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SPACES WITH BASES SATISFYING CERTAIN

ORDER AND INTERSECTION PROPERTIES

W. F. L I N D G R E N A N D P . J. NYIKOS

An ortho-base is a base 3 such that the intersection of any
subcollection is either an open set or a singleton for which the
subcollection is a local base. This paper is primarily devoted to
the relationship of bases of this sort to other topological proper-
ties of bases, and of the space itself. In §1, we compare
ortho-bases to bases having similar properties, and study the
relationship with developability and paracompactness. In §2,
we define "rank" of a base for arbitrary cardinals and show how
it is related to orthocompactness, ortho-bases, and bases of
countable order. Section 3 treats two related ascending chain
conditions in relation to bases of sub-infinite rank and
ortho-bases. Section 4 relates the possession of an ortho-base to
a number of "generalized metric" properties such as first
countability, quasi-developability, and quasi-metrizability. The
remaining two sections give examples illustrating the various
properties and raise a number of unsolved problems.

1. Ortho-bases and related concepts. Throughout this

paper "space" will always mean "71 topological space." Many of the

spaces we will be studying have bases satisfying a rather strong property:

DEFINITION 1.1. A base 38 for a space X is an ortho-base if for

each subcollection si of 35, either (i) Π si is open or (ii) Π si is a

nonisolated singleton {x} and si is a base for the neighborhoods of x.

It is easy to see that every point in a space with an ortho-base has a

totally ordered open base for its neighborhoods. The proof of the

following lemma is also easy and is omitted.

LEMMA 1.2. Let 28 be an ortho-base for a space X.

(i) Every subset of 28 which is a base is an ortho-base,
(ii) The collection of all unions of chains in 38 is an ortho-base.

(in) The collection of all open intersections of subsets of 38 is an

ortho-base.

(iv) Given a subspace Y of X, the collection of all sets of the form

YOB, with B G28 is an ortho-base for Y.

Concepts similar to that of an ortho-base have appeared in the
recent literature. For example, Alexandroff introduced the concept of a
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uniform open base: a base £8 such that for every point p and every
neighborhood U of p, there are most finitely many V E £3 for which
p 6 V , V - U^0 [24]. (Compare Lemma 1.3 below.) A space pos-
sesses a uniform base if, and only if, it is a metacompact developable
space [1]. From this result and Bing's famous theorem on the metriza-
bility of collectionwise normal developable spaces [3], there follows
Alexandroff's well-known result that every collectionwise normal space
with a uniform base is metrizable [1], [24].

A special kind of uniform open base is a regular open base [24]: a
base 38 such that for every point p and every neighborhood U of p, there
exists a neighborhood W of p such that there are at most finitely many
V G ® for which W ΓΊ W 0 and V - U^ 0 . A space is metrizable if,
and only if, it has a regular open base.

More general than "uniform open base" is the concept of a base of
countable order [35]: each perfectly decreasing collection (i.e. every
member of the collection has another member properly contained in it)
of members of the base either has empty intersection or is a local base at
some point. This concept and the preceding one are due to
ArhangeΓskii, who proved that a space is metrizable if, and only if, it is
paracompact and has a base of countable order. Generalizing both this
and the result on spaces with uniform bases, Wicke and Worrell showed
[35] that a space is developable if, and only if, it is 0-refinable and has a
base of countable order.

Although every uniform base is an ortho-base, there are bases of
countable order that are not ortho-bases. In fact, ω1 has a base of
countable order, but no ortho-base (Example 5.4). On the other hand,
D* (Example 5.3) has an ortho-base, but no base of countable order.

A concept which generalizes bases of countable order and is satisfied
by all ortho-bases on spaces without isolated points was introduced by
D. J. Lutzer in [21]: A base S3 for a space X is a strong quasi-uniform
base if every filterbase SF of members of 38 satisfying Π F = {p} =
Π {clF I F E ίF} is a neighborhood base at p. In the same paper,

Lutzer introduced the slightly weaker and more complicated concept of
quasi-uniform base and showed that a regular space is developable if, and
only if, it is 0-refinable and has a quasi-uniform base and a G8-
diagonal. One drawback of this concept is that the property of having a
strong quasi-uniform base (unlike the earlier properties) is not hereditary
[21].

The following easily proven lemma shows that an ortho-base can be
regarded as a direct generalization of a uniform base.

LEMMA 1.3. A base SS for a space X is an ortho-base if and only if
for each point p of X and each open set U containing x, Π {VE 38 \ p E
V, V - U/ 0} is open.
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As a matter of notation, for each collection % of sets, let (€p denote
{C I p E C and C E c€}. Let η(p) denote the set of all neighborhoods
of p.

DEFINITION 1.4. A cover % of a space X is a Q-cover if, and only
if, for each x in X, Π C6X is open. A space X is said to be orthocompact
if for each open cover ^ of X there is a Q -cover Si which refines ζ€.

The choice of the name ortho-base was made in part because of the
ease with which it can be shown that every space with an ortho-base is
orthocompact (Lemma 2.5).

One important class of spaces with ortho-bases is the class of
orthocompact developable spaces. In fact:

THEOREM 1.5. Let X be developable. The following are
equivalent:

(i) X is orthocompact.
(ii) X has an ortho-base.
(iii) X is hereditarily orthocompact.

