DELOOPING THE CONTINUOUS K-THEORY OF A VALUATION RING

J. B. Wagoner

Abstract

In this note the continuous algebraic K-theory groups of a complete discrete valuation ring are described as the inverse limit of the ordinary algebraic K-theory of its finite quotient rings.

In [4] we defined continuous algebraic K-theory groups $K_{i}^{\text {top }}$, $i \geqq 2$, both for a complete discrete valuation ring \mathcal{O} with finite residue field of positive characteristic p and for its fraction field and proved that $K_{2}^{\text {top }}$ agrees with the fundamental group of the special linear group as defined in [2] by means of universal topological central extensions. The definition of $K_{i}^{\text {top }}$ in [4] is in terms of $B N$ pairs and is similar to the theory $K_{i}^{B N}$ of [5] which is known [6] to deloop to ordinary algebraic K-theory. The purpose of this note is to deloop $K_{i}^{\text {top }}(\mathcal{O})$ in the sense of the following result: Let $\mathscr{P} \cap \mathcal{O}$ be the maximal ideal and let K_{i} be the algebraic K-theory groups of Quillen [3].

Theorem. For $i \geqq 2$ there is a natural isomorphism

In a forthcoming paper of the author and R. J. Milgram, this equaation allows us to use the continuous cohomology of $\operatorname{SL}(l, \mathcal{O})$ to compute the rank of the free part of $K_{i}^{\text {top }}(\mathcal{O})$ as a module over the p-adic completion of the rational integers.

In $\S 2$ a step in the proof of this theorem is used to describe the homotopy fiber of $B E(A)^{+} \rightarrow B E(A / J)^{+}$where J is an ideal in a commutative ring A such that $1+J \subset A^{*}$. At least, we construct a space $B\left\{U_{F}(A, J)\right\}^{+}$whose homotopy groups fit into the appropriate exact sequence.

Actually, in this paper we shall let

$$
K_{i}^{\mathrm{top}}(\mathcal{O})=\underset{\underset{m \mid n}{ }}{\lim }\left[\underset{l}{\lim } \pi_{i-1} \mathrm{SL}_{n}^{\mathrm{top}}\left(l, \mathcal{O}^{\circ}\right)\right]
$$

whereas in [4] the order of the inverse and direct limits is reversed. The above definition is perhaps better as it still gives the main results of [4]. To see the two are the same one would have to prove that

$$
\longrightarrow \pi_{i-1} \mathrm{SL}_{n}^{\mathrm{top}}(l, \mathscr{O}) \longrightarrow \pi_{i-1} \mathrm{SL}_{n}^{\mathrm{top}}(l+1, \mathscr{O}) \longrightarrow \cdots
$$

eventually stabilizes to an isomorphism.
The theorem makes it clear that the natural map $K_{i}(\mathcal{O}) \rightarrow$ $K_{2}^{\text {top }}(\mathcal{O})$ comes from the ring maps $\mathcal{O} \rightarrow \mathcal{O} / \mathscr{P}^{n}$.

1. Delooping. Let n and l be fixed. The main step is to prove

Proposition 1.1. There is a natural homotopy equivalence

$$
\mathrm{SL}^{a b}\left(l, \mathscr{O} \mid \mathscr{P}^{n}\right) \cong \mathrm{SL}_{n}^{\operatorname{tnp}}(l, \infty)
$$

such that if $m \mid n$ there is a homotopy commutative diagram
(*)

See [4] for notation. From this result and [6] we see that for $i \geqq 2$

$$
\begin{aligned}
\underset{l}{\lim } \pi_{i-1} \mathrm{SL}_{n}^{\mathrm{top}}(l, \mathscr{O}) & \left.=\underset{\vec{l}}{\lim } \pi_{i-1} \mathrm{SL}^{a b} l, \mathscr{O} / \mathscr{P}^{n}\right) \\
& =\pi_{i-1} \mathrm{SL}^{a b}\left(\mathscr{O} / \mathscr{P}^{n}\right) \\
& =K_{i}\left(\mathscr{O} / \mathscr{P}^{\circ n}\right)
\end{aligned}
$$

Here $\mathrm{SL}^{a b}(A)$ of [4] is the same as $E^{B N}(A)$ of [5]. The main theorem now follows from commutativity of (*).

