DIVISION OF DISTRIBUTIONS

Elemer E. Rosinger

This paper deals with division in an associative commutative algebra containing the distributions in $\mathbf{R}^{\mathbf{n}}$.

1. Introduction. In [5] and [6], a family $\left(A_{p, \lambda} \mid p \in \bar{N}^{n}, \lambda \in \Lambda\right)$ of associative, commutative algebras with unit element were constructed, with the following main properties:
(1) $\mathscr{D}^{\prime}\left(R^{n}\right) \subset A_{p, \lambda}, \forall p \in \bar{N}^{n}, \lambda \in \Lambda$, (here, $N=\{0,1,2, \cdots\}, \bar{N}=N \cup\{\infty\}$ and $n \in N, n \geqq 1$);
(2) The multiplication in each of the algebras $A_{p, \lambda}, p \in \bar{N}^{n}, \lambda \in \Lambda$, induces on $\mathscr{C}^{\infty}\left(R^{n}\right)$ the usual multiplication of functions and the function $\psi \in \mathscr{C}^{\infty}\left(R^{n}\right)$, with $\psi(x)=1, \forall x \in R^{n}$, is the unit element in the algebras;
(3) for each $\lambda \in \Lambda$, there exist linear mappings $D^{p}: A_{q+p, \lambda} \rightarrow A_{q, \lambda}$, with $p \in N^{n}, q \in \bar{N}^{n}$, such that
(3.1) D^{p} satisfies on $A_{q+p, \lambda}$ the Leibnitz rule of product derivative.
(3.2) D^{p} is the usual distribution derivative on $\mathscr{C}^{\infty}\left(R^{n}\right) \oplus \mathscr{D}_{\delta}^{\prime}\left(R^{n}\right)$, where $\mathscr{D}_{\delta}^{\prime}\left(R^{n}\right)=\left\{S \in \mathscr{D}^{\prime}\left(R^{n}\right) \mid \operatorname{supp} S\right.$ is finite\};
(4) The following relations hold for the Dirac $\delta_{x_{0}}$ distribution, concentrated in $x_{0} \in R^{n}$:

$$
\left(x-x_{0}\right)^{r} \cdot D^{q} \delta_{x_{0}}=0 \in A_{p, \lambda}, \quad \forall p \in N^{n}, \quad \lambda \in \Lambda,
$$

if $q, r \in N^{n}, r \geqq p+e, r \geqq q+e$, where $e=(1, \cdots, 1) \in N^{n}$.
In the present paper, within the one dimensional case $n=1$, necessary or sufficient conditions are given for $T \in A_{p, \lambda}$, in order to be a solution of one of the equations $x^{m} \cdot T=0 \in A_{p, \lambda}$ and $x^{m} \cdot T=S \in A_{p, \lambda}$, with $m \in N, m \geqq 1$.
2. Notations. Several classes of sequences of complex valued smooth functions (see [5] and [6]) will be needed.
(1) $\mathscr{W}=N \rightarrow \mathscr{C}^{\infty}\left(R^{1}\right)$; if $s \in \mathscr{W}, \quad \nu \in N, \quad x \in R^{1}$, then $s(\nu) \in$ $\mathscr{C}^{\infty}\left(R^{1}\right), s(\nu)(x) \in C^{1}$; for $\psi \in \mathscr{C}^{\infty}\left(R^{1}\right)$ denote $u(\psi) \in \mathscr{W}$, where $u(\psi)(\nu)$ $=\psi, \forall \nu \in N ; \mathscr{W}$ is in a natural way an associative, commutative algebra (the vector spaces and algebras are considered over the field C^{1} of
complex numbers), with the unit element $u(1)$ and zero element $u(0)$; thus, $\mathcal{O}=\{u(0)\}$ is the null space in \mathscr{W};
(2) $D: \mathscr{W} \rightarrow \mathscr{W}$ is defined by $(D s)(\nu)(x)=(D s(\nu))(x), \forall s \in \mathscr{W}$, $\nu \in N, x \in R^{1}$; for given $x_{0} \in R^{1}$, define $\tau_{x_{0}}: \mathscr{W} \rightarrow \mathscr{W}$ by $\left(\tau_{x_{0}} s\right)(\nu)(x)=$ $s(\nu)\left(x-x_{0}\right), \forall s \in \mathscr{W}, \nu \in N, x \in R^{1} ;$
(3) $\mathscr{U}=\left\{u(\psi) \mid \psi \in \mathscr{C}^{\infty}\left(R^{1}\right)\right\}$;
(4) \mathscr{S}_{0} is the set of $s \in \mathscr{W}$, weakly convergent in $\mathscr{D}^{\prime}\left(R^{1}\right) ; \mathscr{V}_{0}$ is the kernel of the linear surjection:

$$
\mathscr{S}_{0} \ni s \rightarrow\langle s, \cdot\rangle \in \mathscr{D}^{\prime}\left(R^{1}\right),
$$

where

$$
\langle s, \psi\rangle=\lim _{\nu \rightarrow \infty} \int_{R^{1}} s(\nu)(x) \psi(x) d x, \quad \forall \psi \in \mathscr{D}\left(R^{1}\right)
$$

One of the basic ideas in the construction of the associative and commutative distribution multiplication in [5] and [6], is the way the weakly convergent sequences of smooth functions representing the Dirac δ distribution are chosen:
(5) \mathscr{Z}_{δ}^{0} is the set of $s \in \mathscr{S}_{0}$, satisfying the conditions:
(5.1) $\langle s, \cdot\rangle=\delta$,
(5.2) $\forall \epsilon>0: \exists \nu_{\epsilon} \in N: \forall \nu \in N$,

$$
\nu \geqq \nu_{\epsilon}, x \in R^{1},|x| \geqq \epsilon: s(\nu)(x)=0
$$

(5.3) $\forall p \in N: \exists \nu_{p} \in N: \forall \nu \in N$,

$$
\nu \geqq \nu_{p}: W(s(\nu), \cdots, s(\nu+p))(0) \neq 0
$$

where $W\left(\psi_{1}, \cdots, \psi_{m}\right)(x), x \in R^{1}$, denotes the Wronskian function of $\psi_{1}, \cdots, \psi_{m} \in \mathscr{C}^{\infty}\left(R^{1}\right)$.

The condition (5.3), called "strong local presence of s in $x=0$ " and replaced in [6] by a weaker form, plays a central role in the associative, commutative distribution multiplication presented in [5] and [6].
(6) for $p \in \bar{N}$, denote by $\mathscr{V}_{\delta, p}^{0}$ the set of $v \in \mathscr{V}_{0}$, satisfying the above condition (5.2), as well as
(6.1) $\forall q \in N, q \leqq p: \exists \nu_{q} \in N: \forall \nu \in N: \nu \geqq \nu_{q} \Rightarrow D^{q} v(\nu)(0)=0$;
(7) $\mathscr{S}_{\delta}^{0}=\left\{s \in \mathscr{S}_{0} \mid \operatorname{supp}\langle s, \cdot\rangle \subset\{0\}\right\}$;
(8) $\mathscr{V}_{\delta, p}$, with $p \in \bar{N}$, and \mathscr{S}_{δ} are the vector subspaces generated in \mathscr{W} by $\bigcup_{x \in R^{1}} \tau_{x} \mathscr{V}_{\delta, p}^{0}$, respectively $\bigcup_{x \in R^{1}} \tau_{x} \mathcal{Y}_{\delta}^{0} ;$
(9) $\mathscr{Z}_{\delta}=\boldsymbol{X}_{x \in R^{1}} \tau_{x} \mathscr{Z}_{\delta}^{0}$;
(10) for $\Sigma=\left(s_{x} \mid x \in R^{1}\right) \in \mathscr{Z}_{\delta}$, denote by $\mathscr{P}(\Sigma)$ the vector subspace generated in \mathscr{S}_{0} by the sequences $D^{p} s_{x}$, with $x \in R^{1}, p \in N$.

And now, the definition of the associative, commutative algebras
$\left(A_{p, \lambda} \mid p \in \bar{N}, \lambda \in \Lambda\right)$, where Λ is the set of all $\lambda=\left(\Sigma, \mathscr{S}_{1}\right)$ with $\Sigma \in \mathscr{Z}_{\delta}$ and \mathscr{S}_{1} vector subspace in \mathscr{S}_{0}, such that $\left(\mathscr{U}+\mathscr{S}_{\delta}\right) \cap \mathscr{S}_{1}=\mathcal{O}$ and $\mathscr{S}_{0}=$ $\mathscr{U}+\mathscr{S}_{\delta}+\mathscr{S}_{1}$.