Proof, (i) => (ii) Let % be a development for X such that for each
n in N and each x in X, St(jc, <Sn+ι) CSt(x, %). For each n in N, let %n

be a O-refinement of %. We will show that B = Uΐ=ι3£n is an
ortho-base for X. Let si C Sft and suppose p EL Γ\ si. There are two
cases: (i) st Γ\ ffln^ 0 for only finitely many n's. It is evident in this
instance that Π si is open, (ii) si Π 3(n^0 for infinitely many
n's. Let GEτ/(p) be arbitrary; for some n E N, St(p, cSn)CG. For
some m > n, sέ Π ̂ m ^ 0 ; then

This establishes that jrf is a base for τj(p).

(ii) => (iii) This will follow from Lemma 2.5.
Additional conditions equivalent to (i), (ii), and (iii) may be found in

[9, p. 762|.

DEFINITION 1.6. Let (X, SΓ) be a topological space and let M be a
subset of X. The discretization of X by M is the space whose open sets
are of the form U U B where U E SΓ and B CM.

The discretization of X by M is also referred to sometimes as "the
space obtained from X by scattering the points of M". It is denoted by
XM in [8], where some of the properties of discretizations, including
conditions for the preservation of normality, may be found. Here we
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are primarily interested in the fact that every discretization of a space
with an ortho-base likewise has an ortho-base. In fact, the addition of
the set of isolated singletons to an ortho-base gives an ortho-
base. Thus, for example, the Michael line, the discretization of the real
line obtained by isolating each irrational number, has an ortho-
base. Furthermore if X has an ortho-base, and if Y is a space obtained
by replacing isolated points of X by clopen subsets, each with an
ortho-base in the relative topology, then Y also has an ortho-base. This
process can be iterated transfinitely, with inverse limits taken at limit
ordinals, and what is obtained at each step is a space with an ortho-base.

If in addition, the spaces involved are all paracompact, then the
spaces obtained at any step are also paracompact. However, a much
stronger result obtains in this case: every paracompact space with an
ortho-base can be obtained by a process of the sort just indicated, where
X and all the spaces which replace isolated points are metrizable. This
is one reason for the choice of words in the following definition.

DEFINITION 1.7. A proto-metrizable space is a paracompact space
with an ortho-base.

Proto-metrizable spaces have a very rich structure theory, which will
be expounded upon in a paper now in preparation [28]. Most of the
results in that paper may be found (without proof) in [25].

One subclass of proto-metrizable spaces, the non-Archimedean
spaces, has been the subject of several articles already [2], [6], [26]. One
characterization of these spaces is that they are the ultraparacompact
spaces with ortho-bases. (A space X is ultraparacompact if every open
cover of X can be refined to a partition of X into clopen
subsets.) Another is that they are precisely the spaces obtainable from
ultrametrizable spaces (ultraparacompact metric spaces) in the same way
as proto-metrizable spaces may be obtained from all metric spaces. The
usual definition, however, states that they are the spaces with bases of
rank one. (Definition 2.2, below)

For the remainder of this paper, we will be concerned with those
properties of spaces with ortho-bases that can be obtained without
assuming paracompactness.

2. Ranks of systems of sets. In this section, we extend the
concept of iςrank" as defined by Nagata [23] and prove some simple
results relating it to the concepts treated in §1.

DEFINITION 2.1. A collection si of subsets of a set X is incompara-
ble if, given any two members Aλ and A2 of si neither AλCA2 nor
A2CAι obtains.
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DEFINITION 2.2. Let m be a cardinal number. A collection sέ of
subsets of a set X is of rank ^ m at x in X if every incomparable
subcollection si' of ^ , each member of which contains x, is of cardinal
^ m. The collection j*# is of rank m at x if it is of rank ^ m at x and if
there exists an incomparable subcollection si' of si of cardinal m, such
that each member of si' contains x.

If m is a limit cardinal, si is of rank (m - ) at x if it is of rank ^ m at
x, is not of rank n at JC for each n < m , and there exists a set si' of
incomparable elements of si, each of which contains x, with \sέ\>xx.

In other words, si is of rank m at x if m is the maximum number of
incomparable members of si containing x. It is of rank (m - ) if m is the
unattained supremum of the number of incomparable members of si
containing x.

DEFINITION 2.3. Let m be a cardinal number, X a set, si a
collection of subsets of X. The collection of si is of rank ^ m if si is of
rank i m a t every point of X. It is of rank m if sέ is of rank ^ m and si
is of rank m at some point X. If m is a limit cardinal, then si is of rank
(m - ) if si is of rank ^ m, is not of rank m, and is of rank (m - ) at some
point of X; and si is of rank (m ) if si is of rank ^ m, is not of rank
m nor of rank (m - ), and for every n < m there is a point of X at which si
is of rank ^ n.

A collection of some finite rank n or of rank (Ho —) or of rank
(No ) will be said to be of sub-infinite rank.

The spaces with rank one bases are the non-Archimedean
spaces. (In fact, this is the usual definition of a non-Archimedean
space.) As mentioned above, they are the ultraparacompact spaces with
ortho-bases — in particular, every rank one base is an ortho-base. [2],
[26]. This result does not even extend to bases of rank 2, although some
of the properties of ortho-bases still hold; for example:

LEMMA 2.4. If X be a space with a base 38 of finite rank, then every
point of X has a totally ordered local base.

Proof. Let 38 be of rank n at p. Let cβι be a maximal chain of
members of 38P. If (€ι is not a local base at p, there exists a neighbor-
hood Nι of p containing no member of ^ i . Let 38* be the set of all
members of 38P that are contained in JVlβ Then 38* is of rank ^ n - 1 (at
p). (Indeed, suppose BuB2, ,Bk are incomparable members of
38 p. By maximality of ^ u there is, for each i, a member ^ of (€ι such
that B, - Q/0. The least of these C,'s is incomparable with all Bh
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1 ^ ί'^ k.) Let %2 be a maximal chain in 38 ι

p. Continue thus for all fc,
letting Ck be a maximal chain of members of 38 p~\ Nfc a neighborhood of
p containing no member of ^ k , and 38 £ the set of all members of 38P

contained in Nk. The process comes to an end in at most n steps, with a
chain ^k that is a local base at p.

