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WIENER INTEGRALS OVER THE SETS BOUNDED BY
SECTIONALLY CONTINUOUS BARRIERS

C. Park AND D. L. Skouc

Let Cyw = C[0, T'] denote the Wiener space on [0, T]. The
Wiener integrals of various functionals F[x] over the space Cw
are well-known. In this paper we establish formulas for the
Wiener integrals of F[x] over the subsets of Cw bounded by
sectionally continuous functions.

1. Introduction. Let Cy, = CJ[0, T] be the Wiener space on
[0, T], i.e., the space of all real-valued continuous functions on [0, T]
vanishing at the origin. The standard Wiener process {X(¢)=
X(t,-):0=t=T} and C, are related by X(¢,x)= x(¢) for each x in
Cw. Evaluation formulas for the Wiener integral

j Flx]dwx = E{F[x]}

of various functionals F[x] are of course well-known (for example see [7]
for some of these formulas). Now, consider sets of the type

ro={ sup, X010 <0}

= {x € Cy: ()Sél‘IET x(t)—f(t)<0}

where f(t) is sectionally continuous on [0, T] and f(0)=0.
It is well-known that for b =0

P[[,] =2®(bT ")~ 1
and

P[Tu.s] = ®[(aT + b)T ] — e 2 ®[(aT — b) T

where @ is the standard normal distribution function. In [3], [5], and [6]
more general functions f(¢) are considered and formulas given for the
probabilities of the sets I';.

The main purpose of this paper is to derive formulas for Wiener
integrals over the sets I'. In §2 we state and prove the main results,
while in §3 we discuss some applications and examples.

523



524 C. PARK AND D. L. SKOUG

2. Integration formulas. Our first theorem is preliminary;
it plays a key role in the proof of Theorem 2.

THEOREM 1. Let 0=t <py<---<t,=T be a parition of
[0, T). Forj=1,2,---,n let f(t) be continuous on [t_,,t]. Then the
conditional probability

P[ sup X(0)-f(1)<0,1=j=n|X(t)= ui,léjén]

1=ty

=le[ sup X(t)—{f; t+[ 1) j_1}<0|X(Atj)=Auj]

0=r=Ay

T _fr+iAg Ay _ Ay
'HP<USJ,IRX(” { A V’<1+zm+’f“> "‘1] At}<0>

where Ay, =1 —t_, and Aw; = u; — u;_, with u,=0.

Proof.  First we note that

P[ sup X()—-f(1)<0,1=j=n|X()= éjén]

—1=t=y)

=P{ sup XO)=X() = [ -1<0,

-1S1=y

Now since the Wiener process has independent increments, the
above expression equals

HP{ sup X(1)= X(4) = [ (1) = 1] <01 X(1) = X(5.) = b

L-1=t=4)

Hence the first equality in the theorem follows from the fact that
stationarity implies that X(t)— X(¢-,) is the same process as
X(t—1-,). To prove the second equality in the theorem, we note that
X(t) and tX(1/t) are identical Wiener processes for ¢t > 0 by checking the
covariance function. Thus

P{ sup X[+ 1)~ ] <0/ X(30) = du

0=t=Ay

:p{ sup X() %[f,-(t+tm)— ]<0'X<At> AA_?}

0<r=A4

- P{ sup X(%)—X(Al—tj)—% [+ 1) - uj_1]+z-’tff<o}.

0<r=Ay
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The result now follows by the transformation
t7'=(At) ' >t

THEOREM 2. Let 0=t <t,<---<t,=T be a partition of
[0, T]. Letg(uy,---,u,) be a Lebesgue measurable function on R" and
forx € Cy let G[x| = g(x(¢t,),---,x(t.)). Forj=1,2,---,nletf(t) bea
continuous function on [t_,,t]. Then the Wiener integral of G[x] over
the set

rfE{xe Cw: sup x(t)—f(1)<0,j= 1,2’...,,1}

4-1St=y

is given by

f G[x]dwx =f ' (n)f " g(uy, - u ) H (uy, - -+, u,)du, - - - du,
Iy —= —a

in the sense the existence of either side implies that of their equality, where

min{f (1), f(4)}, J=1,2,---,n—1
A= 9

f(T), j=n

@), ., <t<t, j=12,---,n
f=19 £0), t=0 ,

A, E=1 j=12,---,n

and

H(u, ) =1 @A) " exp{— (Au /(A1)

P[ sup X()—{f(t+ 1)~ u} < 0| X(At) = Au,].

