ON SEMI-SIMPLE GROUP ALGEBRAS II

EUGENE SPIEGEL AND ALLAN TROJAN

For F a field and G a group, let FG denote the group algebra of G over F. Let \mathscr{G} be a class of finite groups. Call the fields F and \overline{F} equivalent on \mathscr{G} if for all $G, H \in \mathscr{G}, FG \simeq FH$ if and only if $\overline{F}G \simeq \overline{F}H$. In [9] we began a study of this equivalence relation, discussing the case when \mathscr{G} consists of all finite p-groups, for p an odd prime. In this note we continue our study of the equivalence relation. Section one deals with some general results, section two solves the equivalence problem when \mathscr{G} is the class of all finite 2-groups, and some remarks about the results are made in section three.

1. Throughout this paper we assume that all group algebras FG are semi-simple, that is, the characteristic of F is zero or does not divide the order of G. As usual, ζ_n denotes a primitive *n*th root of unity, Z_p is the field of p elements, and Q_p is the p-adic field.

Let G be a finite group of order n, and K a field. Then $KG \simeq \sum_i A_i$, with $A_i \simeq [K]_{u_i} \otimes D_i$, where D_i is a finite dimensional division algebra over K and $[K]_{u_i}$ represents the ring of $u_i \times u_i$ matrices over K. Call D_i the division algebra of A_i . If C_i is the center of D_i then $K \subset C_i \subset K(\zeta_n)$.

Let K_1G (K_2G) represent the sum of those A_1 for which the division algebra is (is not) commutative. Then $KG \simeq K_1G \bigoplus K_2G$. If char $k \neq 0$, then $KG \simeq K_1G$.

THEOREM 1.1. Let L be a field extension of the field K. Let G and H be groups of order n. Suppose that L is linearly disjoint from $K(\zeta_n)$ over K, and $KG \simeq K_1G$. Then $KG \simeq KH$ if and only if $LG \simeq LH$.

Proof. If $KG \simeq KH$ then $LG \simeq KG \bigotimes_{K} L \simeq KH \bigotimes_{K} L \simeq LH$. Conversely, suppose $LG \simeq LH$. Then $KG \simeq \Sigma_{i}[K]_{u_{i}} \bigotimes K_{i}$ where $K \subset K_{i} \subset K(\zeta_{n})$. So

$$LG \approx \left(\Sigma[K]_{u_{i}} \bigotimes_{K} K_{i}\right) \bigotimes_{K} L$$

$$\approx \Sigma[K]_{u_{i}} \bigotimes_{K} \left(K_{i} \bigotimes_{K} L\right)$$

$$\approx \Sigma[K]_{u_{i}} \bigotimes_{K} K_{i}L \text{ since } K_{i} \text{ and } L \text{ are linearly disjoint.}$$

$$\approx \Sigma[L]_{u_{i}} \bigotimes_{L} L_{i} \text{ where } L_{i} = K_{i}L.$$

This shows that the numbers u_i are determined by LG. Also $L_i \cap K(\zeta_n) = LK_i \cap K(\zeta_n) = K_i$ by linear disjointness. So each L_i determines a K_i . Thus LG determines KG. This proves the converse.

COROLLARY 1.2. If the field K is algebraically closed in the extension field L, and $KG \simeq K_1G$, then $KG \simeq KH$ if and only if $LG \simeq LH$.

The next two results apply to the case where $KG \neq K_1G$.

THEOREM 1.3. Let L/K be a field extension of degree $r \neq \infty$. Let G, H be groups of order n. Assume that (r, n) = 1 and L is linearly disjoint from $K(\zeta_n)$ over K. Then $KG \simeq KH$ if and only if $LG \simeq LH$.