It is actually possible to prove that 38P is a union of at most n chains,
but this is a nontrivial result [7]. Lemma 2.4 clearly extends to bases of
rank No , but not to all bases of sub-infinite rank. See Example 5.3.

The following lemma has been deferred from §1 to pave the way for
Lemma 2.6.

LEMMA 2.5. Every space with an ortho-base is orthocompact.

Proof. Let sd be an open cover of X, whose members we may
assume belong to the ortho-base. By a straightforward use of well-
ordering and transfinite induction, we may obtain a subcover 38 of si
such that each B in 38 contains a point belonging to no predecessor of
B. Since any descending sequence of members of 38 is finite, 38
obviously contains no local base at any nonisolated point of
X. Therefore, 38 is a Q -cover.

LEMMA 2.6. Suppose si is an open cover of X such that for each p in
X, either (i) Π sip E η(p) or (ii) sdp is of sub-infinite rank. Then stf has
a Q-subcover.

Proof. Let si be well-ordered and satisfy (i) or (ii) at each
point. Define 38 with respect to si as in the proof of Lemma
2.5. Suppose 38 is not a Q-cover; then for some subcollection <£ of 38,
Π % is not open. Say p E Π %! and Π ^ is not a neighborhood of

p. Let d denote the first element of ζ€. Set C€2 = {C\C^C€ and
CXC}\ then Π^^C.Π D <g2, hence p E n<e2£η(p). Let C 2

denote the first element of ^2- Inductively, let Cn denote the first
element of %n and set ^ n + 1 = {C | C E ^ n and Cn<£ C}. Then Π ^ π =
C Π ΓΊ ζ€n+]\ hence p E Π ^ n + 1 ̂  ^ (p) . In this way, we obtain a
sequence (Cn) in ^ such that p€ΞΠ™=ιCn and {Cn | n E N } is
incomparable. This is a contradiction since {Cn | n E N} is a subcollec-
tion of sέp that has sub-infinite rank.

COROLLARY 2.7. A space is orthocompact if and only if every open
cover has a refinement satisfying (i) or (ii) at each point.

COROLLARY 2.8. Every space with a base of sub-infinite rank is
orthocompact.
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Problem. Is every space with a base of sub-infinite rank metacom-
pact?

It can be shown [14] that every space with a base of finite rank is
(hereditarily) metacompact. Metacompactness also obtains, and much
more easily, in spaces with bases that, in addition to being of sub-infinite
rank, also satisfy the ascending chain condition. This is one result of the
following section.

THEOREM 2.9. // X has a base of countable order and a base of
sub-infinite rank, then X has an ortho-base.

Proof. By Theorem 3.4 of [36], there is a base S3 that is simultane-
ously a base of countable order and a base of sub-infinite rank. Suppose
there exists sέ C Sδ such that Π si is not open for some p G Π si, si is
not a base at p. Then sέ is not perfectly decreasing; hence there exists
At G si such that Aj£Aι for all A in si. Set sέ{ = {A \ A G M and
Aλj£A}. Since Π s£ = AλΓi Π dx and sίiCsi, sίλ is not a base at p
and hence sίx is not perfectly decreasing. Inductively choose An+ι G sίn

such that Af£An+ι for all A in sΛn. Set sin+ί = {A | A G sin and
Λn+1 £ Λ}. Π ̂ n + 1 = An Π Π ̂  and «9/n+1 C <sίn hence sin+ι is not a base
at p and £#n+i is not perfectly decreasing. In this way, we obtain a
sequence (An) in si such that no two elements of (An) are comparable
and p E.C\™=ιAn. This contradicts the assumption that 39 has sub-
infinite rank.

It may be possible to strengthen this result considerably: if it could
be shown that every space with a base of sub-infinite rank is metacompact
[or even 0-refinable: see Problem 6.3], then we could show that a space
is metacompact and developable if, and only if, it has a base of countable
order and a base of sub-infinite rank, in a manner similar to the proof of
the following theorem.

THEOREM 2.10. // X has a base of countable order and a base of
finite rank, then X is metacompact and developable.

Proof. Every space with a base of finite rank is metacompact
[14]. By the result of Wicke and Worrell, if X then has a base of
countable order, it is developable.

3. Ascending chain conditions.

DEFINITION 3.1. Let si be a collection of subsets of a set X. si is
Noetherian if every ascending sequence Ax CA2 C of members of si
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is finite, si is upper-chain-complete if whenever ^ is a chain in st, then
U % Est.

The terms lower-chain-complete and chain-complete are defined
analogously, but we will have no occasion to use these latter two concepts
in this paper. ArhangeΓskii has used "Noetherian" to refer to collec-
tions that are upper-chain-complete. However, because of the wide
usage of "Noetherian" (in our sense of the word) in ring theory and
lattice theory, it is best that the usage of 3.1 be adopted. It is trivial to
show (as in ring theory) that a collection is Noetherian if, and only if,
every subcollection has a maximal element.

Every product of spaces with Noetherian bases is easily seen to
possess such a base; and if X has a Noetherian base, every open subspace
obviously has one. On the other hand, not every closed subspace of a
space with a Noetherian base has a Noetherian base. For example, the
spaces of Example 5.5 can be embedded as closed subspaces of an open
subspace of a product of two-point spaces.