0=r=Ay

Proof. First consider the case where G[x] is the characteristic
function of a Wiener interval I. That is to say I has the form

I={x€Cyl|[x(t), -, x(t.)] €E E}

for some Lebesgue measurable set E in R". Then G[x]= x(x)=
xelx(t), -+, x(t,)] and so in this case
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f Glx]dwx =f xe(x)dyx = P[T, N 1]
Iy Iy

=f‘ '(")'f_: p{ sup X(1)—f(1)<0,1=j=n,

[x(t), - x(L)]EE|x(t)=u, 1=j= n} K(ﬂ u)du, - - - du,

where

K (i, i) =11 @A) " exp{- (8w V/Q2A)).

Next we observe that

P{ sup X(1)— f(1)<0, 1=j =n [x(t), - x(t,)] € E]|

-1Stsg

x(t)=u,1=sj= n} = xe(uy, -,un)P[ sup X(t)-fi(1)<0,

1§j§n|x(t,~)=u,»,1§j§n],

Next, applying Theorem 1 to the last conditional probability above gives
the desired result for this case. The general case follows by the usual
arguments in integration theory.

THEOREM 3. Let f(t) be sectionally continuous on [0,T] with

f(0)=0. Letg(uy,---,u,) beaLebesgue measurable functionon R", and
let a(t)€ BV[0,T]. Then

f glx(t), -, x(t,)]e’? “O*Od,x
Iy
= et "“’""f g [x(t,)+f " a(s)ds, - x(t)
Tro—f4§ a(s)ds 0
+f" a(s)ds] dwx
0

in the sense the existence of either side implies that of the other and their
equality.

CoROLLARY. If f and a satisfy the conditions in Theorem 3, then

f ef{ a(t)dx(r)dwx — euzfg u2(x)dzP{ sup X(t)— [f(t)_f a(s)ds] < 0}.
Iy 0=t=T 0
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Proof (of Theorem 3). Using the Cameron-Martin translation
theorem (see [1] or [7]) with the translation

x(z)-»x(t)+f' a(u)du

we obtain

fr glx(t), -, x(t,)]e’ «=0d,x
f

L,

L] e
= 205 "2“)"‘1 ‘ g [x(t1)+f a(u)du, -, x(t,) +f a(u)du]
Ff(r)‘flé a(s)ds 0 0

. efg a(t)d[x(1)+f§ a(u)du]e—fg nt(')dx(!)dwx'

The result now follows by simplifying the last expression.

THEOREM 4. Assume that g(z) = 27 a,z" is an entire function such
that for some M, N and y € (0,2), |g(z)| = M exp(N|z|") for all complex
numbers z. For some r € (2,2] and b>0 assume that 0(t,u)€E

L, ([0, T} X (=>,b]), ie., f |6(t, u)|du € L,[0, T]. Then for any
Y(W)E L(—,b]UL.(—,b],

(1) | e|[ otxanar] pix(tyae = T admom
where forn =0,1,2,---

n=["m- [ coen[ wna [T06w)

ntl

) @A) " exp{ — (Ay )/Auw)}

j=1

(=]

T

-
i

[1=exp{=2(b —u_)(b—u;)/At}]
'du,l+1 ct duldtl M dt,,

and where u,=0, and 0=t <t,<---<t,,,=T.

