ON SEMI-SIMPLE GROUP ALGEBRAS II

Eugene Spiegel and Allan Trojan

For F a field and G a group, let $F G$ denote the group algebra of G over F. Let \mathscr{G} be a class of finite groups. Call the fields F and \bar{F} equivalent on \mathscr{G} if for all $G, H \in \mathscr{G}, F G \simeq F H$ if and only if $\bar{F} G \simeq \bar{F} H$. In [9] we began a study of this equivalence relation, discussing the case when \mathscr{G} consists of all finite p-groups, for p an odd prime. In this note we continue our study of the equivalence relation. Section one deals with some general results, section two solves the equivalence problem when \mathscr{G} is the class of all finite 2 -groups, and some remarks about the results are made in section three.

1. Throughout this paper we assume that all group algebras $F G$ are semi-simple, that is, the characteristic of F is zero or does not divide the order of G. As usual, ζ_{n} denotes a primitive nth root of unity, Z_{p} is the field of p elements, and Q_{p} is the p-adic field.

Let G be a finite group of order n, and K a field. Then $K G \simeq \Sigma_{\imath} A_{i}$, with $A_{i} \simeq[K]_{u_{t}} \otimes D_{i}$, where D_{t} is a finite dimensional division algebra over K and $[K]_{u_{i}}$ represents the ring of $u_{i} \times u_{i}$ matrices over K. Call D_{i} the division algebra of A_{i}. If C_{t} is the center of D_{t} then $K \subset C_{t} \subset K\left(\zeta_{n}\right)$.

Let $K_{1} G\left(K_{2} G\right)$ represent the sum of those A_{t} for which the division algebra is (is not) commutative. Then $K G \simeq K_{1} G \bigoplus K_{2} G$. If char $k \neq 0$, then $K G \simeq K_{1} G$.

Theorem 1.1. Let L be a field extension of the field $K . \quad$ Let G and H be groups of order n. Suppose that L is linearly disjoint from $K\left(\zeta_{n}\right)$ over K, and $K G \simeq K_{1} G$. Then $K G \simeq K H$ if and only if $L G \simeq L H$.

Proof. If $K G \simeq K H$ then $L G \simeq K G \otimes_{K} L \simeq K H \otimes_{K} L \simeq L H$.
Conversely, suppose $L G \simeq L H$. Then $K G \simeq \Sigma_{i}[K]_{u,} \otimes K_{i}$ where $K \subset K_{t} \subset K\left(\zeta_{n}\right)$. So

$$
\begin{aligned}
L G & \simeq\left(\Sigma[K]_{u_{i}} \bigotimes_{K} K_{t}\right) \bigotimes_{K} L \\
& \simeq \Sigma[K]_{u_{i}} \bigotimes_{K}\left(K_{t} \bigotimes_{K} L\right) \\
& \simeq \Sigma[K]_{u_{i}} \bigotimes_{K} K_{i} L \text { since } K_{t} \text { and } L \text { are linearly disjoint. } \\
& \simeq \Sigma[L]_{u_{i}} \bigotimes_{L} L_{i} \text { where } L_{i}=K_{i} L .
\end{aligned}
$$

This shows that the numbers u_{i} are determined by $L G$. Also $L_{i} \cap$ $K\left(\zeta_{n}\right)=L K_{t} \cap K\left(\zeta_{n}\right)=K_{t}$ by linear disjointness. So each L_{t} determines a K_{r}. Thus $L G$ determines $K G$. This proves the converse.

Corollary 1.2. If the field K is algebraically closed in the extension field L, and $K G \simeq K_{1} G$, then $K G \simeq K H$ if and only if $L G \simeq L H$.

The next two results apply to the case where $K G \neq K_{1} G$.
Theorem 1.3. Let L / K be a field extension of degree $r \neq \infty$. Let G, H be groups of order n. Assume that $(r, n)=1$ and L is linearly disjoint from $K\left(\zeta_{n}\right)$ over K. Then $K G \simeq K H$ if and only if $L G \simeq L H$.

