand if pe O, N &£ (K) then

| Z(p)hi(p) — 7' (D)D) ]
= (7@ + =) DI ()|
= @Qlix|| + D(e/@lix| + 1)) = ¢.

Thus 7' has the desired properties.

So far we have shown that 2 (E @, F') is contained in the
strong operator closure in <Z(E @, F) of the copy of Z(E) » 2°(F)
there. It remains only to show that for any Banach space, X, 27(X)
is strong operator closed in <#(X). Indeed if T,— T for the strong
operator topology with 7T, € 2 (X), p is an extreme point of the unit
ball of X* and xz e X, then

(T*p)(@) = lim (T} p)(x) = lim Ty(p)p(2) .
Thus lim T,(p) exists and T*p = (lim T.(p))p, so T e 2 (X).
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