LEMMA 3.2. Let m be a countable cardinal, and let si be a collection
of subsets of a set X. The following are equivalent: (i) si is Noetherian, of
rank <m at x, (ii) Given a set si' of members of si each containing JC,
there exists a subset si" of si' such that every other member of si' is
contained in some member of si", and \ sί"\ < m.

Proof To show that the first condition implies the second, let si' be
a subset of si, each containing a fixed point JC. Let si" be the set of all
maximal members of si' containing x. Since no two members of si" are
comparable, the cardinality of si" is < m.

Conversely, if si satisfies (ii) it is clearly of rank < m, and no strictly
ascending chain of members of si can be infinite.

THEOREM 3.3. Every space with a Noetherian base of sub-infinite
rank is (hereditarily) metacompact.

Proof Let S be a Noetherian base of sub-infinite rank for the
topology on X. Let °U be an open cover of X, and for each point x let
38 (x) be the (finite) collection of maximal members of 38 that contain x
and are contained in some member of °tt. Let Ύ =
U {38 (x) I x E X}. This is a point-finite cover, since the members of V

that contain x are the sets in 38(JC).

EXAMPLE 3.4. Every uniform base is Noetherian, of sub-infinite
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rank. Hence a Moore space is (hereditarily) metacompact if, and only
if, it has a Noetherian base of sub-infinite rank.

Theorem 3.3 is especially significant because:

THEOREM 3.5. The finite product of spaces, each of which has a
Noetherian base of sub-infinite rank, likewise has a Noetherian base of
sub-infinite rank.

A proof may be had by dualizing Exercise 7, p. 181 of [4] and
applying it to members of a base containing a fixed point. Details are
spelled out in [14]. If one omits the word "Noetherian" from Theorem
3.5, it becomes false.

EXAMPLE 3.6. The Sorgenfrey line has a Noetherian base and a
base of sub-infinite rank, but not a base satisfying both simultaneously,
because the Sorgenfrey plane does not have a base of sub-infinite rank at
all. In fact, every base for the Sorgenfrey plane is of rank î  c. See
Example 5.2.

Here are four more theorems tying together some of the concepts we
have introduced. The first two have easy proofs by transfinite
induction. Proofs of the other two will appear in a forthcoming paper.

THEOREM 3.8. Let X be a space with a base of finite rank n. Then
X has a rank n base that is upper-chain-complete.

THEOREM 3.9. Let X be a space with an ortho-base. Then X has
an ortho-base that is upper-chain-complete.

THEOREM 3.10. Let Xbe a space with an ortho-base S? and a base V
of (finite) rank n. Then X has a Noetherian base of rank n.

THEOREM 3.11. Let Xbe a space with an ortho-base of (finite) rank
n. Then X has a Noetherian ortho-base of rank n.

4. Condensation theorems. A space Y can be condensed
onto a space X if it admits a one to one continuous function onto X (in
other words, X admits a finer topology making it homeomorphic to
Y). Some properties of a space can of course be preserved under the
taking of a finer topology, such as the Hausdorff separation axiom and
total disconnectedness.

If Y has an ortho-base, several properties of X are preserved that
are not always preserved otherwise. For example, if X is first counta-
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ble, then every point of Y is a Gδ, and it follows from the existence of an
ortho-base that Y is first countable. In fact:

THEOREM 4.1. [25] Let X be a space with an ortho-base. The
following are equivalent:

(i) X is first countable.
(ii) X is sequential.
(iii) Every point of X is a Gδ.
(iv) X is a k-space.
(v) X is a q-space.

A way of proving this theorem is indicated in Example 5.3.

In this section, we will treat similar phenomena.
Let (^n) be a sequence of collections of open subsets of space X,

indexed by the positive integers. Consider the following properties this
sequence might have:

(I) % is a cover of X for each n.
(II) For each point p of X the set St(p, %) [by St(/?, %) is meant

the union of all sets in % which contain p] is nonempty for infinitely
many n.

(III) For each pair p, q of points of X, there exists n such that

(IV) The nonempty sets of the form St(p, %) form a local base at p
for all p in X.

(V) If a point xn is chosen from each nonempty set of the form
St(p, ^ π ) , then p is a cluster point of (JCΠ).

For all spaces, (V) is equivalent to (IV) together with (II), and (IV)
implies (III). The existence of a sequence satisfying (III) gives the
definition of a quasi-Gδ-diagonal [18], while existence of a sequence
satisfying (I) and (III) together is easily shown to be equivalent to the
possession of a Gδ -diagonal (that is, the diagonal is a countable intersec-
tion of open sets in X x X). Possession of a sequence satisfying (I) and
(IV), or one satisfying (I) and (V), characterizes the developable spaces,
while condition (IV) or (V) alone gives the definition of a quasi -
developable space.

THEOREM 4.4. Let Xbe a space with an ortho-base. The following
are equivalent.

(i) X is quasi-developable.
(ii) X can be condensed onto a quasi-developable space.
(iii) X has a quasi-Gδ-diagonal.

Proof. That (i) implies (ii) and (ii) implies (iii) are true for arbitrary
spaces. Now if X has an ortho-base 38 and a sequence $„ satisfying
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(III), we replace it by a sequence of collections ί̂ J, such that for each n,
U % = U $2κ, such that each member of ^ L is contained in some

member of $n, such that %n+ι (for any n) is the collection of all isolated
points of X, and such that ^ consists only of members of 38 (for all n).