Proof. Suppose $LG \simeq LH$. As before, we show that LG determines KG. Let $KG \simeq \Sigma A_v$, where the A_i are simple algebras. Then $LG \simeq \Sigma \bar{A}_{i}$, where $\bar{A}_{i} \simeq A_{i} \bigotimes_{\kappa} L$. Each \bar{A}_{i} is also a simple algebra. For example, let $A = A_1 \approx [D]_{u}$, where D is the division algebra of A. Let C be the center of D. Then $K \subseteq C \subseteq K(\zeta_n)$, and so, by linear disjointness, $A \otimes_{\kappa} L \simeq [D]_{\mu} \otimes_{C} C \otimes_{\kappa} L \simeq [D]_{\mu} \otimes_{C} CL \simeq$ $[D \otimes_C CL]_u$, and [CL: C] = [L: K] = r is relatively prime to the index of D, (ind D). Consequently, $D \bigotimes_C CL$ is also division а algebra. (Corollary, Theorem 20, p. 60, [1].) It is the division algebra of the simple algebra $A \otimes_{\kappa} L$, and its center is *CL*. So what is necessary is to check that $A \otimes_{\kappa} L$ determines A uniquely, that is, $D \otimes_{C} CL$ determines D. But the center C of D is uniquely determined by $CL \cap K(\zeta_n) = C$. Now suppose $D \otimes_{\kappa} L = D' \otimes_{\kappa} L$ for some second division algebra, D', whose center also is C. Let D^{-1} be the inverse of Din the Brauer group. Then, for some integers l and v:

$$[CL]_{l} \simeq [C]_{l} \otimes L \simeq D^{-1} \bigotimes_{C} D \bigotimes_{K} L \simeq D^{-1} \bigotimes_{C} D' \bigotimes_{K} L \simeq [D'']_{v} \bigotimes_{K} L$$
$$\simeq \left[D'' \bigotimes_{C} CL \right]_{v}$$

where D'' is a division algebra whose center, again, is *C*. So *CL* splits D''. But $(r, \operatorname{ind} D'') = 1$ because $\operatorname{ind} D''$ divides $(\operatorname{ind} D)^2$. So $D'' \simeq C$, so that D^{-1} is the inverse of D', that is, D = D'.

THEOREM 1.4. Suppose L is a purely transcendental extension of the field K. Then $KG \simeq KH$ if and only if $LG \simeq LH$.

Proof. We show once again that LG determines KG.

Case i. L = K(x), x transcendental.

Again, $KG \approx \sum [D_i]_{u_i}$, D_i a division algebra with center $C_i \supset K$. And again we examine a particular $D_i = D$, $(C_i = C, u_i = u)$. Then $L \bigotimes_K D = L \bigotimes_K C \bigotimes_C D \approx LC \bigotimes_C D$ is simple. (68.1 of [5].) So there is an integer, t, and a division algebra, E, such that $L \bigotimes_K D \approx [E]_i$. If $t \neq 1$, $L \bigotimes_K D$ must have zero-divisors. Suppose $\alpha, \beta \in L \bigotimes_K D$ with $\alpha \cdot \beta = 0$. Then $\alpha = \sum r_i(x) \bigotimes a_i, \beta = \sum s_i(x) \bigotimes b_i$, where $r_i(x), s_i(x) \in L$ and $a_i, b_i \in D$. Multiplying by a suitable $p(x) \otimes 1 \in L \otimes D$ we can assume that $r_i(x), s_i(x)$ are polynomials in x. We then obtain an equation of the form $0 = (\sum c_i x^i) \cdot (\sum d_i x^i)$ with $c_i, d_i \in D$. Obviously either $\alpha = 0$ or $\beta = 0$. So t = 1 and $L \bigotimes D = E$ is also a division algebra. And E determines D. For suppose $L \bigotimes_K D \approx L \bigotimes_K D'$. Then, as in the previous proof, there exist integers u, v such that:

$$[LC]_{u} \simeq \left[L\bigotimes_{K}C\right]_{u} \simeq L\bigotimes_{K}[C]_{u} \simeq L\bigotimes_{K}D\bigotimes_{C}D^{-1} \simeq L\bigotimes_{K}D'\bigotimes_{C}D^{-1}$$
$$\simeq L\bigotimes_{K}[D'']_{v} \simeq \left[L\bigotimes_{K}D''\right]_{v}$$

for some division algebra D'' with center C. But since $L \otimes_{\kappa} D''$ is a division algebra, v = u and $L \otimes_{\kappa} D'' \simeq LC$. Thus D'' = C and so $D^{-1} = (D')^{-1}$, i.e. D = D'.

Case ii. L has finite transcendence degree over K.

The result follows immediately from i by induction.

Case iii. I is an index set and $L = K\{x_i \mid i \in I\}$.

