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DIVISION OF DISTRIBUTIONS

ELEMER E. ROSINGER

This paper deals with division in an associative commutative
algebra containing the distributions in Rn.

1. Introduct ion. In [5] and [6], a family (APJ A | p E N", λ E Λ)
of associative, commutative algebras with unit element were constructed,
with the following main properties:

(1) S ' ( / ? " ) C A P , A , V p E N " , AGΛ,
(here, N = {0,1,2, •}, J V = J V U M and n E N, n i l ) ;

(2) The multiplication in each of the algebras Ap A, p E ΛΓn, λ E Λ,
induces on ^"(l?") the usual multiplication of functions and the function
ψ E (€x{Rn), with ι/f(jc) = 1, Vx E i?π, is the unit element in the algebras;

(3) for each λ E Λ, there exist linear mappings Dp: Aq+Py A -> A^Λ,
with p ENn, q E Nn, such that

(3.1) D p satisfies on Aq+Pfλ the Leibnitz rule of product deriva-
tive.

(3.2) Dp is the usual distribution derivative on
<€™(Rn)@3)ΊRn\ where 3)'δ(Rn) = {S E ®'(Rn)\suppS
is finite};

(4) The following relations hold for the Dirac δ^ distribution,
concentrated in x0 E Rn:

(x - xoy D^ = 0EAp, λ, Vp E N " , λ E Λ,

if g, r E Nn, r ^ p + e, r ^ g + e, where e = (1, , 1) E Nn.

In the present paper, within the one dimensional case n - 1,
necessary or sufficient conditions are given for T & Λp, A, in order to be a
solution of one of the equations xm T = 0EAp,λ and xm T = S E Λp,A,
with m EN, m ^ 1.

2. Notat ions. Several classes of sequences of complex valued
smooth functions (see [5] and [6]) will be needed.

(1) W=N^($co(Rί); if sEW, v E N, x E R\ then s(v)E
<€°°{Rι\ s(v)(x)EC1; for ψ E <€X{RX) denote u(ψ)EW, where u(ψ)(v)
= ψ, Vv E N; W is in a natural way an associative, commutative algebra

(the vector spaces and algebras are considered over the field C 1 of

257



258 ELEMER E. ROSINGER

complex numbers), with the unit element w(l) and zero element w(0);
thus, 0 = {u(0)} is the null space in W\

(2) D: W-+ W is defined by (Ds)(v)(x) = (Ds(v))(x), Vs G W9

vEN, xER1; for given x0ER\ define τm\ W-+W by (Txos)(v)(x) =
s(v)(x-x0), VsEW, vEN, xER1;

(3) ^ { " ( Ψ ) l ψ e q κ 1 ) } ;
(4) 5̂o is the set of s E ψ, weakly convergent in 9)'{RX)\ Vo is the

kernel of the linear surjection:

where

(s,ψ) = lim ί s(v)(x)ψ(x)dx,
i -̂ oo JR1

One of the basic ideas in the construction of the associative and
commutative distribution multiplication in [5] and [6], is the way the
weakly convergent sequences of smooth functions representing the Dirac
δ distribution are chosen:

(5) 2ζ°δ is the set of 5 E 5̂ 0, satisfying the conditions:
(5.1) <s, > = δ,
(5.2) Ve>0: 3 ^ G N : Vz/GN,

v^v€,xER\\x\^e: s(v)(x) = 0
(5.3) Vp<ΞN:3ppEN: V^GN,

where W(φu , ψm)(x), x G R\ denotes the Wronskian function of

φU'",ψme^(R').
The condition (5.3), called "strong local presence of s in x = 0" and

replaced in [6] by a weaker form, plays a central role in the associative,
commutative distribution multiplication presented in [5] and [6].

(6) for p G N, denote by V%p the set of v G Vo, satisfying the above
condition (5.2), as well as

(6.1) VqGJV, q^p: 3vq<ΞN: VvEN:v^vq^> Dqυ(v)(0) = 0;

(7) ^0

δ = {5G
(8) Vδ, p, with p G N, and ίPb are the vector subspaces generated in

Ψ by U ^ . r . Π p , respectively Όx^τxίf%\
(9) 2δ=XxeR>τ&°δ;
(10) for X = (sx I x G Rι) G 2Γδ, denote by 5^(S) the vector subspace

generated in 5̂ 0 by the sequences Dpsx, with x G i?1, p EN.