If p is an isolated point, (V) is clearly satisfied at p. Otherwise, xn is
chosen from each nonempty set of the form St(p, ζSf

r). Let Gn be a
member of *&„ containing xn. Then the Gπ 's, which intersect in {p} by
(III), form a local base at p, and xn clusters at p.

As the Michael line shows, we cannot obtain the analogous theorem
for G8 -diagonals because of the special role of isolated
points. However, what we can obtain may be even more interesting:

THEOREM 4.3. The following conditions are equivalent on a Haus-
dorff space X that has an ortho-base.

(i) X is a developable space.
(ii) X is a semi-metrizable space.
(iii) X is a semi-stratifiable space.
(iv) X has a Gδ-diagonal and its isolated points form an Fσ-set.

Proof. The implications (i) Φ (ii) => (iϋ) Φ (iv) are well known
and do not require the existence of an ortho-base. (Only the last
requires the Hausdorff assumption.)

Finally, to show (iv) implies (i): we replace the sequence $n with $ή
as in the proof of Theorem 4.2, but this time we let ^'2n be a collection of
isolated points whose union is closed, together with the complement of
this union, arranging it so that U*= 1 $2n includes all isolated points of
X. The resulting collection of covers satisfies (I) and (V).

In the case where the developable space is metrizable, there is a
theorem in the folklore which, among other things, shows how the
Michael line fits into the general scheme of normality of products.

THEOREM 4.4. Let X be a metrizable space and let XM be a
discretization of X. The following are equivalent:

(v) XM is metrizable.
(vi) M is an Fσ-subset of XM.
(vii) M is an Fσ-subset of X.
(viii) The product of XM with any metrizable space is normal.

Moreover, all these are equivalent (with XM playing the role of X) to
(i) through (iv) of Theorem 4.2.
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Proof, (v) is equivalent to (vi) by the Bing-Nagata-Smirnov metri-
zation theorem: the addition of {{x} \ x E M} to a cr-discrete base for X
yields a metrizable space if, and only if, M is er-discrete.

(vi) i5 equivalent to (i), (ii), (iii) and (iv). Let £$ be an ortho-base for
X, then 39 U{{x} | x E M} is an ortho-base for XM, and XM has a
Gδ-diagonal. Hence (vi) is equivalent to (iv) and thus the other three
conditions.

(vi) is equivalent to (vii). If A is a closed subset of XM, then its
closure in X does not contain any points outside A U M Now the
implication (vi) => (vii) is immediate, while the other implication is
trivial.

(v) => (viii) This implication is trivial.
(viii) φ (vi) Suppose that M is not an Fσ-set. Take M in the

relative topology of X and look at its product with XM. Let A =
{(m, m) I m E M} and B = (XM - M) x Λf. A and B are disjoint closed
sets. The proof given in [22] can be adapted to prove that XM x M is not
normal by showing that any open set containing A has some point of B
in its closure. In fact, E. Michael points this out in a footnote.

A classification scheme, similar to (I) through (IV) above, which
unifies certain generalizations of metric spaces, was first devised by R. W.
Heath in [15] to characterize semi-metric and developable
spaces. Simply put, the scheme is this: Let (X, SΓ) be a topological space
and g: N x X - ^ J b e a function such that for all natural numbers n and
all points x in X, x Eg(n, JC). It is often the case that X has some
property (e.g. developability) if, and only if, there exists such a function g
with some easily stated property. This idea has been exploited further
by Hodel [16], [17] who not only has characterized several known
topological properties in terms of such functions, but further has used
such functions to define important new classes of spaces. (We have
particularly in mind here the so-called β -spaces.)

Some properties g could have are of special relevance to this
section; for example:

(A) {g(n, x) I n E N} is a local base at x.
(A') If xn E g(n, x) then x is a cluster point of the sequence (xn).
(B) Π:= 1g(n, x) = {x}.
(C ) If y Eg(rc,x), then g(n, y)Cg(n, x).
(D) If y 6 g ( n + l,x), then g(n + 1, y)Cg(n> x).
(E ) For each x and each n, there exists m such that if y E g(m, x),

the set g(m,y) is contained in g(n, JC).

Clearly, (A) and (A') are equivalent, and possession of such a
sequence characterizes first countable spaces. Existence of a function g
satisfying (A) and (C) characterizes those spaces that admit a non-
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Archimedean quasi-metric, [11]. (Such spaces are called strongly first
countable in [16].) Spaces that admit a separating σ-Q-cover (called
or#-spaces in [31] and a -spaces in [17]) are characterized by the existence
of a function g satisfying (B) and (C). (Recall that a cover °U of X is
separating if given two points x and y in X, there exists U in °U such that
x E U and y £: U.) It is easily seen that a space admits a separating σ-
Q -cover if, and only if, it can be condensed onto a space that admits a
non-Archimedean quasi-metric. H. Ribeiro [29] has shown that a space
is quasi-metrizable if and only if, it admits a function satisfying (A) and
(D); while γ-spaces [16], [10] can be characterized by the existence of a
function satisfying (A) and (E). Kofner [20] has exhibited a quasi-metric
space that does not admit a non-Archimedean quasi-metric. It is not
known whether every γ-space is quasi-metrizable.

To study the preservation of these properties under condensation,
we have a lemma that allows us to substitute members of an ortho-base
for open sets while preserving some important containments.

LEMMA 4.5. Let X be a space with an ortho-base. For each point x
of X, and each open neighborhood U of x, it is possible to associate an open
neighborhood G(JC, U) of x in such a way that the sets G(JC, U) form an
ortho-base for X and

(i) JCGG(JC, U)CU.

(ii) // V C U and x G V, then G(x, V) C G(x, U).
(iii) If ye G(x, U), then G(y, U) C G(x, U).