For simplicity of notation let $S_{l}=\mathrm{SL}^{a b}\left(l, \mathscr{O} / \mathscr{P}^{n}\right)$ and $T_{l}=$ $\mathrm{SL}_{n}^{\text {top }}(l, \mathcal{O})$. Let $P^{l}\left(\right.$ resp. $\left.Q^{l}\right)$ be the complex whose k-simplices are ($k+1$)-tuples ($F_{0}<F_{1}<\cdots<F_{k}$) where F_{i} is a linear (resp. affine) facette or $R^{l} . \quad P^{l} \subset S_{l}$ by the imbedding $F \rightarrow U_{F}$ and $Q^{l} \subset T_{l}$ via $F \rightarrow U_{F}^{n}$. Let $\operatorname{st}_{l}(\Delta)<Q^{l}$ be the star of Δ consisting of all affine facettes F such that $\Delta<F$. Let $K_{l}<T_{l}$ be the subcomplex whose k-simplices $\left(\alpha_{0} \cdot U_{F_{0}}^{n}<\cdots<\alpha_{k} \cdot U_{F_{k}}^{n}\right)$ have $F_{i} \in \operatorname{st}_{l}(\Delta)$.

Now for each affine facette $F \in \operatorname{st}_{l}(\Delta)$ there is a unique linear facette F^{\prime} which contains F such that $F<G$ implies $F^{\prime}<G^{\prime}$. The map $\mathrm{st}_{l}(\Delta) \rightarrow P^{l}$ sending F to F^{\prime} is an isomorphism of partially ordered sets. Let $\pi: \mathrm{SL}(l, \mathcal{O}) \rightarrow \mathrm{SL}\left(l, \mathcal{O} / \mathscr{P}^{n}\right)$ be reduction modulo \mathscr{P}^{n}. We claim that

$$
\begin{equation*}
\pi\left(U_{F}^{n}\right)=U_{F^{\prime}} \tag{1.2}
\end{equation*}
$$

for $F \in \operatorname{st}_{l}(\Delta)$. This is clear for the fundamental chamber $C=\left\{x_{l}+\right.$ $\left.1>x_{1}>\cdots>x_{l}\right\}$ and also for any $F<C$. For an arbitrary $F \in \operatorname{st}_{l}(\Delta)$ choose an element w of the linear Weyl group W_{0} so that $w \cdot F<C$. Thus by [4, Lemma 3]

$$
\begin{aligned}
\pi\left(U_{F}^{n}\right) & =\pi\left(w^{-1}\left(w U_{F}^{n} w^{-1}\right) w\right) \\
& =w^{-1} \cdot \pi\left(U_{w \cdot F}^{n}\right) \cdot w \\
& =w^{-1} \cdot U_{w \cdot F^{\prime}} \cdot w \\
& =U_{F^{\prime}}
\end{aligned}
$$

Moreover for each $F \in \operatorname{st}_{l}$ (4) we have

$$
\begin{equation*}
\pi^{-1}\left(U_{F^{\prime}}\right)=U_{F}^{n} \tag{1.2'}
\end{equation*}
$$

These two equations imply the correspondence

$$
\alpha \cdot U_{F}^{n} \longrightarrow \pi(\alpha) \cdot U_{F},
$$

preserves order and defines a simplicial isomorphism $K_{l} \rightarrow S_{l}$. Hence to prove (1.1) it suffices to show K_{l} is a deformation retract to T_{l}.

Let $f ; g: Q^{l} \rightarrow Q^{l}$ be two simplicial maps arising from order preserving maps of vertices.

Lemma 1.3. There is a triangulation $\left(Q_{l} \times I\right)^{\prime}$ of $Q_{l} \times I$ as a partially ordered set which refines the standard triangulation leaving $Q^{l} \times 0$ and $Q^{l} \times 1$ fixed and there is a simplicial map $w:\left(Q^{l} \times I\right)^{\prime} \rightarrow Q^{l}$ such that
(a) $w \mid Q^{l} \times 0=f$ and $w \mid Q^{l} \times 1=g$
(b) if $\sigma=\left(v_{0}<\cdots<v_{n}\right)$ is a simplex of the standard triangulation $Q \times I, v \in \sigma$ is a vertex in the new triangulation, and $e_{i j}(\lambda)$ is in $U_{w\left(v_{s}\right)}^{n}$ for $0 \leqq s \leqq k$, then

$$
e_{i j}(\lambda) \in U_{w(v)}^{n} .
$$

This is the affine analogue of Lemma 3.3 of [6] and the proof is similar. For (b) compare (B) of Lemma 4 of [4].