Suppose $p \in \bar{N}, \lambda=\left(\Sigma, \mathscr{S}_{1}\right) \in \Lambda$ and denote
(11) $\mathscr{S}_{p, \lambda}=\mathscr{V}_{\delta, p} \oplus \mathscr{U} \oplus \mathscr{S}(\Sigma) \oplus \mathscr{S}_{1}$;
(12) $\mathscr{A}_{p, \lambda}$ the smallest subalgebra in \mathscr{W}, containing $\mathscr{S}_{p, \lambda}$ and invariant of the mapping $D: \mathscr{W} \rightarrow \mathscr{W}$;
(13) $\mathscr{I}_{p, \lambda}$ the vector subspace generated in \mathscr{W} by $\mathscr{V}_{\delta, p} \cdot \mathscr{A}_{p, \lambda}$.

Then (see [5] and [6])
(1) $A_{p, \lambda}=\mathscr{A}_{p, \lambda} / \mathscr{I}_{p, \lambda}$,
(2) $D: A_{p+1, \lambda} \rightarrow A_{p, \lambda}$ is given by

$$
D\left(t+\mathscr{I}_{p+1, \lambda}\right)=D t+\mathscr{I}_{p, \lambda}, \quad \forall t \in \mathscr{A}_{p+1, \lambda} .
$$

3. Multiplication by $1 / x^{m}, m=1,2, \cdots$. It is shown (see Corollary 2) that in the algebras $A_{p, \lambda}$, the multiplication by $1 / x^{m}$ does not represent the division by x^{m}.

Theorem 1. Suppose $T \in A_{p, \lambda}$, with given $p \in \bar{N}, \lambda \in \Lambda$.
Suppose $\psi \in \mathscr{C}^{\infty}\left(R^{1}\right)$ such that for a certain $m \in \bar{N}$

$$
D^{q} \psi(0)=0, \quad \forall q \in N, \quad q \leqq m
$$

If there exists $\chi \in \mathscr{C}^{\infty}\left(R^{1}\right)$ such that $\psi \cdot T=\chi$ in $A_{p, \lambda}$, then:

$$
D^{q} \chi(0)=0, \quad \forall q \in N, \quad q \leqq \min \{p, m\}
$$

Proof. Assume $T=t+\mathscr{I}_{p, \lambda}$, with $t \in \mathscr{A}_{p, \lambda}$. Then $\psi \cdot T=\chi$ in $A_{p, \lambda}$ implies $u(\chi)=u(\psi) \cdot t+w$, with $w \in \mathscr{I}_{p, \lambda}$. Therefore,

$$
\forall q \in N, q \leqq p: \exists \nu_{q} \in N: \forall \nu \in N, \nu \geqq \nu_{q}: D^{q} w(\nu)(0)=0 .
$$

Since $\chi=\psi \cdot t(\nu)+w(\nu), \forall \nu \in N$, the proof is completed.
Corollary 1. Suppose $T \in A_{p, \lambda}$, with given $p \in \bar{N}, \lambda \in \Lambda$.
If $\psi \in \mathscr{C}^{\infty}\left(R^{1}\right)$ such that $\psi(0) \neq 0$, then, $x^{m} \cdot T \neq \psi$ in $A_{p, \lambda}, \forall m \in N$, $m \geqq 1$.

Corollary 2. If $m \in N, m \geqq 1$, then, $x^{m} \cdot\left(1 / x^{m}\right) \neq 1$, in each of the algebras $A_{p, \lambda}, p \in \bar{N}, \lambda \in \Lambda$.
4. Division by $\boldsymbol{x}^{m}, \boldsymbol{m}=1,2, \cdots$. First, in Theorem 2, a
sufficient condition is given for $T \in A_{p, \lambda}$, in order to be a solution of the equation $x^{m} \cdot T=0 \in A_{p, \lambda}$, where $m \in N, m \geqq 1$.

For $p \in \bar{N}$ and $\lambda \in \Lambda$, denote by $B_{p, \lambda}^{0}$ all the elements $T \in A_{p, \lambda}$ of the form $T=t+\mathscr{I}_{p, \lambda}$, where $t \in \mathscr{A}_{p, \lambda} \cap \mathscr{V}_{0}$ and satisfies also (5.2) in §2.