Proof. Let 38 be an ortho-base on X, closed under unions of
chains. For each open set U and each point x of U, let G(x, U) be the
intersection of all members of 38 which contain x, are contained in [/, and
are maximal with respect to these two properties. Now (i) is clearly
satisfied, and the set G(JC, U) is open because it is the intersection of
incomparable members of 38. The set of all G(x, 17) is an ortho-base
because it is a subset of an ortho-base and is a base because of
(i). Condition (ii) is satisfied because each maximal member of 38
containing x and contained in V is contained in a maximal member of 38
containing x and contained in U. Finally, (iii) is satisfied because every
maximal member of 38 containing x and contained in U contains y —the
intersection G(y, U) is taken over a bigger collection.

One might rephrase the following theorem by saying that if a space
X has an ortho-base and a function g satisfying (B) and any of (C), (D),
or (E), then it admits a function satisfying (A) together with (C), or (D),
or (E), respectively.

THEOREM 4.6. Let X be a space with an ortho-base.
(i) IfX is a σ*-space, it admits a non-Archimedean quasi'metric.
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(ii) If X can be condensed onto a quasi-metric space, it is quasi -
metrizable.

(in) If X can be condensed onto a y-space, it is a y-space.

Proof Let G be as in Lemma 4.5 and let g'(n, x) = {x} if x is
isolated, and g'(n, x) = G(x, g(n, x)) otherwise. By Lemma 4.5 (i), the
function g' satisfies (A) whenever g satisfies (B).

(i) Suppose g satisfies (C). If y G g'(n, JC), then y G g(n,x) and
g(n, y)Cg(n, JC). Hence, by Lemma 4.5,

g'(n,y)=G(y9g(n9y))CG(y9g(n9x))CG(x,g(n,x)) = g'(n9x).

Hence g' satisfies (C).
(ii) Clearly, X can be condensed onto a quasi-metric space if, and

only if, it admits a function g: N x X - > J satisfying (B) and (D). So if
y E g'(n -I-1, x), then (Lemma 4.5)

(n + l,y))CG(y,g(n,x))

Thus g' satisfies (D).

The proof of (iii) is similar.

5. Examples. In this section we discuss some well-known
spaces from the point of view of the theory that has been presented
here. They include a space with a rank 1 base and a Gδ-diagonal that is
not a Moore space; a space with a base of sub-infinite rank and a
Noetherian base, but no Noetherian base of sub-infinite rank; a space
with a Noetherian base of sub-infinite rank but no base of finite rank; a
space with a Noetherian base but no base of sub-infinite rank; and a
space with no Noetherian base.

EXAMPLE 5.1. The Michael line was introduced [22] as an example
of a paracompact space whose product with a metric space (the space of
irrational numbers) is not normal. It is the discretization RM where M is
the set of irrational numbers. (Definition 1.6) A rank 1 base Ύ (hence
an ortho-base) for Michael line, easily seen to be Noetherian, is obtained
by picking an irrational number y, and for each positive integer n letting

Tn = {]y + fc/2", y + (k + l)/2"[ | k G Z}

(]α, b[ denotes the open interval from a to b.) letting To be the set of all
irrational singletons and T = U*=o °Vn
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If we define °Un analogously to Ύn but with 0 substituted for y, then
we obtain a Noetherian rank 1 base for the space of irrational numbers.

By Theorem 3.5, the product of the Michael line with the space of
irrationals and the product of the Michael line with itself both have
Noetherian bases of sub-infinite rank and are therefore metacompact
(even though the former is not paracompact). However, a direct
argument, establishes even more. Let

Wn={Ux V\UE% and V<ΞVn}

and let 2£n = {U x V \ U G °Un and V G To}. Then W = U:= 1 Wn and
2E = U =̂i<3?n are rank 1 collections, and they constitute together a
Noetherian rank 2 base for the product of the Michael line with the
irrationals. A Noetherian rank 3 base for the product of the Michael
line with itself can be constructed in a similar manner.

The Michael line has a Gδ-diagonal because the real line has one;
but the Michael line is not developable because every paracompact,
developable space is metrizable. (One could also show this by using
Theorem 4.3.)

EXAMPLE 5.2. The Sorgenfrey line S was introduced in [32] as a
paracompact space whose square is not normal. It is obtained by
putting the topology on the real line whose base is the set of all upper-
half-open intervals [a, b). The Sorgenfrey line does not have an ortho-
base. In fact [21] it does not even have a quasi-uniform base.

Let % be the set of all intervals [a, b) of length ί/n. Then
°U = U^=1 °Un is a Noetherian base for 5, since any ascending sequence of
members of °U must have strictly increasing lengths.

We will construct a base of sub-infinite rank for 5 by using the
homeomorphism between S and the subspace of S consisting of the
interval 0,1). Let {#} be a sequence of rational numbers in (0,1] such
that for each n, U7=n(φ — 1, <?«) is a cover of [0,1]. (Note that the lengths
of the intervals form a divergent series.) Let S8, = {[x, <j,) | <j, - x <
I}. Let 35 = UΓ=i $, . Clearly S3 contains a base for (0,1) with the
Sorgenfrey topology. We will show that 38 is of sub-infinite rank.

Let dC% be an infinite incomparable collection. This implies
si Π £$, contains at most one member for each i. Let /(l),y(2), be
the enumeration (in numerical order) of the indices i for which si Π
9 , ^ 0 . Then si = {[xn, qJ(n))Y°n=ί. Suppose p G Π si. Clearly p = xn

for at most one n. Then xm < p for m ^ n. Choose m jt n and k such
that

1/fc
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For some ί, ;( ί) > k. It is easy to see that [x,, q/(l))g[xm, gy(m)), since both
contain p, and the latter contains all points within a distance l//c from p.