Proof. Suppose $L G \simeq L H$. As before, we show that $L G$ determines $K G$. Let $K G \simeq \Sigma A_{i}$, where the A_{i} are simple algebras. Then $L G \simeq \Sigma \bar{A}_{i}$, where $\bar{A}_{t} \simeq A_{i} \otimes_{K} L$. Each \bar{A}_{i} is also a simple algebra. For example, let $A=A_{1} \simeq[D]_{u}$, where D is the division algebra of A. Let C be the center of D. Then $K \subset C \subset K\left(\zeta_{n}\right)$, and so, by linear disjointness, $A \otimes_{K} L \simeq[D]_{u} \otimes_{C} C \otimes_{K} L \simeq[D]_{u} \otimes_{C} C L \simeq$ $\left[D \otimes_{C} C L\right]_{u}$, and $[C L: C]=[L: K]=r$ is relatively prime to the index of D, (ind D). Consequently, $D \otimes_{C} C L$ is also a division algebra. (Corollary, Theorem 20, p. 60, [1].) It is the division algebra of the simple algebra $A \otimes_{K} L$, and its center is $C L$. So what is necessary is to check that $A \otimes_{K} L$ determines A uniquely, that is, $D \otimes_{C} C L$ determines D. But the center C of D is uniquely determined by $C L \cap K\left(\zeta_{n}\right)=C$. Now suppose $D \otimes_{K} L=D^{\prime} \otimes_{K} L$ for some second division algebra, D^{\prime}, whose center also is C. Let D^{-1} be the inverse of D in the Brauer group. Then, for some integers l and v :

$$
\begin{aligned}
{[C L]_{l} \simeq[C]_{l} \otimes L } & \simeq D^{-1} \otimes_{C} D \otimes_{K} L \simeq D^{-1} \otimes_{C} D^{\prime} \bigotimes_{K} L \simeq\left[D^{\prime \prime}\right]_{v} \bigotimes_{K} L \\
& \simeq\left[D^{\prime \prime} \otimes_{C} C L\right]_{v}
\end{aligned}
$$

where $D^{\prime \prime}$ is a division algebra whose center, again, is C. So $C L$ splits $D^{\prime \prime}$. But $\left(r\right.$, ind $\left.D^{\prime \prime}\right)=1$ because ind $D^{\prime \prime}$ divides (ind $\left.D\right)^{2} . \quad$ So $D^{\prime \prime} \simeq C$, so that D^{-1} is the inverse of D^{\prime}, that is, $D=D^{\prime}$.

Theorem 1.4. Suppose L is a purely transcendental extension of the field K. Then $K G \simeq K H$ if and only if $L G \simeq L H$.

Proof. We show once again that $L G$ determines $K G$.
Case i. $L=K(x), x$ transcendental.

Again, $K G \simeq \Sigma\left[D_{i}\right]_{u_{i}}, \quad D_{1}$ a division algebra with center $C_{1} \supset$ K. And again we examine a particular $D_{i}=D,\left(C_{1}=C, u_{t}=u\right)$. Then $L \otimes_{K} D \simeq L \otimes_{K} C \otimes_{C} D \simeq L C \otimes_{C} D$ is simple. (68.1 of [5].) So there is an integer, t, and a division algebra, E, such that $L \otimes_{K} D \simeq[E]_{r}$. If $t \neq 1, L \otimes_{K} D$ must have zero-divisors. Suppose $\alpha, \beta \in L \otimes_{K} D$ with $\alpha \cdot \beta=0$. Then $\alpha=\Sigma r_{i}(x) \otimes a_{i}, \beta=\Sigma s_{i}(x) \otimes b_{i}$, where $r_{i}(x), s_{i}(x) \in L$ and $a_{t}, b_{t} \in D$. Multiplying by a suitable $p(x) \otimes 1 \in L \otimes D$ we can assume that $r_{1}(x), s_{i}(x)$ are polynomials in x. We then obtain an equation of the form $0=\left(\sum c_{1} x^{\prime}\right) \cdot\left(\sum d_{t} x^{\prime}\right)$ with $c_{t}, d_{1} \in D$. Obviously either $\alpha=0$ or $\beta=0$. So $t=1$ and $L \otimes D=E$ is also a division algebra. And E determines D. For suppose $L \otimes_{K} D \simeq L \otimes_{K} D^{\prime}$. Then, as in the previous proof, there exist integers u, v such that:

$$
\begin{aligned}
{[L C]_{u} } & \simeq\left[L \bigotimes_{K} C\right]_{u} \simeq L \bigotimes_{K}[C]_{u} \simeq L \bigotimes_{K} D \otimes_{C} D^{-1} \simeq L \bigotimes_{K} D^{\prime} \bigotimes_{C} D^{-1} \\
& \simeq L \bigotimes_{K}\left[D^{\prime \prime}\right]_{v} \simeq\left[L \bigotimes_{K} D^{\prime \prime}\right]_{v}
\end{aligned}
$$

for some division algebra $D^{\prime \prime}$ with center C. But since $L \bigotimes_{K} D^{\prime \prime}$ is a division algebra, $v=u$ and $L \otimes_{K} D^{\prime \prime} \simeq L C$. Thus $D^{\prime \prime}=C$ and so $D^{-1}=$ $\left(D^{\prime}\right)^{-1}$, i.e. $D=D^{\prime}$.

Case ii. L has finite transcendence degree over K.
The result follows immediately from i by induction.
Case iii. I is an index set and $L=K\left\{x_{1} \mid i \in I\right\}$.
Let $G=\left\{g_{1}, \cdots, g_{n}\right\}, H=\left\{h_{1}, \cdots, h_{n}\right\}$ and suppose $\psi: L G \rightarrow L H$ is an L-algebra onto isomorphism. Write $\psi\left(g_{t}\right)=\sum_{j=1}^{n} \alpha_{i j} h_{j}, i=1, \cdots, n$ and $\alpha_{i j} \in L$. Then each $\alpha_{t j}$ is the quotient of two polynomials with coefficients in K, each involving only a finite number of the indeterminates $\left\{x_{1} \mid i \in I\right\}$. Let B be the set of all indeterminates which appear in any of the $\alpha_{i j}, 1 \leqq i, j \leqq n$. Then $|B|<\infty$. Also $\psi\left(g_{i}\right) \in K(B) H, i=$ $1, \cdots, n$. And $\psi: K(B) G \rightarrow K(B) H$. But ψ is a $K(B)$ isomorphism of the finite dimensional vector space $K(B) G$ into $K(B) H$. So it is onto. So $L G \simeq L H$ implies $K(B) G \simeq K(B) H$. Since $K(B)$ is a purely transcendental extension of K, of finite transcendence degree, the result follows by Case ii.
2. Let K be a field. Let $\gamma_{K}(n)=\operatorname{deg}\left(K\left(\zeta_{2^{n+2}}\right) / K\left(\zeta_{2^{n+1}}\right)\right)$. We call $\left\{\gamma_{K}(n)\right\} n=1,2, \cdots$ the 2 -sequence of K. This sequence has one of the following forms:
$1,1,1, \cdots$
$1,1,1, \cdots, 1,2,2, \cdots$
$2,2,2, \cdots$.

Define:

$$
\begin{gathered}
\operatorname{ind}_{2} K=\left\{\begin{array}{l}
1 \text { if } \gamma_{K}(1)=2 \\
n \text { if } \gamma_{K}(n)=2, \gamma_{K}(n-1)=1, n \geqq 2 \\
\infty \text { if } \gamma_{K}(n)=1, n=1,2,3, \cdots
\end{array}\right. \\
t(K)=\left\{\begin{array}{l}
1 \text { if } X^{2}+Y^{2}=-1 \text { is solvable in } K \\
0 \text { if } X^{2}+Y^{2}=-1 \text { is not solvable in } K .
\end{array}\right. \\
O(K)= \begin{cases}1 & \text { if } X^{2}+1=0 \text { is solvable in } K \\
0 \text { if } X^{2}+1=0 \text { is not solvable in } K .\end{cases}
\end{gathered}
$$

We call $\operatorname{ind}_{2}(K), t(K)$ and $O(K)$ the 2-invariants of K. In [8] the following proposition was proven:

Proposition 2.1. Let K, L be fields. Then K and L are equivalents on the class of all finite abelian 2-groups if and only if $O(K)=O(L)$ and $\operatorname{ind}_{2}(K)=\operatorname{ind}_{2}(L)$.