Proposition 1. Suppose given $p \in \bar{N}, \lambda \in \Lambda$ and $\psi \in \mathscr{C}^{\infty}\left(R^{1}\right)$, such that, for a certain $q \in \bar{N}, q \geqq p$:

$$
D^{\prime} \psi(0)=0, \quad \forall r \in N, \quad r \leqq q
$$

Then, $\psi \cdot B_{p, \lambda}^{0}=\{0\} \subset A_{p, \lambda}$.
Proof. Assume $T \in B_{p, \lambda}^{0}$ and $T=t+\mathscr{I}_{p, \lambda}$, with $t \in \mathscr{A}_{p, \lambda} \cap \mathscr{V}_{0}$ and satisfying (5.2) in §2. Then, $\psi \cdot T=u(\psi) \cdot t+\mathscr{I}_{p, \lambda}$. But, obviously, $u(\psi) \cdot t \in \mathscr{V}_{\delta, q}^{0} \subset \mathscr{V}_{\delta, p}^{0} \subset \mathscr{I}_{p, \lambda}$, hence, $T=0 \in A_{p, \lambda}$.

Theorem 2. Suppose given $p \in N, \lambda \in \Lambda$ and $m \in N, m \geqq 1$.
Then, any

$$
T_{0}=\sum_{0 \leqq i \leqq k} x^{r_{1}} \cdot T_{11} \cdot T_{21}+\sum_{0 \leq j \leqq h} x^{q_{1}} \cdot D^{p_{1} \delta} \delta \cdot T_{3 \mid},
$$

with $k, h, r_{i}, q_{j}, p_{J} \in N, r_{i}>p-m$,
$q_{l}>\max \left\{p, p_{j}\right\}-m$,
and $T_{1,} \in B_{p, \lambda}^{0}, T_{21}, T_{3,} \in A_{p, \lambda}$,
will be a solution in $A_{p, \lambda}$ of the equation $x^{m} \cdot T=0$.
Proof. According to Proposition 1, $x^{m} \cdot x^{r_{1}} \cdot T_{1 t}=x^{m+r_{1}} \cdot T_{11}=$ $0 \in A_{p, \lambda}$, since $m+r_{t}>p$. According to (4) in §1 (see also 3) in Theorem $6, \quad \S 8 \quad[5]), \quad x^{m} \cdot x^{q_{1}} \cdot D^{p_{1}} \delta=x^{m+q_{1}} \cdot D^{p_{1}} \delta=0 \in A_{p, \lambda}, \quad$ since $\quad m+q_{l}>$ $\max \left\{p, p_{i}\right\}$.

It results the following sufficient condition on $T \in A_{p, \lambda}$, solution of the equation $x^{m} \cdot T=S \in A_{p, \lambda}$.

Corollary 3. Suppose $S \in A_{p, \lambda}$, with $p \in N, \lambda \in \Lambda$ given and $m \in N, m \geqq 1$.

If T_{1} is any solution in $A_{p, \lambda}$ of the equation $x^{m} \cdot T=S$ and T_{0} is given as in Theorem 2, then $T=T_{1}+T_{0}$ will be again a solution of that equation.

Before a necessary condition is given on $T \in A_{p, \lambda}$, solution of the equation $x^{m} \cdot T=0 \in A_{p, \lambda}$, the notion of support of the elements in $A_{p, \lambda}$ will be defined.

Suppose $T \in A_{p, \lambda}$, with $p \in \bar{N}, \lambda \in \Lambda$ given and $E \subset R^{1}$. Then,
(1) T vanishes on E, only if $T=t+\mathscr{I}_{p, \lambda}$, with $t \in \mathscr{A}_{p, \lambda}$, such that $t(\nu)(x)=0, \forall \nu \in N, \nu \geqq \nu_{0}, x \in E$.
(2) T strictly vanishes on E, only if T vanishes on a certain open set $G \subset R^{1}$, containing E.
(3) T is supported by E, only if for every open set $G \subset R^{1}$, containing E, one can write $T=t+\mathscr{I}_{p, \lambda}$, with $t \in \mathscr{A}_{p, \lambda}$, such that $\operatorname{supp} t(\nu) \subset G, \forall \nu \in N, \nu \geqq \nu_{0}$.