Proof. Proceeding formally we obtain

fr,, 8 [ f b x(t))dt] ¥ (x(T))dwx
= 2 a,.frb UOT a(t, x(t))dt]n¢(x(T))dwx_
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But for n =1,2,---

fr., UOT e(t,x(t))dt]".p(x(r))dwx

I

frb UOT “(n)- OT,I:I 0(t, x(t))dt, - - - dt,,] ¥ (x(T))dwx
= n!fo'm -(n)-j;'z [frb ¢(x(tn+,))llf! O(t,.,x(ti))dwx] dt,---dt,

n+l

wt [T [T e[ wn [To6 ) T eman

-exp[ — (A P/(2A5)][1- exp (= 2(b — 1) (b — u/AL)]}
“du,,, - dudt, - dt,

where the last equality above is obtained using Theorem 2, Theorem 1,
and the fact that

P((sup X()={(b = -+ (b, = w)/A1} <0)

0=st<»

=1-exp[—2(b — u-) (b —w)/Ag].

Thus proceeding formally we have obtained equation (1). The Theorem
follows readily once the absolute convergence of the series

©

> n'laJ,(T)

is established.

Recall that r € (2,0]. We will establish the absolute convergence
when 2<r <o and ¢ € L,(—, b]; then other cases are similar, but
easier. Let p satisfy 1/r+1/p=1. Then 1<p <2 and by Holder’s
inequality we obtain

(D= ¢ L -(n)-f; ﬂ lle(t,,-)llllij Qm ALY d,- - - dt,

= { fo " (n)- fo [0(t= 1) (toen = 1,)] 7ty - dt,.}”p

[ L, _n 1r
A7 o[ TT 166, kan -~ e} @y
0 0 j=1
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But

([ [ TTIee

0 j=

1 (7 T n yr

(5[ o[ T et ac)
+Jo 0 j=1

= ()" ([T 1o ar)”

1 1/r .
= (1) Nols.

1/r
lidt, - - - dtn}

In addition

fo’"ﬂ “(n)- L‘z [t(t.— 1) - (tar— 8] P7dt, - - - dt,

_ Tn(z-p)/Z{l"(l _P/2)}n+1
T T[(n + 1)(1 - p/2)]

where I'(z) denotes the Gamma function.
Thus the series 25| a,J,(T)|n! is dominated by the series

i n! I a, l(n [)-1/' “ 0 ”;-'Tn(?-*mm:{r(l _ p/2)}(n+l)/P

o T"{[(n+1)(1 = p/2)]}""
3)
_ i lan ”l 0 ”T’Tn(z—p)/Zp{I“Q _p/zl}(rwl)/l? { n! }l/p
g " [(n+1)A-p/2))

But since g(z) is an entire function of order at most y we know that

lim sup

n—o

ninn y+2
(—lnlanl)§7< 2

and so for n sufficiently large we obtain that
lan ’ < peHD).

But I'(z) = z*7"?e~*(27)"*(1 + 0(1)) and hence for positive z sufficiently
large

1 < 2ez'?
T(z) - Qn)lz
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Also by Stirling’s formula
1
] n 172
n!=(n/e)"(2wn)" exp (12n)‘

Thus for n sufficiently large we obtain

n! v
|a,| {F[(n +1)(1- P/Z)]}

“) 12n+1 2
< lUp -« 1 12 5, —(n+1)/2
=2 exp< 12np )n e (2 p)

X[(n + 1)@= p) = 1)2p;"e 7.

Now using inequality (4) the convergence of the series (3) follows by the
root test.

CoROLLARY 1. Let 6(t,u) be as in Theorem 4. Then

fr., exp UOT g(s,x(s))ds] dwx = g T.(T)

where J,(T) is given by (2) with ¢ =1.

