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ON THE DIFFERENTIABILITY OF MULTIFUNCTIONS

F. S. D E BLASI

A new concept of differential for a multifunction is in-
troduced. Here by a multifunction we mean a map from a
Banach space X to some specified family of non void subsets of a
Banach space Y. The comparison with another definition due to
Lasota and Strauss shows that if a multifunction admits both
differentials, these must be equal. The results are applicable to
the perturbation theory for multivalued differential equations in
a Banach space

x GF(JC)

in a neighborhood of a rest position.

1. Introduction. The concept of differentiability for mul-
tifunctions has been considered by many authors from different points of
view ([1], [3], [8], [11], [13], [17], [18]). Of all these approaches, that
developed by Lasota and Strauss [17] seems to be more useful in
perturbation theory for ordinary differential equations in the real Eu-
clidean space Rn. Further applications along this same direction were
obtained in [10] (see also [9]). In the present paper, moving from an idea
of Bridgland [3], a new concept of differentiability for a multifunction is
studied. This notion seems to be useful in perturbation theory. In [7] an
application to problems of stability for multivalued differential equations
in Banach spaces is given.

The definitions and the main properties of a multivalued differential
(i.e. the differential of a multifunction or, in particular, of a function) are
contained in §§2 and 3. Now, it is perhaps better to start by giving an
answer to the preliminary question: where one may encounter a mul-
tivalued differential. To this end we recall the well known Theorems 1.1
and 1.2, due to Lyapunov.

THEOREM 1.1 ([20] p. 222). Let f: Rn -» Rn, /(0) = 0, be continu-
ously differentiable in a neighborhood of the origin with Frέchet differential
f at the origin. Let all the eigenvalues off have negative real parts, i.e. the
origin is asymptotically stable for

(1.1) * = /'(*)•

Then the origin is asymptotically stable for

(1.2) x=f(x).
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68 F. S. DE BLASI

Of the possible extensions of the above result we mention the
following two:

(I) / is single valued but not Frechet differentiable at the origin.
However / has a multivalued differential D at the origin, and so the
variational equation which corresponds to (1.2) becomes

(1.3) JCGD(JC).

(II) / is multivalued and admits at the origin a multivalued
differential D. Thus, instead of (1.2) we have

(1.4) ie/(χ),

with corresponding variational equation (1.3).
In either case the problem arises whether the knowledge of a certain

property of (1.3), for instance that the origin is a global attractor for this
equation, implies that (1.2) (or (1.4)) possesses a similar, possibly weaker,
property (see [17]).

THEOREM 1.2 ([20] p. 285). Let f: R+xRn->Rn, R+ = [0,oo), be
continuously differentiable, periodic in t with period p > 0. Let the equation

(1.5) i=f(t,x)

have a periodic solution y of period p. Let all the characteristic numbers of
the variational equation (along the periodic solution y)

(1.6) x=f'(t,y(t))x

have moduli strictly less than 1. Then the periodic solution y is asymptoti-
cally stable for (1.5).

A possible extension of Theorem 1.2 is the following:
(III) / is single valued but not Frechet differentiable along y.

However / has a multivalued differential D at any point (ί, y(t)). Thus
(1.6) is replaced by

(1.7) i e D ( ί , y ( 0 ; x ) .

Then the problem arises whether, the fact that all solutions of (1.7)
approach the origin for *—»<», implies that the periodic solution y is
asymptotically stable for (1.5) (see [10]).

In §2 the definition of the multivalued differential Dx for a mul-
tifunction is introduced. Several elementary consequences of this defini-
tion are reviewed in §3. In the following one we consider, in infinite
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dimension, another definition of differential Δx for a multifunction. (This
was introduced by Lasota and Strauss [17] for mappings from Rn to R\)
In Section 5 we consider γ-Lipschitz maps (γ is the Hausdorff measure of
noncompactness [22]). Then we show that the multivalued differential of
a γ-Lipschitz map, with constant /c, is γ-Lipschitz with the same constant.
In the subsequent paper [7] an application of the above theory to a
problem of stability, by the first approximation method, for a multivalued
differential equation in Banach space is presented.