Now let $r: Q^{l} \rightarrow \mathrm{st}_{l}(\Delta) \subset Q^{l}$ be defined by

$$
r(F)=\left\{\begin{array}{l}
\text { the unique affine facette of } \mathrm{st}_{l}(U) \text { which is } \\
\text { contained in the same linear facette as } F .
\end{array}\right.
$$

This is an order preserving map which is the identity on $\mathrm{st}_{l}(4)$.
Lemma 1.4. For each affine facette F we have $U_{F}^{n} \subset U_{r(F)}^{n}$.
Proof. If $w \in W_{0}$, then $w \cdot r(F)=r(w \cdot F)$ and $w \cdot F_{F}^{n} \cdot w^{-1}=U_{w \cdot F}^{n}$; so by choosing a w such that $w \cdot F$ is contained in the closure \bar{C}_{0} of the fundamental linear chamber $C_{0}=\left\{x_{1}>\cdots>x_{i}\right\}$ we can assume $F \subset \bar{C}_{0}$. In this case $r(F)=C$. When $i>j, e_{i}-e_{j} \geqq 0$ on F; so for the generator $e_{i j}(\lambda)$ of U_{F}^{n} the element $\lambda \in \mathcal{O}$ can be arbitrary and $e_{i j}(\lambda) \in U_{C}^{n}$. When $i<j, e_{i}-e_{j} \leqq 0$ on F so $k\left(F, e_{i}-e_{j}\right)_{n} \geqq n=$ $k\left(C, e_{i}-e_{j}\right)_{n}$; hence any generator $e_{i j}(\lambda)$ of U_{F}^{n} also belongs to U_{c}^{n}.

We can now complete the proof of (1.1). Apply Lemma 1.3 in the case $f=\mathrm{id}$ and $g=r$ to get $w:\left(Q^{l} \times I\right)^{\prime} \rightarrow Q^{l}$ satisfying (a) and (b). The map $\rho: T_{l} \rightarrow Q^{l}$ taking $\alpha \cdot U_{F}^{n}$ to F is nondegenerate on simplices and so is $\rho \times 1: T_{l} \times I \rightarrow Q^{l} \times I$. Therefore the triangulation $\left(Q^{l} \times I\right)^{\prime}$ induces a subdivision $\left(T_{l} \times I\right)^{\prime}$ of $T_{l} \times I$. Let $\sigma=$ $\left(\alpha_{0} \cdot U_{F_{0}}^{n}<\cdots<\alpha_{k} \cdot U_{F_{k}}^{n}\right)$ be a simplex of T_{l} and let v be a vertex of $\sigma \times I$. Let $u=(\rho \times 1)(v)$. By (1.4) we have $U_{F_{0}}^{n} \subset U_{w(v)}^{n}$. Hence by (b) of (1.3) we still have

$$
\begin{equation*}
U_{F_{0}}^{n} \subset U_{w(v)}^{n} \tag{1.5}
\end{equation*}
$$

if v is any vertex of $(\sigma \times I)^{\prime}$.
Let $R: T_{l} \rightarrow T_{l}$ be defined by $R\left(\alpha \cdot U_{F}^{n}\right)=\alpha \cdot U_{r(F)}^{n}$. This retracts T_{l} onto K_{l}. Define a homotopy $H:\left(T_{l} \times I\right)^{\prime} \rightarrow T_{l}$ from the identity to R as follows: Let v be a vertex $(\sigma \times I)^{\prime}$ and let $u=(\rho \times 1)(v)$. Let

