
PACIFIC JOURNAL OF MATHEMATICS
Vol. 65, No. 2, 1976

THE STRUCTURE OF SUBLATTICES OF THE
PRODUCT OF n LATTICES

DONALD M. TOPKIS

The structure of sublattices of the product of n lattices
is explored. Such a sublattice is decomposed and completely
characterized in terms of n(n—1)/2 sublattices of the product
of two lattices. A sublattice of the product of two lattices
is represented in terms of several easily characterized sub-
lattices. The sublattice characterizations provide analogous
characterizations for those functions whose level sets are
sublattices. A simple representation is also given for the
sections of a sublattice of the product of two lattices.

Introduction* I will proceed to explore the structure of sub-
lattices of the product of n lattices. It will be shown that such
general sublattices can be represented in terms of some other
sublattices which are quite simple to conceptualize and characterize.

The results on sublattice structure are given in § 1. In Theorem
1 a sublattice of the product of n lattices is decomposed so that it
is completely characterized in terms of n(n — l)/2 sublattices of the
product of two lattices. Lemma 2 and Corollary 1 give simple
representations for sections of a sublattice of the product of two
lattices. Theorem 2 represents sublattices of the product of two
lattices by several easily characterized sublattices of this product.
Theorem 3 combines previous results to provide a more refined
characterization of sublattices of the product of n lattices.

Often sets are constructed as the intersection of level sets of a
system of functions. For instance, this is frequently the case in
defining the feasible region for optimization problems. To recognize
when such sets are sublattices one must know what functions have
sublattices as their level sets. Thus in § 2 the results of § 1 are
translated into analogous characterizations for those functions whose
level sets are sublattices.

These results are handy in dealing with structured optimization
problems considered by the author [5, 6, 7, 9, 10, 11]. In [5, 9] a
theory is developed for certain structured optimization problems in
which each constraint set must be a sublattice. In order to recognize
and generate domains which are sublattices (so the theory may be
applied) as well as to envision the possible range of applicability of
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this theory it is useful to refer to the sublattice characterizations
herein. The theory of [5, 9] is applied to diverse areas such as
mathematical economics, optimal theory of production, shortest path
problems, structured stochastic dynamic programming [5, 10], graphs
and flows in networks [5, 7], and game theory [6]. For example,
in [6] the results of [5, 9] are used together with Tarski's fixed
point theorem [3, 4] to give conditions for the existence of an equi-
librium point in an ̂ -person nonzero-sum game, and several iterative
procedures are given for constructing such an equilibrium point.
Because the conditions on this game require that each player's deci-
sion be chosen from some sublattice of Em, a characterization of
such sublattices is again useful to recognize and generate games
which fit this model and to perceive the modePs possible range of
application.

1* The structure of sublattices. If S = X?=1 St and L = (x =
(xl9 xn): (x3; xk) e T and xeS} where T is a subset of Ss x Sk for
some two distinct indices j and k, then L is a bivariate subset of
S and T is the jk-generator of L. If S19 , Sn are lattices and T
is the jfc-generator of a bivariate subset L of S = XΓuS* then L
is a sublattice of S if and only if T is a sublattice of S3- x Sk.

THEOREM 1. If Slf , Sn are lattices, n > 1, and S = X?=1 Sif

then a set L is a sublattice of S if and only if it is the intersec-
tion of n(n — l)/2 bivariate sublattices of S.

Proof. The sufficiency part is immediate because the intersection
of sublattices is a sublattice.

Now suppose L is a nonempty sublattice of S. For 1 ̂  j <Ξ n,
1 ύ k <£ n, and j Φ k, define

Tjk = {{Xj, &*)"• t h e r e e x i s t s y = (y19 ' - ' , y n ) e L w i t h y3- = x5 a n d

L i Λ = {x: (xjf xk) e TόkJ x e S} .

Note that Tjk is a sublattice of S3- x Sfc because L is a sublattice of
S, and hence Lifc is a bivariate sublattice of S.

If x = (xx, , &Λ) e L then (a?5 , £cfc) e Tjk and thus α? 6 Ljk for each
i ^ k. Therefore,

( 1 ) LQΠLJb.