Let $G = \{g_1, \dots, g_n\}$, $H = \{h_1, \dots, h_n\}$ and suppose $\psi: LG \to LH$ is an *L*-algebra onto isomorphism. Write $\psi(g_i) = \sum_{j=1}^n \alpha_{ij}h_j$, $i = 1, \dots, n$ and $\alpha_{ij} \in L$. Then each α_{ij} is the quotient of two polynomials with coefficients in *K*, each involving only a finite number of the indeterminates $\{x_i \mid i \in I\}$. Let *B* be the set of all indeterminates which appear in any of the α_{ij} , $1 \leq i, j \leq n$. Then $|B| < \infty$. Also $\psi(g_i) \in K(B)H$, i = $1, \dots, n$. And $\psi: K(B)G \to K(B)H$. But ψ is a K(B) isomorphism of the finite dimensional vector space K(B)G into K(B)H. So it is onto. So $LG \simeq LH$ implies $K(B)G \simeq K(B)H$. Since K(B) is a purely transcendental extension of *K*, of finite transcendence degree, the result follows by Case ii.

2. Let K be a field. Let $\gamma_K(n) = \deg(K(\zeta_{2^{n+2}})/K(\zeta_{2^{n+1}})))$. We call $\{\gamma_K(n)\}\ n = 1, 2, \cdots$ the 2-sequence of K. This sequence has one of the following forms:

 $1, 1, 1, \cdots \\ 1, 1, 1, \cdots, 1, 2, 2, \cdots \\ 2, 2, 2, \cdots$

Define:

$$\operatorname{ind}_{2} K = \begin{cases} 1 & \text{if } \gamma_{K}(1) = 2 \\ n & \text{if } \gamma_{K}(n) = 2, \ \gamma_{K}(n-1) = 1, \ n \ge 2 \\ \infty & \text{if } \gamma_{K}(n) = 1, \ n = 1, 2, 3, \cdots \end{cases}$$
$$t(K) = \begin{cases} 1 & \text{if } X^{2} + Y^{2} = -1 \text{ is solvable in } K \\ 0 & \text{if } X^{2} + Y^{2} = -1 \text{ is not solvable in } K \end{cases}$$
$$O(K) = \begin{cases} 1 & \text{if } X^{2} + 1 = 0 \text{ is solvable in } K \\ 0 & \text{if } X^{2} + 1 = 0 \text{ is not solvable in } K. \end{cases}$$

We call $ind_2(K)$, t(K) and O(K) the 2-invariants of K. In [8] the following proposition was proven:

PROPOSITION 2.1. Let K, L be fields. Then K and L are equivalents on the class of all finite abelian 2-groups if and only if O(K) = O(L) and $ind_2(K) = ind_2(L)$.

This result is generalized here to all finite 2-groups.

LEMMA 2.2. Let p be an odd prime. Then the equation $X^2 + Y^2 = -1$ is solvable in Z_p and in Q_p .

Proof. Any homogeneous polynomial equation of degree 2 in 3 variables has a nontrivial solution over a finite field, $X^2 + Y^2 + Z^2 = 0$ in particular. This leads to a solution of $X^2 + Y^2 = -1$. Let $a, b \in Z_p$ satisfy $a^2 + b^2 = -1$. Regarding a as an integer in Q_p , the equation $Y^2 = -1 - a^2$ is solvable in Z_p and hence in Q_p . This yields a solution of $X^2 + Y^2 = -1$ in Q_p .

LEMMA 2.3. Let F be a field of characteristic 0. Let a, b be elements transcendental over F such that $a^2 + b^2 = -1$. Then the algebraic closure of F in F(a, b) is F.

Proof. deg(F(a, b)/F(a)) = 2. So if $\alpha \in F(a, b)$ and α is algebraic over F then deg($F(\alpha)/F$) ≤ 2 . Suppose $\alpha \notin F$ and $\alpha = \sqrt{d}$, $d \in F$. Then $F(a, b) = F(a, \sqrt{d})$. So $b = p(a) + q(a)\sqrt{d}$ for some $p(a), q(a) \in F(a)$. $-1 - a^2 = p^2(a) + q^2(a)d + 2p(a)q(a)\sqrt{d}$. Thus p(a) = 0 or q(a) = 0. If q(a) = 0, then $b \in F(a)$, which is impossible. So $b = q(a)\sqrt{d}$. Write $q(a) = q_1(a)/q_2(a)$ where $q_1(a), q_2(a) \in F[a]$. Now $(-1)(1 + a^2) = d(q_1(a))^2/(q_2(a))^2$. But $1 + a^2$ is either irreducible in F[a] or the product of two primes, while the prime

556

factorization of $(q_1(a))^2/(q_2(a))^2$ involves only squares of primes. This contradicts the assumption that $\alpha \notin F$.