The support of T is defined as the closed set

$$
\operatorname{supp} T=R^{1} \backslash\left\{x \in R^{1} \mid T \text { strictly vanishes on }\{x\}\right\}
$$

Obviously, for the distributions in $\mathscr{C}^{\infty}\left(R^{1}\right) \bigoplus \mathscr{D}_{\delta}^{\prime}\left(R^{1}\right)$, the above notion of support is identical with the usual one for distributions.

Proposition 2. Suppose $x_{0} \in R^{1}$ and $q \in N$, then, $D^{a} \delta_{x_{0}} \in A_{p, \lambda}$, for $p \in \bar{N}, \lambda \in \Lambda$, and
(1) $D^{a} \delta_{x_{0}}$ is supported by $\left\{x_{0}\right\}$ and $\operatorname{supp} D^{a} \delta_{x_{0}}=\left\{x_{0}\right\}$,
(2) if $E \subset R^{1}$ and $x_{0} \notin$ closure E, then $D^{9} \delta_{x_{0}}$ strictly vanishes on E,
(3) $D^{a} \delta_{x_{0}}$ does not vanish on $R^{1} \backslash\left\{x_{0}\right\}$,
(4) $D^{a} \delta_{x_{0}}$ does not vanish on $\left\{x_{0}\right\}$.

Proof. (1), (2) and (3) follow easily.
(4) Assume $\lambda=\left(\Sigma, \mathscr{S}_{1}\right)$ and $\Sigma=\left(s_{x} \mid x \in R^{1}\right)$, then, $D^{q} \delta_{x_{0}}=D^{q} S_{x_{0}}+\mathscr{I}_{p, \lambda}$ and $s_{x_{0}} \in \tau_{x_{0}} \mathscr{Z}_{\delta}^{0}$. Suppose, $D^{a} \delta_{x_{0}}$ vanishes on $\left\{x_{0}\right\}$, then, there exists $t \in \mathscr{A}_{p, \lambda}$, such that $t-D^{q} S_{x_{0}} \in \mathscr{I}_{p, \lambda}$ and $t(\nu)\left(x_{0}\right)=0, \quad \forall \nu \in N, \quad \nu \geqq$ ν_{0}. Denoting $v=t-D^{q} S_{x}$, the relation $v \in \mathscr{I}_{p, \lambda}$ implies $\nu(\nu)\left(x_{0}\right)=0$, $\forall \nu \in N, \nu \geqq \nu_{1}$. Therefore, it results

$$
D^{q} S_{x_{0}}(\nu)\left(x_{0}\right)=t(\nu)\left(x_{0}\right)-v(\nu)\left(x_{0}\right)=0, \quad \forall \nu \in N, \quad \nu \geqq \nu_{2} .
$$

But, that relation implies $W\left(s_{x_{0}}(\nu), \cdots, s_{x_{0}}(\nu+q)\right)\left(x_{0}\right)=0, \forall \nu \in N, \nu \geqq$ ν_{2}, which contradicts the assumption $s_{x_{0}} \in \tau_{x_{0}} \mathscr{Z}_{\delta}^{0}$.

Remark. The property of the Dirac distributions that $D^{a} \delta_{x_{0}}$ does not vanish on $\left\{x_{0}\right\}, \forall x_{0} \in R^{1}, q \in N$, is a direct consequence of the "condition of strong local presence" (see (5.3) in §2) and it is proper for the distribution multiplication presented in [5] and [6]. The "delta sequences" generally used (see [2]) do not necessarily prevent the vanishing of $D^{a} \delta_{x_{0}}$ on $\left\{x_{0}\right\}$.

Theorem 3. Suppose $T \in A_{p, \lambda}$ with $p \in \bar{N}, \lambda \in \Lambda$ given.

If $x^{m} \cdot T=0 \in A_{p . \lambda}$, for a certain $m \in N, m \geqq 1$, then T is supported by $\{0\}$, hence $\operatorname{supp} T \subset\{0\}$.