2. Notation and preliminaries. Let Y be a Banach space.
For any a E Y, define S(α, r) = {y: ||y - a || < r} r > 0 , S(α,r) =
{y: | | y - α | | ^ r } , r ^ 0. We write S, S in place of S(0,1), S(0, 1). Denote
by: 98 (Y) (resp. <g(Y), ^o(Y), 3ίΓ(V), 3JΓ0(Y)) the family of all non void
bounded (resp. bounded closed, bounded cjosed convex, compact, com-
pact convex) subsets of Y; N = {1,2, •}; A the closure, co A the closed
convex hull of A C Y. Let A,B<EB(Y). Define

d(A,B) = inf{f >0: A CB + ίS, B CA + tS}.

We review a number of well known properties of d, some of which will be
used in the sequel. We have:

To conclude that d is a metric one has to show that d(A, B) = 0 implies
A = B. This is not true in 39 (Y), but it is in ^(Y). The restriction of d to
couples of elements of ^(Y) is called the Hausdorff metric in ^(Y). We
write || A || in place of d(A,0).

The following lemma is fundamental.

LEMMA 2.1 (Radstrόm [21]). Let A, B, C fee non void subsets of Y
Suppose B closed and convex C bounded and Λ + C C B + C
A CB.

LEMMA 2.2. Lβί A, Au B, B1 E $(Y). 77ιβn
(i) d(tA,tB)=td(A,B) t^O
(ii) d(A + B, A, + BO ̂  d(A, A,) + d(B, Bγ).

If A, BE <go(Y) and C<Ξ@(Y) we have
(iii) d(A + QB + C)=d(A,B).

Proof Property (i) is obvious. To prove (ii) let t>d(A,
tι>d(B,Bι). Then
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and A + B CΛ, + Bλ + (ί + *,)$, Λ, + Bi CΛ + B + (ί + ίt)S which imply
d(A + B, Aλ + B,) ^ f + f,. Letting ί -» rf(Λ, ΛJ, tx-+d(B,Bx) we get (ii).

Let us prove (iii). By (ii) d(A + C, B + C) ̂  d(A, £) . Suppose the
strict inequality holds and let t be such that d(A + C, β + C)< ί <

). Then

ί S C B

and, since B + tS, A + tS are closed convex while C is bounded, Lemma
2.1 yields A CB + ίS, B C A + ίS. On the other hand

tS= Π [(B + ίS) + 2-"5], A + ί 5 = f| [(A
n = l

thus if we choose n such that t + 2~n < d(A,B) we obtain
A CB + (ί + 2 n ) S , B C A + ( ί + 2-")S. These imply d ( A , B ) ^ ί + 2~n <

, B), a contradiction.

Property (iii) is proved in [21] under different hypotheses (see also
[8]).

Let X, Y be Banach spaces. Let U be a non void open subset of X.

DEFINITION 2.3. F : £/—> £$(Y) is said to be upper semicontinuous
(=u.s.c.) at XELU if for every e>0 there exists δ > 0 such that
F(x + h)CF(x) + 65, when ||h || < δ. F is said to be continuous at JC if for
every e > 0 there exists δ > 0 such that F(x + h) C F(JC ) + eS and F(JC ) C
F(x + h)+eS, when | | Λ | | < δ .

DEFINITION 2.4. F : X—>S8(Y) is said to be homogeneous if
F(ί jc)=ίF(x), ί^O, J C E X .

The following definition of differentiability is suggested by an idea
due to Bridgland [3].

DEFINITION 2.5. F : £/-> 35 (Y) is said to be differentiable at x G (7
if there exist a map D x : X—» ^ 0(Y), which is u.s.c. and homogeneous,
and a number δ > 0 such that

when | |Λ | |<δ.
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(Here o(h) denotes a nonnegative function such that limh^0 o(h)/\\h || =
0.) Dx is called the (multivalued) differential of F at x.

REMARK 2.6. Let F be a map from U to %0(Y). In [18] Martelli
and Vignoli define F to be differentiate at x E U if there exists a map
Sx: X->$Ό(^0, which is u.s.c. and homogeneous, and a number δ > 0
such that

F(x + ft) = F(x)+Sx(h)+R(h% when \\h \\< δ,

and limΛ_»0||Λ(h)||/||Λ|| = 0. We shall see later that the existence of 5,

implies that of Dx and Sx = Dx. The converse is false. To see this define

F:(-7r/4,7r/4)->3r o (n Y = R\ by

f = S if t = 0

^ (0
I = (1 + ί2 sin l/f)S if 0 < 11 \ < ττ/4.