This result is generalized here to all finite 2-groups.
Lemma 2.2. Let p be an odd prime. Then the equailon $X^{2}+Y^{2}=$ -1 is solvable in Z_{p} and in Q_{p}.

Proof. Any homogeneous polynomial equation of degree 2 in 3 variables has a nontrivial solution over a finite field, $X^{2}+Y^{2}+Z^{2}=0$ in particular. This leads to a solution of $X^{2}+Y^{2}=-1$. Let $a, b \in Z_{p}$ satisfy $a^{2}+b^{2}=-1$. Regarding a as an integer in Q_{p}, the equation $Y^{2}=-1-a^{2}$ is solvable in Z_{p} and hence in Q_{p}. This yields a solution of $X^{2}+Y^{2}=-1$ in Q_{p}.

Lemma 2.3. Let F be a field of characteristic 0 . Let a, b be elements transcendental over F such that $a^{2}+b^{2}=-1$. Then the alge braic closure of F in $F(a, b)$ is F.

Proof. $\quad \operatorname{deg}(F(a, b) / F(a))=2$. So if $\alpha \in F(a, b)$ and α is algebraic over F then $\operatorname{deg}(F(\alpha) / F) \leqq 2$. Suppose $\alpha \notin F \quad$ and $\alpha=\sqrt{d}$, $d \in F$. Then $F(a, b)=F(a, \sqrt{d})$. So $b=p(a)+q(a) \sqrt{d}$ for some $p(a), q(a) \in F(a) . \quad-1-a^{2}=p^{2}(a)+q^{2}(a) d+2 p(a) q(a) \sqrt{d}$. Thus $p(a)=0 \quad$ or $\quad q(a)=0$. If $q(a)=0$, then $b \in F(a)$, which is impossible. So $b=q(a) \sqrt{d}$. Write $\quad q(a)=q_{1}(a) / q_{2}(a)$ where $q_{1}(a), q_{2}(a) \in F[a]$. Now $(-1)\left(1+a^{2}\right)=d\left(q_{1}(a)\right)^{2} /\left(q_{2}(a)\right)^{2}$. But $1+a^{2}$ is either irreducible in $F[a]$ or the product of two primes, while the prime
factorization of $\left(q_{1}(a)\right)^{2} /\left(q_{2}(a)\right)^{2}$ involves only squares of primes. This contradicts the assumption that $\alpha \notin F$.

If $n \geqq 2$ is a positive integer, the field $Q\left(\zeta_{2^{n}}\right)$ contains a unique cyclic, real extension of Q, of degree 2^{n-2}. Call this field R_{n}. Then $\boldsymbol{R}_{2} \subset \boldsymbol{R}_{3} \subset$ $R_{4} \subset \cdots$.

Theorem 2.4. Let K, L be fields. Then K and L are equivalent on the class of all finite 2-groups if and only if $t(K)=t(L), O(K)=O(L)$, $\operatorname{ind}_{2}(K)=\operatorname{ind}_{2}(L)$.

Proof. Let \mathscr{H} be the classical quaternion algebra of Hamilton over Q. Let F be a field extension of Q. Then F splits \mathscr{H} if and only if $t(F)=1$. ([3], problem 12, page 149.) Suppose K and L are equivalent on the class of all finite 2-groups. By Proposition 2.1, $O(K)=O(L)$ and $\operatorname{ind}_{2}(K)=\operatorname{ind}_{2}(L)$. Let G be the quaternion group of order 8 and H the dihedral group of order 8. Then $Q G \simeq Q \oplus Q \oplus Q \oplus Q \oplus \mathscr{H}$ and $Q H \simeq Q \oplus Q \oplus Q \oplus Q \oplus[Q]_{2}$. (This can be deduced, for example, from the examples on page 339 of [5], plus the fact that the characters of G and H are all real.) \quad So $K G \neq K H$ if and only if \mathscr{H} does not split over K, i.e. $t(K)=0$.