COROLLARY 2. Let a(t) be of bounded variations on [0, T]. Then
for any b >0,

f efg a(l)dx(f)dwx = 2 ("‘ l)nKn(T)
'y 0

where

n n+l

K,.(T)Efo'm -(n)-f: fb (n +1)-f_: ex™n [T w ] @mg)™

5)
exp[— (A /(284)1 {1~ exp[ —2(b — u_)(b — u)/A])

“duy, - duyda(t) - - - da(t,).
Proof (of Corollary 2). The Corollary follows quite readily once the

absolute convergence of the series 25 (—1)"K, (T) is established. Now
proceeding formally we see that

j efg ﬂ(')dl(')dwx = f eﬂ(T)X(T)—fg x(')da(')dwx
s Ty

=L gg_;_}xeamm U;Tx(t)da(t)]ndwx
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and so
1 T n
|K(T)| = ’ Ff e"‘”““[f x(t)da(t)] dwx
< JIy 0
1 T n
é——’f e *(MxM f dwx.
n. Cw 0
Thus
0 0 1 T n
<< —_ a(T)x(T)
SIKMI=S 4 [ el [ dx

T
j eﬂ(T)K(T)e”o x(t)da(t) dwx
Cw

MIA

f eZIa(T)X(T)I eUg a(r)dx(1)] dwx

w

1/2 1/2
I:f e4|a(T)x(T)|dWx] I:f eZU;{ a(t)dx(t)| dwx]
Cw Cw

<o since a(t)€ L0, T].

A

3. Applications and examples.
A. Application 1. For our first application we obtain a formula
for the probability that a Wiener path always stays below the broken line

segments f(t)=at+b, ., =t=t, 1=j=n, where b,>0. Using
Theorems 1 and 2 we obtain

P[hsup X(t)—(at +b)<0,1=j = ]

h e 1+ tAt At
= . . = —_
L (n) 3 H P( sup X(t) { A [a, <1 T AL + t,_l)

+b,—u,_1] %—?’}<O>K(t iYdu, - - du,
7

where

min{at, + b, a;..t; + b1}, 1=sj<n

a,T +b,, j=n
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and

K(i,i)=[] @mag) " exp{— (Au }/(2A1)}.
1=1
But the probability in the integrand simplifies into

P ( sup X(1)—{(afir+ b — )t + (af, + b — w)Ar} < 0)

0=t<w
which, using Doob [2, p. 397], equals the expression
[1-exp{—2(ap-i + b — u1)(at, + b — w)/At}].

Thus, we finally obtain the formula

P[ sup X(t)—(at+ b)<O0, léjén]

LSty

A, _n

= f - (n)- [][1—exp{—2(at-1+b ~w-)(at + b —u)/As}]
27 AL] " exp{— (Aw )}/(2A¢)}du, - - - du,.

B. Example 1. For j=1,2,---,n let the a; and b, be as
above. Let

EE{XECW

sup. X(t)—(at+b)<0,1=j= n}.
Let g(u, -, u,) be Lebesgue measurable on R". Then
[E g(x(t), -+, x(t))dwx
= [ [ gl u) [T R27AG exp{ - (B yras)
/lj [1-exp{—2(ap-i+ b — w-1) (at; + b, — w;)/Ag}] du, - - - du,

in the sense the existence of either side implies that of the other and their
equality.
C. Application 2. Assume «(t) is of bounded variation on [0, T

and let f(¢t) = f a(s)ds. For b >0 we want to find the probability of the
set 0
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Ty = { sup X0~ f1)<8}.
First, using the Corollary to Theorem 3, we have that

P [Ty yn] = 72 0 f e 18 ey 5
Iy

Next, using Corollary 2 of Theorem 4, we obtain
P[rf(-)+b] =e “2‘”“‘2 K.(T)
n=0

where K,(T) is given by equation (5). This expression is an entirely
different series expansion of the probability than the ones given by Park
and Paranjape in [5].

D. Application 3. The Corollary to Theorem 3 is also useful to
evaluate integrals of the type

J’ e J§ a(ndx(r) dwx
Iy

numerically for given a«(t), f(¢), and T. By the Corollary, the above
integral is equal to

e’ “2“""P{ sup X(t)— [f(t)— J: a(s)ds] < O},

0=t=T

and the last probability can be evaluated numerically using the
Park-Schuurmann method [6].

The following table was computed by an IBM/168 with the unit
interval divided into 2° equal subintervals.

Estimates ofJ’ efbewatg x
ry

a(t) sint e’ t Vi

f@® t+1 t?+t+1 cost n(@+1)+1

The
integral 976414 3.729278 467819 1939285
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