And now, the definition of the associative, commutative algebras
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(Ap, Λ I p E JV, λ E Λ), where Λ is the set of all λ = (Σ, #Ί) with Σ E 2Γδ and
5 !̂ 'vector subspace in 5^, such that (<% + 5 ^ ) 0 3 ^ = 0 and S?o =
% + # , + S^.

Suppose pEJV, λ = (X, 5^) E Λ and denote
(11) 5^A = n p 0 ^ 0 ^ ( 2 ) 0 ^ ;
(12) dpΛ the smallest subalgebra in W9 containing SfPtλ and in-

variant of the mapping D: W^> W;
(13) ^ p A the vector subspace generated in W by Vδ,p ^ λ .
Then (see [5] and [6])
(1) Ap,λ = ^p,λ/Λ,A,
(2) D : A p + l λ - ^ A p λ is given by

D(t

3 . Mult ip l icat ion by l / x m , m = 1,2, . It is shown
(see Corollary 2) that in the algebras Ap,λ, the multiplication by ί/xm does
not represent the division by xm.

THEOREM 1. Suppose T E AA A, with given p E N2 Λ E Λ.
Suppose ψ E ̂ ( i ? 1 ) 5ucΛ ίΛαί /or α certain m E JV

7/ ί/iere exΪ5f5 ^ E ̂ "(i? 1) swc/i ίfiαί ψ - T = χ in Ap, A,

= 0, Vq E ΛΓ, g ̂  min{p, m}.

Proo/. Assume Γ = ί + ̂  λ, with ί E ̂ p , λ. Then ψ Γ = * in Ap, λ

implies u{χ) = w(ψ) t + w, with w E ̂  A. Therefore,

VqEN, q^p: 3vq EN: VvEN, v^vq: Dqw(v)(0) = 0.

Since χ = ψ - t(v)+ w(v), Vv Eϊ N, the proof is completed.

COROLLARY 1. Suppose T E AA A, wiίΛ gii en p E JV, λ E Λ.

If ψ E ̂ -(l?1) such that ^ ( 0 ) ^ 0 , then, xm -Tϊψin Ap,λ, Vm E JV,

m ^

COROLLARY 2. J/_m E N , m ̂  1, Λen, xm (l/xm)^ 1, in eαc/i of
algebras Ap,λ, p E N, λ E A.

4. Divis ion b y x m , m = l , 2 , . First, in Theorem 2, a
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sufficient condition is given for T E Ap, A, in order to be a solution of the
equation xm T = 0 E Ap>λ, where m E N, m δ 1.

For p E N and A E Λ, denote by B° λ all the elements Γ 6 A M of
the form T = ί -f ^p, λ, where ί E i μ Π f o and satisfies also (5.2) in §2.

PROPOSITION 1. Suppose given pEJV,AEΛ and ψ E ^"(JR 1 ), SWC/I

ί f i α ί , for a c e r t a i n q E N, q ~ p :

Dψ(0) = 0, VrGN, r ^ q .

77ιen, ψ β°p,Λ = {0}CAp,λ.

Proo/. Assume ΓEBJ,, and Γ = ί + ^p,λ, with ί E i ^ Π ί o and
satisfying (5.2) in §2. Then, φ T = u(φ) t + ^ p λ . But, obviously,

ί E Γ ^ c n / ^ , hence, T = 0EAp,,

THEOREM 2. Suppose given p ELN, A E Λ and m E N, m ^ 1.
TTierc, a/ty

with k, h, rn qn p} EN, r, >p - m,
q} >max{p,p]}-m,
and Tu£Blx, T2ι, T3/EΛp,λ,
will be a solution in Λp λ of the equation xm T = 0.

According to Proposition 1, xm - xr - Tu = xm+r Tu =
0 E Ap λ, since m + rt > p. According to (4) in §1 (see also 3) in Theorem
6, § 8 [ 5 ] ) , x m -xq> -Dp>δ = xm+q> ' D p > δ = 0 E A p , λ , s i n c e m + q } >

j

It results the following sufficient condition on T E Ap,A, solution of
the equation x m T = S E Ap, λ.

COROLLARY 3. Suppose S(ΞAp,λ, with p E N, A E Λ g/ϋen and
m 6 1V, m ^ 1.

If Γi is any solution in Ap λ of the equation xm T = S and To is
given as in Theorem 2, then T = Tx+ To will be again a solution of that
equation.