$$
H(v)=\alpha_{0} \cdot U_{w(v)}^{n} .
$$

Then (1.5) shows this is independent of the choice $\alpha_{0} \in U_{F_{0}}^{n}$ so we get a well defined map.
2. A fibration in K-theory, Let A be a commutative ring and $J \subset A$ be an ideal such that $1+J \subset A^{*}$. Then $K_{i}(A) \rightarrow K_{i}(A / J)$ is surjective for $i=1$, 2. In this section we build a space $B\left\{U_{F}(A, J)\right\}^{+}$ such that for $i \geqq 2$ there is a natural exact sequence

$$
\begin{align*}
\cdots & \longrightarrow K_{i+1}(A / J) \longrightarrow \pi_{i} B\left\{U_{F}(A, J)\right\}^{+} \tag{2.1}\\
& \longrightarrow K_{i}(A) \longrightarrow K_{i}(A / J) \longrightarrow \cdots .
\end{align*}
$$

Let P^{l} denote the set of linear facettes in R^{l} and identify P^{l} as a subset of P^{l+1} by the map

$$
\left(x_{1}, \cdots, x_{l}\right) \longrightarrow\left(x_{1}, \cdots, x_{l}, x_{l}\right)
$$

Let $P^{\infty}=U_{l} P^{l}$. If $F \in P^{\infty}$ define the subgroup $U_{F}(A, J)$ of the group $E(A)$ of elementary matrices to be the one generated by
(a) $e_{i j}(\lambda)$ where $\lambda \in A$ for $e_{i}-e_{j}>0$ on F
(b) $e_{i j}(\lambda)$ where $\lambda \in J$ for $e_{i}-e_{j}<0$ on F
(c) diagonal matrices diag $\left\{1+\lambda_{1}, \cdots, 1+\lambda_{r}\right\}$ of determinant one where $\lambda_{i} \in J$.

If $F<G$, then $U_{F}(A, J)<U_{G}(A, J)$. When $J=0$, we just get the groups U_{F} of [4] and]5]. In this case we write $U_{F}(A, J)=U_{F}(A)$. Let $\pi: E(A) \rightarrow E(A / J)$ be reduction $\bmod J$. Then as in (1.2) and (1.2)' we have

$$
\begin{equation*}
\pi\left[U_{F}(A, J)\right]=U_{F}(A / J) \quad \text { and } \quad \pi^{-1}\left[U_{F}(A / J)\right]=U_{F}(A, J) \tag{2.2}
\end{equation*}
$$

Let $B\left\{U_{F}(A, J)\right\}$ be the realization of the simplicial space which in dimension $k \geqq 0$ is the disjoint union of the spaces

$$
\left(F_{0}<\cdots<F_{k}\right) \times B U_{F_{0}}(A, J)
$$

where $F_{i} \in P^{\infty}$. Let $E\left\{\alpha \cdot U_{F}(A, J)\right\}$ be defined as the pullback

where $G=E(A)$. When $J=0$ we recover $E\left\{\alpha \cdot U_{F}\right\}$ as in [1]. Moreover just as in [1] the space $E\left\{\alpha \cdot U_{F}(A, J)\right\}$ has the homotopy type of the space $E^{B N}(A, J)$ whose k-simplices are $(k+1)$-tuples

$$
\sigma_{0} \cdot U_{F_{0}}(A, J)<\cdots<\alpha_{k} \cdot U_{F_{k}}(A, J)
$$

where $\alpha \cdot U_{F}(A, J)<\beta \cdot U_{G}(A, J)$ iff $F<G$ and $\alpha \cdot U_{F}(A, J) \subset \beta \cdot U_{G}(A, J)$. As in [1] we have a homotopy fibration

$$
E\left\{\alpha \cdot U_{F}(A, J)\right\} \longrightarrow B\left\{U_{F}(A, J)\right\} \longrightarrow B E(A) .
$$

Suppose for the moment we have

Lemma 2.3. $\pi_{1} B\left\{U_{F}(A, J)\right\}$ is perfect.
Then essentially the same argument as in [1] shows that

$$
\begin{equation*}
E\left\{\alpha \cdot U_{F}(A, J)\right\} \longrightarrow B\left\{U_{F}(A, J)\right\}^{+} \longrightarrow B E(A)^{+} \tag{**}
\end{equation*}
$$

is also a homotopy fibration. It follows from (2.2) that the map

$$
E^{B N}(A, J) \longrightarrow E^{B N}(A / J)
$$

given by $\alpha \cdot U_{F}(A, J) \rightarrow \pi(\alpha) \cdot U_{F}(A / J)$ is an isomorphism. By [6] we therefore have $\pi_{i-1} E^{B N}(A, J)=K_{i}(A / J)$ and the homotopy sequence of the fibration (**) gives (2.1).