Then F is differentiate at 0 and Do = 0. But 50 does not exist for the
existence of So implies that, in a neighborhood of 0 the diameter of F(t) is
not less than the diameter of F(0), which is clearly impossible.

3. Properties of differentiable multifunctions. In this
section several elementary properties of differentiable multifunctions are
reviewed. Let U be a non void open subset of X. The following
theorem shows that the differential Dx is well defined.

THEOREM 3.1. The multivalued differential Dx ofF: U->28(Y) at
x E U if it exists is unique.

Proof. Let δ correspond to Dx. Let there exist D\ and δ} > 0 such
that d(F(x + Λ), F(x) + D\{h)) = o\h\ when \\h \\ < 8λ. Trivially Dx(0) =
D i(0) = 0, being both Dx and D \ homogeneous. Let u ̂  0. Let t > 0 be
such that f | |w||< δ, δ:. Then, by Lemma 2.2 (iii),

d{Dx{tu\D\{tu))= d{Dx{tu) + F{x\D\{tu) + F{x))

^o(tu) + o\tu).

Thus d(Dx(u), Di(iι)) ^ o(in)/ί + oι(tu)/t and, letting ί -» 0,
d(Dx(u), Dl

x(u)) = 0. Since Dx(w), Di(w) are bounded closed we have



72 F. S. DE BLASI

REMARK 3.2. Suppose F: U-*X0(Y) has the differential
Sx. Then Dx exists and Sx = Dx. In fact, if || ft || < δ,

+ ft), F(x)+Sx(h))^d(F(x + ft), F(x)+ SX

and, since lim^0||jR(ft)||/||ft || = 0, we have d(F(x + ft),F(x) + S,(Λ)) =
). By the uniqueness of Dx it follows Dx = Sx.

THEOREM 3.3. If F: U-*&i(Y) is differentiable at x it is there
continuous.

Proof. Let e > 0. Since F is differentiable at x there exists δ > 0
such that d(F(x + h),F(x)+ Dx(ft)) = o(ft), when ||ft || < δ. Furthermore,
since Dx is u.s.c. at the origin and Dx(0) = 0, there exists 0 < δ! < δ such
that Dx(h)CeS if H f t H ^ . For || Ai || < «! we have

d(F(x + h),F(x))^ d(F(x + h),F(x) + Dx(h))+ d(F(x) + Dx(h),F(x))

and F is continuous at JC.

THEOREM 3.4. Let U be a non void open and convex subset of X.
The multifunction F: U ->% (Y) is constant if and only if for every x E U,
Dx =0.

Proof Let us prove the sufficiency of the condition (the necessity is
trivial). For every x E U there exists δ > 0 such that d(F(x + ft), F(x)) =
o{h) if || ft || < δ . Let x9xxE U. We have

I d{F{xx\ F(x + ft)) - d(F(Xl)9 F(x))\ ^ d(F(x + ft), F(x))

^ o(Λ)/|fΛ ||, 0<||ft||<δ.

Let ft ->0. Then the real valued functional x »-* rf(F(x}), F(x)), having
zero Frechet differential for every x E [/, must be constant. Since it
vanishes for x = xx it is identically zero.

For A , J B E ^ ( Y ) define d*(A,£) = inf{ί >0: A CB + ίS}. We
have:
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</*(A,B)i=0, d*(AyB) = 0 if and only if ACB

If A ={a}, B={b} then d*(A,B)= d(A,B) = \\a-b\\.
Given a map F : U'—>^(y), a single valued function / : [/-> Y

satisfying /(x)€Ξ F(x), JC E £/, is called a selection of F

THEOREM 3.5. Lei F : X-> <#(Y), F(0) = 0, fee differentiable at the
origin with differential Do. Let f be a selection of F in a neighborhood
5(0, δ}) of the origin of X Iff has Frechet differential f'o at the origin then
fΌ is a selection of Do.

Proof There exists 0 < δ < δ{ such that

if | |

Trivially D o and f'o are equal for u = 0. Let u^ 0. Let t > 0 be such that
|| || < δ. Then we have

and

Letting /-»0 we obtain d*(/ό(w),D0(w)) = 0.