Conversely, suppose $t(K)=t(L), O(K)=O(L), \operatorname{ind}_{2}(K)=\operatorname{ind}_{2}(L)$.
Case i. $\quad t(K)=t(L)=0$.
Then $O(K)=O(L)=0$. By Lemma $2.2 \quad \operatorname{char} K=\operatorname{char} L=$ 0 . Assume first that $\operatorname{ind}_{2} K=n<\infty$. Then $R_{n+1} \subset K, R_{n+1} \subset L$, and the 2-invariants of R_{n+1} and K agree. It is sufficient to show that R_{n+1} and K are equivalent on the class of all finite 2-groups. Let G be a group of order 2^{r}. Write $R_{n+1} G \simeq R_{n+1,1} G \oplus R_{n+1,2} G$ and $K G \simeq K_{1} G \oplus K_{2} G$ as in §1. But the only division algebra that can occur at a simple component of $K G$ (or $R_{n+1} G$) is $\mathscr{H} \otimes_{Q} K$ (or $\mathscr{H} \otimes_{Q} R_{n+1}$). ([7].) So $K_{2} G$ determines $R_{n+1,2} G$. As in the proof of Theorem 1.1, $K_{1} G$ determines $R_{n+1,1} G$. So $K G$ determines $L G$.

If $\operatorname{ind}_{2} K=\infty$, and $|G|=|H|=2^{r}$, then $R_{r} \subset K$ and $R_{r} \subset L$, so that by an argument similar to the previous, $K G \simeq K H$ if and only if $R_{r} G \simeq R_{r} H$ if and only if $L G \simeq L H$.

Case ii. $\quad t(K)=t(L)=1$ and $\operatorname{char} K=\operatorname{char} L=0$.
Now, if G is a 2-group, $K G \simeq K_{1} G$. Suppose $\operatorname{ind}_{2}(K)=n<\infty$. If $O(K)=1$, then $Q\left(\zeta_{2^{n+1}}\right) \subset K$ and $Q\left(\zeta_{2^{n+1}}\right) \subset L$. The result follows by Theorem 1.1. If $O(K)=0$, then $R_{n+1} \subset K$. Let a, b be transcendental over K, satisfying $a^{2}+b^{2}=-1$. Then K is algebraically closed in $K(a, b)$. By Corollary $1.2, K$ and $K(a, b)$ are equivalent on finite

2-groups. $\quad R_{n+1}(a, b) \subset K(a, b)$. So by Proposition 1.1 of [9] $R_{n+1}\left(a, b, \zeta_{2^{\prime}}\right)$ and $K(a, b)$ are linearly disjoint over $R_{n+1}(a, b)$, because $R_{n+1}\left(a, b, \zeta_{2^{\prime}}\right) \cap K(a, b)=R_{n+1}(a, b, \alpha)$ for some $\alpha \in Q\left(\zeta_{2^{\prime}}\right)$, and by Lemma 2.3, $\alpha \in K$ and $R_{n+1}\left(a, b, \zeta_{2^{\prime}}\right) \cap K(a, b)=R_{n+1}(a, b)$. Therefore, by Theorem 1.1, $R_{n+1}(a, b)$ and $K(a, b)$ are equivalent on 2groups. Similarly, let \bar{a}, \bar{b} be transcendental over L, satisfying $\bar{a}^{2}+\bar{b}^{2}=$ -1. Then $R_{n+1}(\bar{a}, \bar{b})$ and L are equivalent on all finite 2 -groups. It is sufficient, therefore, to check that $R_{n+1}(a, b)$ and $R_{n+1}(\bar{a}, \bar{b})$ are equivalent on finite 2-groups. But $\psi: R_{n+1}(a, b) \rightarrow R_{n+1}(\bar{a}, \bar{b})$ given by $\psi(r)=r$ if $r \in R_{n+1}, \psi(a)=\bar{a}, \psi(b)=\bar{b}$ extends to an isomorphism of $R_{n+1}(a, b) G$ onto $R_{n+1}(\bar{a}, \bar{b}) G$. If $\operatorname{ind}_{2} K=\infty$, proceed as in Case i.