Proof. Assume $T=t+\mathscr{I}_{p, \lambda}$, with $t \in \mathscr{A}_{p, \lambda}$. Then $x^{m} \cdot T=0 \in A_{p, \lambda}$ implies $u\left(x^{m}\right) \cdot t \in \mathscr{I}_{p, \lambda}$, therefore, according to the definition of $\mathscr{g}_{p, \lambda}$ (see (13), §2), it results

$$
u\left(x^{m}\right) \cdot t=\sum_{0 \leqq 1 \leqq k} v_{l} \cdot a_{t}
$$

with $k \in N, v_{t} \in \mathscr{V}_{\delta, p}, a_{1} \in \mathscr{A}_{p, \lambda}$.
Now, due to the definition $\mathscr{V}_{\delta, p}$ (see (8) and (6), §2), it follows that: $\forall i \in\{0, \cdots, k\}: \exists X_{t} \subset R^{1}, X_{t}$ finite: $v_{t}=\Sigma_{x \in X_{t}} v_{x,}$, where $v_{t x} \in \tau_{x} \mathcal{V}_{\delta, p}^{0}$.

Concluding, there exists $X \subset R^{1}, X$ finite, such that

$$
u\left(x^{m}\right) \cdot t=\sum_{x \in X} \sum_{0 \equiv j \leq h} v_{x j} \cdot b_{x j} \quad \text { with } \quad h \in N, \quad v_{x j} \in \tau_{x} \mathscr{V}_{\delta, p, p}^{0} \quad b_{x j} \in \mathscr{A}_{p, \lambda} .
$$

It will be shown now, that in the above relation, one can consider $X=\{0\}$. Indeed, suppose $x_{0} \in X \backslash\{0\}$, then $v_{x j j} \in \tau_{x 0} \mathcal{V}_{\delta, p}^{0}$ with $0 \leqq j \leqq$ h. The condition (5.2) in $\S 2$, results in the existence of $w_{x i j} \in \mathscr{W}$, with $0 \leqq j \leqq h$, such that $v_{x \mid v}(\nu)(x)=x^{m} \cdot w_{x o l}(\nu)(x), \quad \forall 0 \leqq j \leqq h, \quad x \in R^{1}$, $\nu \in N, \nu \geqq \nu_{0} . \quad$ Moreover, $w_{x, j} \in \tau_{x, v} \mathcal{V}_{\delta, p}^{0}, \forall 0 \leqq j \leqq h$, since $v_{x v j} \in \tau_{x 0} \mathcal{V}_{\delta, p}^{0}$, with $0 \leqq j \leqq h$, and $x_{0} \neq 0$.

Denoting
it results $v \in \mathscr{I}_{p, \lambda}$, hence, $T=t_{1}+\mathscr{I}_{p, \lambda}$, where $t_{1}=t-v \in \mathscr{A}_{p, \lambda}$. But $u\left(x^{m}\right) \cdot t_{1}=u\left(x^{m}\right) \cdot t-u\left(x^{m}\right) \cdot v=\Sigma_{0 \leq \leq \leq \leq} v_{0,} \cdot b_{0,}$.

Since $v_{0, \text {, }}$ with $0 \leqq j \leqq h$, satisfy (5.2) in §2, it follows that $u\left(x^{m}\right) \cdot t_{1}$ and, therefore t_{1} satisfy the same condition. Thus, $T=t_{1}+\mathscr{I}_{p, \lambda}$ is supported by $\{0\}$, which obviously results in supp $T \subset\{0\}$.

References

1. H. Kang, J. Richards, A general definition of convolution for distributions, (to appear).
2. J. Mikusinski, On the square of the Dırac delta distribution, Bull. Acad. Pol. Sci., 14, 9, (1966), 511-513.
3. E. Rosinger, Embedding the $\mathscr{D}^{\prime}\left(R^{n}\right)$ distributions in pseudotopological algebras, Stud. Cerc. Mat., 18. 5, (1966), 687-729.
4. - Pseudotopological spaces. Embedding the $\mathscr{D}^{\prime}\left(R^{n}\right)$ distributions into algebras, Stud. Cerc. Mat., 20, 4, (1968), 553-582.
5. ——, A distribution multiplication theory, Haifa Technion's Preprint Series, AMT-31, October 1974 (to appear).
6. - , , An associative, commutative distribution multiplication, Technical Report, Haifa Technion, March 1976 (to appear).
7. L. Schwartz, Sur l'impossibilité de la multiplication des distributions, C. R. Acad. Sci. Paris, 239 (1954), 847-848.

Received June 23, 1975 and in revised form April 12, 1976.
Technion - Israel Institute of Technology