By Theorem 3.5, neither 33 nor any other base of sub-infinite rank
for S is Noetherian. Indeed, the Sorgenfrey plane S 2 does not have a
base of sub-infinite rank nor even of countable rank: every base for S2 is
of rank 2M° = c.

To see this, let % be a base for S2. For each point (JC, - x) on the
anti-diagonal of S2, pick a member Ux of °U that meets the anti-diagonal
only in (x, - JC). (Such a Ux must exist if °U is to be a base, because the
squares B(x, δ) = {(α, b)\x^a<x + δ, - x ^ ft ^ - x + δ} form a local
base at (x, - x) as δ ranges over the positive real numbers.) For each n,
let %={Uxf\B(x,i/n)CUx}. Since each ί7x is open, U:=ι

ΰUn =
{Ux \ x E S}. Therefore, there must exist some °ίln of cardinal c. If we
divide up the anti-diagonal into segments of length λ/2/n, disjoint except
for their endpoints, there exists at least one that meets c members of °Un

in a point other than one of the endpoints. Any one of these c members
contains the point at a horizontal distance 1/n from the "upper"
endpoint of the segment, and each contains a point not to be found in any
of the others.

EXAMPLE 5.3. Let D* be the discretization of the ordinal ωλ + 1
obtained by isolating all points except ωλ. Clearly, D* has a Noetherian
rank 1 base (although ωλ + 1 with the linear order topology does
not — see Example 5.5). Its product with ω o + l is known as the
Dieudonnέ plank. Although both factor spaces have Noetherian rank 1
bases, the plank itself does not have a base of any finite rank, because the
corner point (ωλ + 1, ω0 + 1) does not have a totally ordered base (Lemma
2.4). However, it does have a Noetherian base of sub-infinite rank
(Theorem 3.5) and hence is hereditarily metacompact (Theorem 3.3).

The space obtained by deleting the corner point (ωi + l , ω o + l ) ,
called the deleted Dieudonne plank, is a nonnormal, metacompact space,
[33], [34]. It has a base of rank 2. Let S80 be the set of all singletons
(a,n) with a countable and n finite; let S8n be the set of all vertical
segments of the form Ba

n = {(α, β)\ β > n} as a ranges over all countable
ordinals. Finally, let $8a be the set of all horizontal segments of the form
Bn

a={(β,n)\ β^a}. Clearly,

is a rank 2 base.
Given a regular cardinal ωμ, one can define D * analogously to D * as

the discretization of ωμ + 1 obtained by isolating all but the final
point. Here is an important embeddability principle: if X is a space
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with an ortho-base, and x is a point of X which does not have countable
local base, then we can embed some D*, ωμ regular and uncountable, as
a closed subspace of X whose single nonisolated (in relative topology)
point is x. The method is a simple transfinite induction argument: for
each a < ωμ, pick a neighborhood Va of x from the ortho-base in such a
way that Vβ^Va for all β < α, and so that {Va: a < ωμ} is a local base at
x. Now for each a, pick a point in Va\Va+ι.

Since D* is neither a k -space nor a q -space, this argument gives a
simple way of establishing Theorem 4.1. A similar use of these spaces is
to be found in [27].

EXAMPLE 5.4. In marked contrast to D *, the space ωx of countable
ordinals has no base of sub-infinite rank. (This applies a fortiori to
ω, + 1.) To prove this, we apply a result of Alexandroff and Urysohn
whose proof may be found in [19, Theorem A 1.2]. Given an ordinal
number a (regarded as the set of all ordinals smaller than α), a function
f:a->a is regressive if /(0) = 0 and for all β >0, f(β)<β. The
Alexandroff-Urysohn theorem is: ///: ωx-> ωx is regressive, then there
exists β < ωx such that β = f(a) for uncountably many a. In fact, we can
find β such that β = f(a) for uncountably many limit ordinals, because
the function that agrees with / on limit ordinals and sends each nonlimit
ordinal to its predecessor is also regressive.

Now, let 39 be a base for ωx. For each limit ordinal a < ωu select a
member Ba of 35 whose upper endpoint is a. Since a is in the interior
of Bα, there exists β < a such that [β, a] = {γ \ β ̂  γ ̂  a} is a subset of
Ba Let βι(a) be the least such ordinal. By the Alexandroff-Urysohn
theorem, there exists an ordinal βx such that βx = βλ{a) for uncountably
many a. Suppose that βn has been selected. For each limit ordinal a
greater than βn, select a member Bn

a of 38 whose upper endpoint is a and
whose lower endpoint is greater than βn. Again there exists β < a such
that [β, a] is a subset of J5 .̂ Let βn+ι(a) be the least such ordinal, and
let βn+ι be such that βn+ι = βn+i(α) for uncountably many a.

And so by induction, we define an increasing sequence {βn} of
ordinals. Let β = sup{/?„}, and pick for each positive n an ordinal an

such that βn = βn(an) in such a way that an < am whenever n < m, and
ax > β. It is clear that β is in the intersection of the sets Bn

an and that the
sets are incomparable.

On the other hand, the open intervals of ωx constitute a base of
countable rank.