If $n \ge 2$ is a positive integer, the field $Q(\zeta_{2^n})$ contains a unique cyclic, real extension of Q, of degree 2^{n-2} . Call this field R_n . Then $R_2 \subseteq R_3 \subseteq R_4 \subseteq \cdots$.

THEOREM 2.4. Let K, L be fields. Then K and L are equivalent on the class of all finite 2-groups if and only if t(K) = t(L), O(K) = O(L), $ind_2(K) = ind_2(L)$.

Proof. Let \mathcal{H} be the classical quaternion algebra of Hamilton over Q. Let F be a field extension of Q. Then F splits \mathcal{H} if and only if t(F) = 1. ([3], problem 12, page 149.) Suppose K and L are equivalent on the class of all finite 2-groups. By Proposition 2.1, O(K) = O(L) and $\operatorname{ind}_2(K) = \operatorname{ind}_2(L)$. Let G be the quaternion group of order 8 and H the dihedral group of order 8. Then $QG \simeq Q \oplus Q \oplus Q \oplus Q \oplus \mathcal{H}$ and $QH \simeq Q \oplus Q \oplus Q \oplus Q \oplus [Q]_2$. (This can be deduced, for example, from the examples on page 339 of [5], plus the fact that the characters of G and H are all real.) So $KG \neq KH$ if and only if \mathcal{H} does not split over K, i.e. t(K) = 0.

Conversely, suppose t(K) = t(L), O(K) = O(L), $ind_2(K) = ind_2(L)$.

Case i. t(K) = t(L) = 0.

Then O(K) = O(L) = 0. By Lemma 2.2 char K = char L = 0. Assume first that $\text{ind}_2 K = n < \infty$. Then $R_{n+1} \subset K$, $R_{n+1} \subset L$, and the 2-invariants of R_{n+1} and K agree. It is sufficient to show that R_{n+1} and K are equivalent on the class of all finite 2-groups. Let G be a group of order 2'. Write $R_{n+1}G \simeq R_{n+1,1}G \bigoplus R_{n+1,2}G$ and $KG \simeq K_1G \bigoplus K_2G$ as in §1. But the only division algebra that can occur at a simple component of KG (or $R_{n+1}G$) is $\mathcal{H} \otimes_Q K$ (or $\mathcal{H} \otimes_Q R_{n+1}$). ([7].) So K_2G determines $R_{n+1,2}G$. As in the proof of Theorem 1.1, K_1G determines $R_{n+1,1}G$. So KG determines LG.

If $\operatorname{ind}_2 K = \infty$, and |G| = |H| = 2', then $R_r \subset K$ and $R_r \subset L$, so that by an argument similar to the previous, $KG \simeq KH$ if and only if $R_rG \simeq R_rH$ if and only if $LG \simeq LH$.

Case ii. t(K) = t(L) = 1 and char K = char L = 0.

Now, if G is a 2-group, $KG \approx K_1G$. Suppose $\operatorname{ind}_2(K) = n < \infty$. If O(K) = 1, then $Q(\zeta_{2^{n+1}}) \subset K$ and $Q(\zeta_{2^{n+1}}) \subset L$. The result follows by Theorem 1.1. If O(K) = 0, then $R_{n+1} \subset K$. Let a, b be transcendental over K, satisfying $a^2 + b^2 = -1$. Then K is algebraically closed in K(a, b). By Corollary 1.2, K and K(a, b) are equivalent on finite

2-groups. $R_{n+1}(a, b) \subset K(a, b)$. So by Proposition 1.1 of [9] $R_{n+1}(a, b, \zeta_{2'})$ and K(a, b) are linearly disjoint over $R_{n+1}(a, b)$, because $R_{n+1}(a, b, \zeta_{2'}) \cap K(a, b) = R_{n+1}(a, b, \alpha)$ for some $\alpha \in Q(\zeta_{2'})$, and by Lemma 2.3, $\alpha \in K$ and $R_{n+1}(a, b, \zeta_{2'}) \cap K(a, b) = R_{n+1}(a, b)$. Therefore, by Theorem 1.1, $R_{n+1}(a, b)$ and K(a, b) are equivalent on 2groups. Similarly, let \bar{a}, \bar{b} be transcendental over L, satisfying $\bar{a}^2 + \bar{b}^2 =$ -1. Then $R_{n+1}(\bar{a}, \bar{b})$ and L are equivalent on all finite 2-groups. It is sufficient, therefore, to check that $R_{n+1}(a, b)$ and $R_{n+1}(\bar{a}, \bar{b})$ are equivalent on finite 2-groups. But $\psi: R_{n+1}(a, b) \rightarrow R_{n+1}(\bar{a}, \bar{b})$ given by $\psi(r) = r$ if $r \in R_{n+1}, \psi(a) = \bar{a}, \psi(b) = \bar{b}$ extends to an isomorphism of $R_{n+1}(a, b)G$ onto $R_{n+1}(\bar{a}, \bar{b})G$. If $\operatorname{ind}_2 K = \infty$, proceed as in Case i.