4. Comparison with another definition of differential.
In [17] Lasota and Strauss gave the definition of a multivalued differential
Δx for a single-valued map F : Rn -> Rn and used such definition to prove
a perturbation theorem for ordinary differential equations in Rn. Further
results along this same direction were established in [10] and, for
difference equations, in [9]. In this section the definition of Δx is
extended to maps F:X—»3Γ(Y), where X, Y are Banach spaces.
Furthermore the relationship between the multivalued differential Dx

and the Lasota-Strauss differential Δx is considered.
Let X, Y be Banach spaces, UCX be open and non void.

DEFINITION 4.1. F : 1/->#(Y) is said to be Lipschitzian a t x E ί /
if F(x) is singleton and there exist constants L ̂  0 and δ > 0 such that
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DEFINITION 4.2. Let F: U^X(Y) be Lipschitzian at x E U. A
map φ: X—>3fCQ(Y) is said to be an upper differential of F at x if φ is
u.s.c, homogeneous and there exists δ > 0 such that

if \\h\\<δ.

Denote by 3F the set of all upper differentials of F at x. & may be
empty. However, if dim(Y)<oo? F has at least one upper differential,
namely φ(h) = L\\h\\S.

DEFINITION 4.3. Let F: U —> 3Γ(Y) be Lipschitzian at x E (7. Sup-
pose that $ y 0 and, for each /iGX, Γ)ψE?φ(h)/0. Define the L. S.
differential Δx: X -> X0(Y) by

Δ X ( Λ ) =

The above definition reduces to that given by Lasota and Strauss [17]
for single-valued maps F: Rn—>Rn.

REMARK 4.4. Berge [2] (p. 114) defines a map F: Γ/-> X(Y) to be
u.s.c at JC E [/ if for every open set G D F(x) there exists δ > 0 such that
F(x + h)CG if | | f t | |<δ. If F is u.s.c. in this sense it is also u.s.c.
according to Definition 2.3. Conversely let F be u.s.c. at x. To prove
that F is u.s.c. according to Berge's definition it is sufficient to show the
existence of a positive integer n such that F(x) + 2~"S C G. Indeed, in the
contrary case, for every n E N, we have (F(JC) + 2~"S) Π (Y\G)/ 0 . This
implies the existence of a sequence {yn + sn}, yπ E F(x), sn E 2~nS such
that yn + 5n E Y\G. By the compactness of F(JC) we can and do assume,
without loss of generality, y π ->yE F(x). Since yn + 5n -^ y and Y\G is
closed, y E Y\G. From the contradiction the claim follows. Since ([2] p.
119) the intersection of any family of u.s.c. (homogeneous) mappings is
u.s.c. (homogeneous) it remains proved that Δx if it exists is u.s.c.
(homogeneous). Clearly for any h E X, Ω(/t)= Γ\φe&φ(h) belongs to
3Γ0(Y), provided it is non void. Thus the existence of Δx is finally
established if we show that, for every h E X, Ω(h)/ 0 .

THEOREM 4.5. Let Ybe reflexive. LetF: U ->J{(Y) be Lipschitzian
at x E U. If 2P/ 0 the L. S. differential Δx of F at x exists. Moreover Δx is
u.s.c. and homogeneous.

Proof. After Remark 4.4 the only fact which requires a proof is that
Ω(fι)^0, hEX. Let h^O (the case h = 0 is trivial). There exists a
positive integer k such that
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+ h/n),F(x)) < . f .

Choose yn G F(x 4- h/n). Since the sequence {(yn - F(x))\\h/n H"1},̂ * is
bounded in the reflexive Banach space Y we assume, without loss of
generality that it converges weakly to some element z E.Y. Then

^ f y n F ( s ) ] ^
ZGCO I, . , I, \ C CO

{ H Λ / n | | J
ll i / π r _̂ ̂ u ) ll i / ll

| | A / n | | J π i > f c I I | Λ M | |

L e t φ b e any u p p e r di f ferent ia l of F at x a n d let δ > 0 c o r r e s p o n d . T h e r e
exis ts kλ^k such t h a t n^kλ i m p l i e s | | A M | | < δ . F ° r n^k{ we h a v e
F(x + h/n)CF(x)+φ(h/n). Therefore

=ψ

and || A || z E <p (A). Since φ is arbitrary || A || z G Ω(A).

If dim(Y)<°o the hypothesis ^ ^ 0 in the above theorem can be
omitted.