Case iii. $t(K)=t(L)=1$, char $K=p>2$.
Suppose $\operatorname{ind}_{2} K=n<\infty$. It is sufficient to show that there is a field \bar{K} of characteristic 0 with the same 2 -invariants as those of K, and which is equivalent to K on the class of all finite 2 -groups. If $O(K)=0$, let $T=Z_{p} . \quad$ If $O(K)=1$, let $T=Z_{p}\left(\zeta_{p^{n+1}}\right)$. In either case $T \subset K, T$ and K have the same 2 -invariants, and by Theorem $1.1 T$ and K are equivalent on finite 2-groups. Let \bar{K} be a totally unramified extension of Q_{p} which has residue class field T. By Proposition 2.4 of [9] and Lemma 2.2, \bar{K} and T have the same 2 -invariants and are equivalent on the class of finite 2 -groups. For $\operatorname{ind}_{2} K=\infty$, we proceed again as in Case i.

Corollary 2.5. Q and Q_{2} are equivalent on the class of all finite 2-groups.

Proof. By Eisenstein's criterion, the 2^{r}-th cyclotomic polynomial is irreducible over Q_{2}. Hence $\operatorname{ind}_{2}\left(Q_{2}\right)=\operatorname{ind}_{2}(Q)$. We must check $t\left(Q_{2}\right)=0$.

If $X^{2}+Y^{2}=-1$ is solvable in Q_{2}, with X, Y 2-adic integers, then the equation $X^{2}+Y^{2} \equiv-1(\bmod 8)$ is solvable, a contradiction. Otherwise, we can assume the solution of $X^{2}+Y^{2}=-1$ in Q_{2} has the form $X=\alpha / 2^{r}$ $y=\beta / 2^{r}$ with $r>0, \alpha$ and $\beta 2$-adic integers and $\alpha \equiv 1(\bmod 2)$. Then $\alpha^{2}+\beta^{2} \equiv 0(\bmod 4)$. This leads to a solution of $Z^{2} \equiv-1(\bmod 4)$, a contradiction.
3. (i) The hypotheses of Theorem 1.3 are all necessary. The two non-abelian groups of order 8 suffice to check this.
(ii) In Theorem 1.4 we cannot just assume that K is algebraically closed in L. For if $K=Q, L=Q(a, b)$, with a, b transcendental over Q and $a^{2}+b^{2}=-1$, by Theorem $2.4, K$ and L are not equivalent on 2-groups.
(iii) If K is an algebraic number field, by the results in [6] we can say exactly when $X^{2}+Y^{2}=-1$ is solvable in K.
(iv) In [9] we asked whether there is a prime field Z_{q} that is equivalent to Q on the class of all p-groups, for p odd. This says that $q^{p-1} \not \equiv 1 \bmod p^{2}$ for all $p \neq q$. Such primes q are studied in relation to the Fermat problem, and numerical indications can be found in [4].

References

1. A. A. Albert, Structure of Algebras, Amer. Math. Soc. Colloquium Publications, Vol. 24, Providence, R.I., 1961.
2. Benard, Quaternion Constituents of Group Algebras, Proceedings, Amer. Math. Soc., 30 (1971), 217-219.
3. Bourbaki, Eléments de Mathématique, Fascicule 23.
4. Brillhard, Jonascia and Weinberger, On the Fermat Quotient, in Computers in Number Theory, 1971, Academic Press, Atkin and Birch editors, p. 213-222.
5. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
6. Fein, Gordon and Smith, On the Representations of -1 as a Sum of Two Squares in an Algebraic Number Field, Number Theory, 3 (1971), 310-315.
7. Roquette, Realisierung von Darstellungen Endlicher Nilpotenter Gruppen, Archiv der Math., 9 (1958), 241-250.
8. Spiegel, On Isomorphisms of Abelian Group Algebras, Canad. J. Math., 27 (1975), 155-161.
9. Spiegel and Trojan, On Semi-Simple Group Algebras I, Pacific J. Math., 59 (1975), 549-555.

Received July 22, 1975
The University of Connecticut
AND
Atkinson College