Now pick x6 Π J V * L j k . For each j Φ k xeLjk so (ajy, %)6 ry f t and
hence there exists yjk e L with y\k = xd and y[k = ̂ . For each i ,
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1 ^ j ^ n, let yj = A^i Vjk Note that y] = xs because yf — xs for
all k Φ j, and yj ^ x because yl ^ y3

k

k — xk for all k Φ j. Also,
yj e L since each yjk e L and L is a sublattice of S. But x =
yy=1y

jeL because L is a sublattice. Thus,

( 2 ) L^ΠLjk.
ύΦk

By (1), (2), and LSk = Lki,

L= n

Theorem 1 (and almost all the subsequent material) was obtained
by the author in 1971 and distributed as [8] in 1974. The referee
has pointed out to me that Theorem 1 is a special case of a univer-
sal algebraic result of K. A. Baker and A. F. Pixley [1]. Baker
and Pixley credited this lattice version of their result to unpublished
work by G. M. Bergman. Bergman has included his result in a
recent paper [2] in which he noted that he had discovered it in 1967.

Theorem 1 shows that a sublattice of the product of n lattices
can be completely characterized in terms of sublattices of the pro-
duct of two lattices. I now proceed to explore and characterize the
structure of sublattices of the product of two lattices.

For a poset S and xe S, define [x, oo) = {y: x <; yf y e S} and
( - oo, x] = {y:y ^ x, yeS}.

If Sλ and S2 are posets, L Q Sx x S2, and either [xlf oo) x (— oo,
x2] £ L for all (x19 x2)eL or (— oo, χt] x [χ2y oo) ς: L for all (x19 x2) e L,
then L is bimonotone. If SL and S2 are chains then a bimonotone
subset of Sλ x S2 is clearly a sublattice, but a bimonotone subset of
the product of two lattices is not necessarily a sublattice. If Sλ

and S2 are posets and L £ Sλ x S29 then L generates two bimonotone
hulls, HX{L) = \JXBL [x19 <*>) x ( - °°, x2] and iϊ2(L) = U X 6 L ( - ° ° , a?J x
[x2, oo), which are the smallest bimonotone sets containing L.

Since a bimonotone subset of the product of two chains is a
sublattice, the bimonotone hulls of any subset of such a product
must be sublattices. Lemma 1 shows that the bimonotone hulls of
a sublattice of the product of two lattices are sublattices. However,
as the following example shows, the bimonotone hulls of L are not
necessarily sublattices if S1 and S2 are lattices but not chains and L
is not a sublattice. Let Sx = S2 — E2 with the usual relation <̂  and
L — {(0,1, 0, 1), (1, 0, 1, 0)}. Then both bimonotone hulls contain
(0, 1, 0, 1) and (1, 0, 1, 0) but the meet (0, 0, 0, 0) and the join
(1, 1, 1, 1) are not in either bimonotone hull.
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LEMMA 1. If S,. and S2 are lattices and L is a sublattice of
Si x S2, then the bimonotone hulls of L are sublattίces.

Proof. I will show that H^L) is a sublattice. The proof for
H2(L) follows symmetrically.

Pick (x19 x2) e HL(L) and (y19 y2) e H^L). Then there exist (x19 x2) e L
and (yί9 y2) e L with x, ^ xί9 x2 ^ x2, yλ ^ y19 and y2 <; y2. Because
L is a sublattice of Sx x S»2, (x1 A yl9 x2 Ay*)eL and (xι V y19 x2 V
y2) e L. Then (x19 x2) A (y19 y2) = (xt A yίy x2 A y2) e [x, A y19 oo)x (~ oo,
x2Ay2] £ H x { L ) y and (^, x2)V(y19 y2) = ( ^ V ^ , ^2 V 3/2) e [^ V y19 ^ ) x
(~oo, χ2 v ^2] £ i?X£/). Thus ίίiίί/) is a sublattice.

If L Q Xt=i St then the section of L at XjβSj is Z/(%) =
{(«„ , %_!, α?i+1, , a?J: (x19 , a?^!, ^-, α:i+1, , xn) e L} and the pro-
jection of L on Sy is Π3L = {%: L ^ ) is nonempty}. If Slf ••-, SΛ

are lattices and L is a sublattice of Xf=1 S,, then each section L^Xj)
is a sublattice of X t ^ S t and the projection 77̂ 1/ is a sublattice of
Sy for all j .