LEMMA 4.6. Let X and Y be separable Banach spaces. Let
F : U->3£(Y) be Lipschitzian at x with L. S. differential Δx. Then there
exists a sequence {φn} of upper differentials of F at x such that

(4.1) φ H ( h ) D φ Λ + ι { h ) , Δ X ( Λ ) = Π <Pn(h) A G X

Proof. Let Ψ be any upper differential of F at x. The graph GΨ of
Ψ is closed for Ψ is u.s.c. (Berge [2] p. 117). Since X and Y have
countable bases, X x Y has the same property and, by Lindelόf theorem
(Dunford and Schwartz [12] p. 12) there exists a sequence {Ψn} of upper
differentials such that Γ\φG^Gφ = Γ)x

n=ι GΨn. Then

implies Δx = Π^ = 1 ψ n . Since a finite intersection of u.s.c. (homogeneous)
maps is u.s.c. (homogeneous) the sequence {φn}, φn = Π " = 1 Ψ k consists of
upper differentials which satisfy the conclusions of the lemma.

The following result is useful in perturbation theory [10].
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THEOREM 4.7. Let X, Y be finite dimensional Banach spaces. Let
F:U-*Jf(Y) be Lipschitzian at x E I/, with constant L. Let
ΔX:X-*XO(Y) be continuous. Then the map Ve: ft »Δ x(ft)+e ||ft ||S,
e > 0, is an upper differential of F at x.

Proof. The map Ve from X to 9fo(Y) is continuous and homogene-
ous. To conclude that Ve is an upper differential of F at x we need to
show that there exists δ > 0 such that F(x + ft) C F(x) + Ve (ft) if || ft || < δ.
Suppose the contrary. There exists a sequence {ftn}, ftn^0, ftn-^0 such
that F(x + ftπ)j£F(x) + V€(hn). Thus there exists a sequence {yn}, yn E
F(JC + ftn), satisfying yn - F(x)£ V€(hn) or, equivalently,

(y n-F0c)) / | | f t j£ V€(hJ\\hn\\) n E N .

Since {ftπ/||ftπ||} and {(yn - F(x))/||ftπ ||} are bounded and X, Y are finite
dimensional, we can and do assume (without loss of generality)

(4.2) hj\\hn ||-» ft E X, (yn - F(x))/||ftn ||-> y E Y.

Suppose yEΔx(/i)+(€/2)S. This implies y + (e/4)S CΔ,(ft) +
(3/4)eS and for n sufficiently large, say n ^ k,
(yn -F(x))/||ftJ|EΔ,(ft)+(3/4)eS. Since Δ, is continuous at ft there
exists fc,£fc such that Δ,(ft)CΔx(ftJ||ftn ||) + (e/4)5 if n ^ fcj. Thus

(yn - F(x))/\\K || E Δx (ft, /||ft, ||) + βS = Ve(hn /||ftn ||)

if n ^ fc1? a contradiction.
Suppose y£Δ x(ft) + (β/2)5. Then if 6, is such that ( X e ^ e / 2 we

have S(y, 6^ Π Δt(ft) = 0 . By Lemma 4.6 there exists a sequence {φm} of
upper differentials of F at x satisfying (4.1).

We claim that there is k E N such that for all m î  k we have
5(y, 6j) Πφm(h) = 0. Let the claim be false. Since ^(ft)Dφ2(h) D ,
for every mEN there exists zm in both sets S(y,eλ)_ and
φm(h). Without loss of generality we assume zm -» z. Then z E S(y, 6j)
and z E φm{h) for every m £Ξ N, thus z E 5(y, 6i) ΓΊ Δx(ft), a contradic-
tion. The claim is true. This implies

B y ( 4 . 2 ) , f o r a l l /t s u f f i c i e n t l y l a r g e s a y n ^ r w e h a v e

(yn-F(x))l\\hn\\es(y,f), φm(hnl\\hn\\)CΨm(h) + ̂  S
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and so, by virtue of (4.3), (yπ - F(x))/||Λπ || £ φm(hj\\hn ||) i.e. yn£ F(x) +
ψm{hn) for all n g r. This implies F(x + fcn)£F(x)+ φm(ftπ), n ̂  r, a
contradiction since φm is an upper differential of F.