Before a necessary condition is given on T E Ap, λ, solution of the
equation xm T = 0 E Ap, A, the notion of support of the elements in Ap,λ

will be defined.
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Suppose T E AP;λ, with p E JV, λ E Λ given and E CRι. Then,
(1) T vanishes on E, only if T = t + J^,λ, with t E ^ p > λ , such that

ί ( i / ) ( j c ) = O, V i / E N , v^ I/Q, x £ £

(2) T strictly vanishes on E, only if Γ vanishes on a certain open set
G CR\ containing E.

(3) T is supported by E, only if for every open set GCR\
containing E, one can write T = t + ^p, A, with ί E ^ A, such that
supp t(v)CG, Vv EN, v^ v0.

The support of T is defined as the closed set

supp T = R*\{x E Rι\T strictly vanishes on {x}}.

Obviously, for the distributions in Γ f J ? 1 ) ® ® ^ 1 ) , the above
notion of support is identical with the usual one for distributions.

PROPOSITION 2. Suppose xQ E R! and q E N, rΛe/t, D ^ , E ΛPt λ, /or
p6JV, λ E Λ, and

(1) D ^ Ϊ5 supported by {xQ} and s u p p D ^ = {JC0},

(2) ifECR1 and x0 0 closure E, then D q8xo strictly vanishes on E,
(3) Dq8m does not vanish on i?1\{x0},
(4) Dq8X0 does not vanish on {x0}.

Proof. (1), (2) and (3) follow easily.
(4) Assume λ = (Σ, Sfx) and Σ = (sx \x E i?1), then, D ^ , = D χ + ip,A

and sM) E rmZ°δ. Suppose, Dq8^ vanishes on {JC0}, then, there exists
ί G i μ , such that t - DqsM)E ^ p, λ and t(v)(xo) = O, Vv<ΞN, v^
vQ. Denoting v = t - DqsM), the relation v E J>pίλ implies ^(^)
\/v E N, v^vx. Therefore, it results

But, that relation implies W^iv), , sj^v -f q))(x0) = 0, Vi/ G N, i/ ^
ι̂ 2, which contradicts the assumption stt E τm3ε°δ.

REMARK. The property of the Dirac distributions that Dq8M, does
not vanish on {x0}, VXQEJR 1 , q E JV, is a direct consequence of the
"condition of strong local presence" (see (5.3) in §2) and it is proper for
the distribution multiplication presented in [5] and [6]. The "delta
sequences" generally used (see [2]) do not necessarily prevent the
vanishing of Dqδxo on {xo}

THEOREM 3. Suppose T E Λp, λ with p E JV, A E Λ given.
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If x m - T = 0 E Ap, A, for a certain m G N, m ^ 1, then T is supported
by {0}, hence supp ΓC{0}.

Proof. Assume T= t + J>p,λ, with t E ^ λ. Then x m Γ = 0 G Λp, λ

implies w(jcm) ί G ̂ p,λ, therefore, according to the definition of £Ptλ (see
(13), §2), it results

u(xm)-t = Σ υ< ' a>

with IcGJV, ι;, G T ^ , α, E slp,λ.
Now, due to the definition T δ p (see (8) and (6), §2), it follows that:

V/ E{0, , fc}: 3X, CR 1 , X, finite: υt = ΣxeXιvιx, where utJC E τ x Π P .
Concluding, there exists XCR\ X finite, such that

x<ΞX O^j
Σ ŷ fc/ w i t h

O j h

It will be shown now, that in the above relation, one can consider
X = {0}. Indeed, suppose x0EX\{0}, then υ^Gτ^Tlp with 0 ^ / ^
h. The condition (5.2) in §2, results in the existence of w^ E W, with
0 ^ / ^ f t , such that υ^v^x) = xm wXo}(v)(x), VO^/^ft, xGJR 1,
i/ E JV, i; ̂  vo. Moreover, wΛiy E T ^ , VO ^ / ̂  Λ, since υΛ7 E T ^ T 0 ^
with O^j^h, and x o ^ O .

Denoting

u = Σ Σ w^ι ' b*»

it results ϋ E ^Pi λ, hence, T = ί, + ̂ p λ, where tx = t - υ E s£p, λ. But
W(xm) ί, = M(xm') ί - U(xm) ϋ ^ Σ o ^ ^ ϋ o , 60/.

Since υ0,, with 0 ^ / ^ ft, satisfy (5.2) in §2, it follows that u(x m ) ^
and, therefore ^ satisfy the same condition. Thus, T = ί 1 + ̂ p > λ is
supported by {0}, which obviously results in supp TC{0}.
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