Theorem 2 will show that a sublattice of the product of two
lattices can be represented as the intersection of its bimonotone
hulls and the product of its two projections. Lemma 2 provides
an intermediary result needed to establish Theorem 2 and shows a
surprisingly simple characteristic of the sections of the product of
two lattices. Corollary 1, a direct consequence of Lemma 2, shows
that a section containing its infimum and supremum is simply the
intersection of the appropriate projection and an interval.

LEMMA 2. If S1 and S2 are lattices, L is a sublattice of Sλ x S29

xx e S19 a2 e &{x^), and b2 e L\xύ, then Π2L Π [a2t b2] £ Lι{x^).

Proof. Pick x2 eΠ2L Π [a2, b2]. Because x2el72L, there exists
yx e Si with (y19 x2) e L. Because a2 ^ x2 and L is a lattice, (xx V y19

x2) — (Xi> α2) V (y19 x2) 6 L. Because x2 ^ b2 and L is a lattice, (x19 a?2) =
(a?i V ί/i, x2) Λ (^i, &2) e L. Thus x2 e Z/fe) and so 772L Π [a2, b2] Q Lι{x^.

COROLLARY 1. // St and S2 are lattices, L is a sublattice of
Si x S29 Xi β S19 and Lι{x^) contains its infimum a2 and its supremum
b2} then Lι{x^) — Π2L Π \a2t b2].

THEOREM 2. // Sx and S2 are lattices and L is a sublattice of
S1 x S29 then L is the intersection of its two bimonotone hulls and
the product of its two projections.

Proof. Clearly L Q HX(L) D HS(L) Π {Π,L x Π2L). Pick any
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x 6 H^L) Π H2(L) Π {Π,L x Π2L}. Since x e H^L) and x e H2(L), there
exist y eL and weL such that yx ^ xl9 x2 ^ y2, x1 ^ w l f and w2 ^ x2.
Because L is a sublattice, (ylf w2) = y A w e L and ( ^ y2) = yVw eL.
Thus w2 e U{y^) and #2 e L\y^) so by Lemma 2 Π2L Π [w2, 2/2] £ L\yd
and therefore #2 e L\y^ and (#„ ά2) 6 L. Also, ^ 6 L2(w2) and
wί e I/2(w2) so by Lemma 2 7 7 ^ Π [yί9 wλ] £ L\w2) and therefore
»! € L2(w2) and (x19 w2) e L. Because L is a sublattice sc = (ylf x2) V
(»„ w2) 6 L, and s o L = H^L) Π ftί-E') Π {i7iL x i72L}.

Note that under the hypotheses of Theorem 2 the bimonotone
hulls are sublattices by Lemma 1. The converse of Theorem 2 is
immediate when the bimonotone hulls are sublattices, but the
example preceding Lemma 1 contradicts this converse generally.

If Slf •••, Sn are posets, S = XΓ=i Si9 L is a bivariate subset of
S, Γ is the jά-generator of L, and T is bimonotone, then L is
bimonotone.

The following is immediate from Theorem 2 and Lemma 1.

COROLLARY 2. 1/ S ly , Sn are lattices, S = X?=1 S f, αwd L is
a bivariate sublattice of S, then L is the intersection of two bimo-
notone sublattices and X^ΠiL.

Note that in Corollary 2 UJu — St for at least n — 2 of the
indices i.

The result of Theorem 3 is derived by applying Corollary 2 to
Theorem 1.

THEOREM 3. If S19 •••, Sn are lattices and S = Xi=ίSi9 then a
set L is a sublattice of S if and only if it is the intersection of
n(n — 1) bimonotone sublattices of S and XΓ=i ΠiL.

2. The structure of sublattice-generating functions* Often sets
are constructed as the intersection of level sets of a system of
functions, and so it is useful to characterize those functions whose
level sets are sublattices.