Next theorem shows that Dx = Δx if both exist.

THEOREM 4.8. Let X, Y fee Banach spaces. Let F: U-*%0(Y) be
Lipschitzian at x E ί / C l Then Δx = D x // both exist.

Proof. By hypothesis there exists δ > 0 such that
d(F(x + ft), F(x) 4- Dx(ft)) = o(ft) if || h \\ < 8. Let e > 0 . Then there exists
0 < δ, < 8 such that

(4.4) F(x + ft)CF(x)-f

(4.5) F(x) + D x(h)CF(jc + Λ ) + e | | Λ | | S if

Let φ be any upper differential of F. This implies the existence of
0 < δ 2 < δ , such _ that F(x + h)CF(x)+φ(h)9 if | | Λ | | < δ 2 . Then
F(x + ft)+ e ||ft || S CF(x) + φ(h)+ e \\h\\S and, by (4.5), F(x) + Dx{h)C
F( jc)+^( f t )+e | | f t | | S , if | | Λ | | < δ 2 . Thus, Dx(h)Cφ(h)+ e \\h \\S from
which one easily obtains Dx(h)Cφ(h), if ||Λ | |< δ2. Since φ is any upper
differential of F we have Dx(h)CΔx(h) and, by the homogeneity of Dx

and Δx, the inclusion holds for all h E X.
Next let us show the reverse inclusion. Let φ be any upper

differential of F. Define φλ(h) = φ(h)Γ) (Dx(h)+ e \\h \\S\ ft G X. We
claim that φx is an upper differential of F. From (4.4) and F(x 4- ft)C
F ( J C ) + φ(ft), which hold for ||ft || small enough, it follows that <pι(h)/ 0
in a neighborhood of the origin and, by homogeneity, for all h E X.
Trivially φ{(h) is convex, for every ft E X. Furthermore, for each ft E X,
Dx(h) is compact, for it is contained in Δx(ft), and so φi(ft) is compact
being the intersection of φ (ft) compact, and Dx (ft) 4- e || ft || 5 closed. Thus
φi maps X into 3Γ0(Y). Clearly φx is homogeneous and satisfies
F(x 4- ft)CF(x)4- φi(ft), for ||ft || sufficiently small. So to conclude that φγ

is an upper differential of F it remains to be shown that it is u.s.c. But
this follows at once from a result of Berge ([2] p. 117) because the
map ft » Dx (ft) 4- 6 || ft || S from X to <go( Y) is closed and <p: X -> 3Jfo( V)
is u.s.c. Then there exists δ 3 > 0 such that Δ x (/ι)Cφ 1 (/i)CD x (/i)4
6 ||ft ||S, if ||ft || < δ3, which implies Δx(ft/||ft | |)CDx(ft/||ft | |), 0 < ||ft || < δ3.
By homogeneity, Δ x(ft)CD x(ft) for every ft E X.

5. The differential of a y-Lipschitz function. In this
section it is shown that the differential Dx of a multifunction which is
γ-Lipschitz with constant k possesses this same property. Let us intro-
duce the following
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DEFINITION 5.1. Let AE$8(Y). The measure γ(A) of non-
compactness of A is defined by

γ(A) = inf{ί >0: there exists C E Jί(Y) such that ACC + tS}.

There are alternative (non equivalent) definitions of measures of
noncompactness ([5], [14], [16], [22]). That which we use seems to be
flexible enough to be adapted for the measure of noncompactness in the
weak topology as well [6]. The following theorem is well known.
However we include the proofs of those statements which are proved in a
different, perhaps simpler, way (see (f)-(i)).

THEOREM 5.2. The functional y has the properties:
(a) ACB implies y(A)^y(B)
(b) y(A)=y(A)
(c) γ(A) = 0 if and only if A is compact
(d) y(A+B)^y(A
(e) y(sA) = sy(A)
(f) γ ( A ) = γ ( c o A )

(g) U
(h) y(S)=l if dim(Y) =
(i)

Proof (a)-(e) follow easily from the Definition 5.1. (f) Let e >0.
There existγ(A)< t < γ(A)+ e and CeJf(Y) such that A C C + ί S .
This implies A CcoC + ίS where, by Mazur theorem (Dunford and
Schwartz [12] p. 416), cόC is compact. Thus cόA Ceo C + tS, being the
secondjnember convex and closed. The last inclusion shows γ(cδ A ) ^ t
and γ ( c o A ) ^ γ ( A ) . The reverse inequality is trivial.