To prove the lemma, it is enough to show the generators are products of commutators and the formula $w \cdot U_{F} \cdot w^{-1}=U_{u \cdot F}$ reduces the argument to the case where $F=C_{0}=\left\{x_{1}>x_{2}>\cdots>x_{i}\right\}$ considered as lying in P^{l}. Here $l \geqq 3$. For generators $e_{i j}(\lambda)$ of $\pi_{1}\left(B U_{c_{0}}\right)$ the third Steinberg relation $e_{i j}(\alpha \beta)=\left[e_{i j}(\alpha), e_{j k}(\beta)\right]$ shows $e_{i j}(\lambda)$ is a commutator: for example, if $\lambda \in J$ we have $e_{21}(\lambda)=\left[e_{23}(1), e_{31}(\lambda)\right]$. Now consider the generators $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right), \lambda \in 1+J$, where λ is in the i th row and i th column and λ^{-1} is in the j th row and j th column. For simplicity take $i=1$ and $j=2$. Recall that if $M, N \in U_{F}$ are considered as generators of $\pi_{1} B U_{F}$ their composition as loops is homotopic to
$M N$. Let $\lambda=1+\sigma$ and $\lambda^{-1}=1+\tau$ where $\tau, \sigma \in J$. We have the following matrix identity valid in $E(A)$:

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
-\tau & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \sigma \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Thus modulo the commutator subgroup

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)=\left(\begin{array}{rl}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \sigma \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cl}
1+\sigma & \sigma \\
-\sigma & 1-\sigma
\end{array}\right) .
$$

Now let $D=\left\{x_{1}=x_{2}>\cdots>x_{l}\right\}$ and $C_{0}^{\prime}=\left\{x_{2}>x_{1}>\cdots>x_{l}\right\}$. We have $U_{C_{0}} \supset U_{D} \subset U_{C_{0}^{\prime}}$ and the matrix $\left(\begin{array}{cc}1+\sigma & \sigma \\ -\sigma & 1-\sigma\end{array}\right)$ lies in U_{D}. Each of $\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right),\left(\begin{array}{ll}1 & \sigma \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ belong to $U_{C_{0}^{\prime}}$ and therefore by the above argument lie in the commutator subgroup. Therefore so does $\left(\begin{array}{cl}1+\sigma & \sigma \\ -\sigma & 1-\sigma\end{array}\right)$, and we conclude that the loop $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ lies in the commutator subgroup.

It is probably true that

$$
B\left\{U_{F}(A, J)\right\}^{+} \longrightarrow B E(A)^{+} \longrightarrow B E(A / J)^{+}
$$

is a homotopy fibration.

References

1. D. Anderson, M. Karoubi and J. Wagoner, Relations between Higher Algebraic Ktheories, Springer-Verlag Lecture Notes in Mathematics, No. 341, pp. 73-81. See also: Higher algebraic K-theories, preprint, University of California, Berkeley.
2. C. Moore, Group extensions of \mathscr{P}^{-}-adic and adelic linear groups, I.H.E.S. Pub. Math., No. 34, 1968.
3. D. Quillen, Higher K-theory I, Algebraic K-theory I, Springer-Verlag Lecture Notes in Mathematics, No. 341, pp. 85-147.
4. J. Wagoner, Homotopy theory for the \mathscr{P}-adic special linear group, Comm. Math. Helv., 50 (1975), 535-559.
5. -, Buildings, stratifications, and Higher K-theory, Algebraic K-theory I, Springer-Verlag Lecture Notes in Mathematics, No. 341, pp. 148-165.
6. -, Equivalence of algebraic K-theories, preprint, University of California, Berkeley.

Received January 5, 1976. Partially supported by NSF Grant GP-43843X.
University of California-Berkley