Case iii. t(K) = t(L) = 1, char K = p > 2.

Suppose $\operatorname{ind}_2 K = n < \infty$. It is sufficient to show that there is a field \overline{K} of characteristic 0 with the same 2-invariants as those of K, and which is equivalent to K on the class of all finite 2-groups. If O(K) = 0, let $T = Z_p$. If O(K) = 1, let $T = Z_p(\zeta_p^{n+1})$. In either case $T \subset K$, T and K have the same 2-invariants, and by Theorem 1.1 T and K are equivalent on finite 2-groups. Let \overline{K} be a totally unramified extension of Q_p which has residue class field T. By Proposition 2.4 of [9] and Lemma 2.2, \overline{K} and T have the same 2-invariants and are equivalent on the class of finite 2-groups. For $\operatorname{ind}_2 K = \infty$, we proceed again as in Case i.

COROLLARY 2.5. Q and Q_2 are equivalent on the class of all finite 2-groups.

Proof. By Eisenstein's criterion, the 2'-th cyclotomic polynomial is irreducible over Q_2 . Hence $\operatorname{ind}_2(Q_2) = \operatorname{ind}_2(Q)$. We must check $t(Q_2) = 0$.

If $X^2 + Y^2 = -1$ is solvable in Q_2 , with X, Y 2-adic integers, then the equation $X^2 + Y^2 \equiv -1 \pmod{8}$ is solvable, a contradiction. Otherwise, we can assume the solution of $X^2 + Y^2 = -1$ in Q_2 has the form $X = \alpha/2^r$ $y = \beta/2^r$ with r > 0, α and β 2-adic integers and $\alpha \equiv 1 \pmod{2}$. Then $\alpha^2 + \beta^2 \equiv 0 \pmod{4}$. This leads to a solution of $Z^2 \equiv -1 \pmod{4}$, a contradiction.

3. (i) The hypotheses of Theorem 1.3 are all necessary. The two non-abelian groups of order 8 suffice to check this.

(ii) In Theorem 1.4 we cannot just assume that K is algebraically closed in L. For if K = Q, L = Q(a, b), with a, b transcendental over Q and $a^2 + b^2 = -1$, by Theorem 2.4, K and L are not equivalent on 2-groups.

(iii) If K is an algebraic number field, by the results in [6] we can say exactly when $X^2 + Y^2 = -1$ is solvable in K.

(iv) In [9] we asked whether there is a prime field Z_q that is equivalent to Q on the class of all p-groups, for p odd. This says that $q^{p-1} \neq 1 \mod p^2$ for all $p \neq q$. Such primes q are studied in relation to the Fermat problem, and numerical indications can be found in [4].

REFERENCES

1. A. A. Albert, *Structure of Algebras*, Amer. Math. Soc. Colloquium Publications, Vol. 24, Providence, R.I., 1961.

2. Benard, Quaternion Constituents of Group Algebras, Proceedings, Amer. Math. Soc., 30 (1971), 217-219.

3. Bourbaki, Eléments de Mathématique, Fascicule 23.

4. Brillhard, Jonascia and Weinberger, On the Fermat Quotient, in Computers in Number Theory, 1971, Academic Press, Atkin and Birch editors, p. 213-222.

5. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.

6. Fein, Gordon and Smith, On the Representations of -1 as a Sum of Two Squares in an Algebraic Number Field, Number Theory, **3** (1971), 310–315.

7. Roquette, Realisierung von Darstellungen Endlicher Nilpotenter Gruppen, Archiv der Math., 9 (1958), 241-250.

8. Spiegel, On Isomorphisms of Abelian Group Algebras, Canad. J. Math., 27 (1975), 155-161.

9. Spiegel and Trojan, On Semi-Simple Group Algebras I, Pacific J. Math., 59 (1975), 549-555.

Received July 22, 1975

THE UNIVERSITY OF CONNECTICUT AND Atkinson College