(g) Let £ > 0 . There exist γ (A)< t < γ(A)+ 6 and CEX(Y)
such that A C C + tS. This implies A C(C U {0}) + tS C Cx + tS where
Cι = cδ(_C U {0}) is compact. Thus, for every u E [0, 5], uA C uCι + utS C
sCι + stS (since C] is convex and contains the origin) and we have
Uue[o,,] uA CsCΊ + stS. This implies γ(Uw e [ 0, s ] uA)fk st and
y(UuE[Os]uA)^sy(A). The reverse inequality is obvious. _

(h) Since 5 = {0} + 1 5 we have γ(S) ^ 1. Suppose γ(S) < 1. Then
there exist γ(5) < t < 1 and C G 3Γ( Y) such that S C C -h ίS. From this

and, by Lemma 2.1, ( 1 - t)S CcόC. Thus S C ( 1 - O^cδC and since the
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set on the right is compact such must be S. This is a contradiction since
dim(Y) = oo.

(i) Let bGB. Then A C A + B + { - 6 } implies

and (i) is true.

Denote by U a non void open subset of Y.

DEFINITION 5.3. F: U-*Jί(Y) is said to be y-Lipschitz, with
constant fc^O, if for every A E®(Y), A C I/, we have γ(F(A))^
fcγ(A).

Now we want to show that the multivalued differential of a γ-
Lipschitz map is γ-Lipschitz, with the same constant.

THEOREM 5.4. Let F: U-*JC{Y) be y-Lipschitz with constant k.
Let Dx be the differential of F at x E U. Then Dx is y-Lipschitz with the
same constant k.

Proof. There exists δ > 0 such that d(F(x + ft),F(jt) + Dx(h)) =
o(h) if ||ft || <& This implies

S if

Let A £@(Y), ACU. Let ί > 0 be such that ί | | A | | < δ . Let σ(t) =
suρ{o(ft): h EtA}. It is easy to see that limt^0 σ(t)/t = 0. Let h E ίA. We
have

F(x)+Dx{h)CF(x + *A)+ [σ(r)+ *2|| A ||2]S

F(jc) + Dx(rA)C

Using the properties of γ

7(Dx(tA))=

^ γ(F(jc

Thus

and, letting ί-^0, the desired result follows.
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COROLLARY 5.5 (Danes [4], Nussbaum [19], Sadovskiϊ [22]). Let
F: U —> Y be a single valued y-Lipschitz map with constant k. Let F'x be
the Frechet differential ofFat x E U. Then F'x is y-Lipschitz with the same
constant k.

DEFINITION 5.6. Let U = {x G X: \\x \\ > r}, r > 0 . F : I/->S8(Y) is
said to be differentiate at infinity if there exist a map Dx: X—> ^o(^),
which is u.s.c. and homogeneous, and a number δ > r such that

d(F(xlDx(x))=o(x) when ||x||>δ,

and limx_ocθ(jc)/||x || = 0. Dx is called the asymptotic differential of F.

DEFINITION 5.7. (KrasnoseΓskiϊ [15] p. 207). Let F : [/-» Y be a
continuous single valued map, U being as in the above definition. Let
there exist a linear map FL and a number δ>r such that F(x) =
FL(x)+z(x), if | | J C | | > 8 , and limx^.z(jc)/||jc|| = 0. Then F is said to be
asymptotically linear and FL is called the asymptotic derivative of F.

THEOREM 5.8. The asymptotic differential Dx of F : U-^^(Y) if
exists is unique.

Proof. Similar to that of Theorem 3.1.

THEOREM 5.9. Let U = {y G Y : | | y | | > r } , r > 0 . L e ί F : l/->9ίT(Y)
fee y-Lipschitz with constant k. Let Dx be the asymptotic differential of F.
77ten D x is y-Lipschitz with the same constant k.

Proof. Similar to that of Theorem 5.4.

Since a single valued continuous map is completely continuous if and
only if it is γ-Lipschitz with constant k = 0, we have

COROLLARY 5.10 (KrasnoseΓskiϊ [15] p. 207). The asymptotic deriva-
tive FL of a completely continuous single valued map F: [/-» Y is
completely continuous.
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