Suppose / is a function from a lattice S into a chain B. If
each level set of / is a sublattice of S, then / is a sublattice-generat-
ing function. For L £ S, f is an indicator function for L if

f(χ\ _ \b f o r x e L

\d for x e S and x £ L
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where b < d in B. If / is an indicator function for L, then / is a
sublattice-generating function if and only if L is a sublattice of S.
By this correspondence, properties of sublattices can be directly
translated into properties of sublattice-generating indicator functions
and properties of sublattice-generating functions can be translated
into properties of sublattices. It is seen in Lemma 3 below that a
sublattice-generating function that is bounded below is the pointwise
supremum of a collection of sublattice-generating indicator functions,
and thus properties of sublattice-generating indicator functions
imply properties of sublattice-generating functions which are bounded
below. The remarks following Lemma 3 give properties of sublattice-
generating indicator functions and of sublattice-generating functions
which are bounded below which correspond directly to properties of
sublattices as given in §2.

LEMMA 3. A function f from a lattice S into a chain B is a
sublattice-generating function and bounded below if and only if it
is the pointwise supremum of a collection of sublattice-generating
indicator functions.

Proof. The pointwise supremum, if it exists, of a collection of
sublattice-generating functions is clearly also a sublattice-generating
function because the intersection of sublattices is a sublattice. This,
together with the fact that an indicator function is bounded below,
establishes sufficiency.

Now suppose that / is a sublattice-generating function and
bounded below. Then there exists deB such that d ^ fix) for all
xeS. For all beBn[d, oo), define

Sb = {x: x e S, fix) < b)

and

id if xeSb

fbίχ) —
J [b if xeS and x£Sb .

Since / is a sublattice-generating function and B a chain, each
Sh is a sublattice of S and so fb is a sublattice-generating indicator
function for each b e B n [d, oo). Pick any x e S. For any beB Π
[d, oo), if fix) < b then x e Sb and fbix) = d ^ fix), and otherwise
x$Sb and f\x) = b£f(x). Thus, f\x)^fix) for each beBf)[d, oo).
But fix)eBΓ\ [d, oo) and xίSfCx\ and so ffΓx)ix) = fix). Therefore

fix)= sup f\x).
δesn[rf,°o)

In all subsequent remarks it will be assumed that the domain
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5 is the product of n lattices S19 •••, Sn and that the range of all
functions is, for convenience, E1.

A function is univariate if it varies in at most one coordinate.
A function is bivariate if it varies in at most two coordinates. A
function is bimonotone if it is isotone in one of its coordinates,
antitone in one of its coordinates, and does not vary in the other
n — 2 coordinates.

By Theorem 1 an indicator function of a sublattice of S can be
represented as the pointwise supremum of n(n — l)/2 indicator
functions of bivariate sublattices. Thus a sublattice-generating
function which is bounded below is the pointwise supremum of a
collection of indicator functions of bivariate sublattices, and so such
a function is the pointwise supremum of n(n — l)/2 bivariate sublat-
tice-generating functions.

An indicator function of a bimonotone set is bimonotone. Each
level set of a bimonotone function is bimonotone. When each Si is
a chain it can be seen directly that univariate functions and bimo-
notone functions are sublattice-generating functions, as Veinott
[personal communication] has previously observed.

By Corollary 2, an indicator function of a bivariate sublattice
is the pointwise supremum of two bimonotone sublattice-generating
indicator functions and two univariate sublattice-generating indicator
functions.

By Theorem 3 a sublattice-generating indicator function is the
pointwise supremum of n(n — 1) bimonotone sublattice-generating
indicator functions and n univariate sublattice-generating indicator
functions. Thus a sublattice-generating function which is bounded
below is the pointwise supremum of a collection of bimonotone
sublattice-generating indicator functions and univariate sublattice-
generating indicator functions, and such a functior is therefore the
pointwise supremum of n(n — 1) bimonotone sublattice-generating
functions and n univariate sublattice-generating functions. Con-
sequently, when each St is a chain, a sublattice-generating function
which is bounded below is the pointwise supremum of n(n — 1)
bimonotone functions and n univariate functions.

If £»!, •••, Sn are chains, f(x) = Σ?=i/iO&i) where xteSi for each
i, and / is a sublattice-generating function on χ*=1 Si9 then / must
be either univariate or bimonotone, as Veinott [personal communi-
cation] previously noted.
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