Although ωx is orthocompact, being a linearly ordered space, it does
not have an ortho-base. Indeed, defining β as above, we have β E
Π^= 1β^n, but β is not in the interior of the intersection, nor is β the only
point in the intersection.
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The following proof that ωi has a Noetherian base is due to G.
Gruenhage. J. Vaughan and B. Scott have independently arrived at
similar proofs. B. Scott has, in addition, given a proof that ω1 does not
have a clopen Noetherian base. Also, it is easy to see (using [19,
Theorem A 1.2] as above) that ωλ does not have a Noetherian base of
intervals.

Let £$o be the set of all isolated points of ωλ. For each limit ordinal
a that is not a limit of limit ordinals, let S8α = {[ap + n, a] \ n is a positive
integer, ap is the limit ordinal immediately preceding a (if a = ω,
aP=0)}.

For any limit ordinal α, let

&a={F(a,β,n)\β>a, nGN}

where F(a, β, n) is defined as follows:
Let {Hi}i(ΞI be an uncountable collection of subsets of [0, a] with the

following properties:
(i) Hi contains no limit ordinals
(ii) a is the only cluster point of H{

(iii) Hi Π Hj is at most finite for i ̂  j .
For each β > α, choose Hi{β) so that if β^ γ, i(β)^ i(y). Suppose
Hm = {δu δ2, •}. Let

Now 3 δ 0 U ( U α < ω i S 8 α ) U ( U α < ω i ^ α ) is a base for ωλ. It is Noeth-
erian, because any infinite ascending chain would have to contain an
infinite sequence

F ( α 1 , β 1 , n 1 ) C F ( α 2 , j 8 2 , n 2 ) C •••.

Then aι ^ a2= so eventually an = α 0 for some α 0 and all n greater
than some integer N. By property (iii) we must have all βn equal for all
n^N. Thus nN > nN+ι > and so the sequence must be finite.

EXAMPLE 5.5. Our final example is an ordinal space with no
Noetherian base, due to J. Vaughan.

Let K be a strong limit cardinal (i.e. for every cardinal r < /c, 2T < K)
of uncountable confinality. (For example, under the Generalized Con-
tinuum Hypothesis, Hωi is the first such cardinal.) For all a < K, let Ia be
an interval of the form (xα, a] with xa < a.

Claim. There exists an infinite β < K, and A Cκ9 such that | A \ > 2β
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and, for all a E A, IaΠ[O,β]/0. (The proof of this claim may be
found in [19, Theorem A 1.3].)

Now, if 38 is a base for K, then there exists for each a < K a member
Ba of 38 of the form Ta U/α where y <xa for all y E Ta. Let β, A be as
in the above claim. Select a countable subset of A : αj < α2 < such
that Ba, Π [0, j8] = Ba, Π [0, β] for all /,/. (This is possible since \A\>
2β.) It is then clear that BαίJBαί+1 for all i. (Indeed, Bai contains all
ordinals between β and ah but no ordinal greater than α,.) It follows
that ί$ is not Noetherian.

6. Open questions. In light of Theorems 3.5 and 3.3, it is of
interest to inquire:

Problem 6.1. Does every space with base of finite rank have a
Noetherian base of finite [equivalently, sub-infinite] rank?

A space with a rank 1 base has a Noetherian rank 1 base [25], but
Problem 6.1 is open for spaces with bases of rank 2. The explanation of
the "equivalently" in Problem 6.1 is that the space with a Noetherian
base 38 of sub-infinite rank and a base V of finite rank n has a
Noetherian base of rank n. This can be shown by using Theorem 3.8:
assume V is upper-chain-complete, and for each B E 38 and each p E B,
take the set of maximal members of V contained in B and containing
p. The set of all such members of V is clearly a base of rank n, and is
Noetherian because 38 is Noetherian and of sub-infinite rank [Noeth-
erian alone is not enough].

Problem 6.1 is important because an affirmative answer would
greatly shorten the present proofs that every Hausdorff or separable
regular space with a base of finite rank is metrizable; that every space
with a base of finite rank is metacompact; that every hereditarily Lindelόf
space with a base of finite rank has a point-countable base [14]. It would
also provide an affirmative answer to the following question.

Problem 6.2. Let X be a space which is a finite product of spaces
with bases of finite rank. Is X metacompact? hereditarily metacom-
pact?

Problem 6.3. Is every space with a base of sub-infinite rank
metacompact?

This problem is a natural outgrowth of several results, for example
Corollary 2.8 or Theorem 3.3 or the result of P. Nyikos [14] that every
space with a base of rank Ko is metacompact.
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The following is equivalent to Problem 6.3: is every space with a
base of sub-infinite rank 0-refinable? Indeed, metacompactness is
equivalent to 0-refinability for spaces with bases of sub-infinite (small)
rank, because these are all "pointwise collectionwise normal" (almost
discretely expandable) and J. R. Boone [5] has shown that 0-refinability
and metacompactness are equivalent in such spaces.

An affirmative answer to Problem 6.2 would yield the following
strengthening of Theorem 2.9: A space is metacompact and developable
if, and only if, it has a base of countable order and a base of sub-infinite
rank.

Problem 6.4. Is every space with a base of countable rank or-
thocompact?

As remarked above, ωλ is a linearly ordered space with a base of
countable rank that is not metacompact.

Problem 6.5. Is every countably compact space with a base of
sub-infinite rank compact?*

A similar, though probably unrelated problem is:

Problem 6.6. Is every countably compact space with an ortho-base
compact?*

Exercise 51 of [12] gives a pseudocompact space with an ortho-base
that is not compact — but it is not countably compact, either.

The following problem from [15] remains unanswered:

Problem 6.7. Is every collectionwise normal space with an orthob-
ase paracompact?

Even the following problem remains unsolved. Of course, any
orthocompact nonmetrizable normal Moore space would provide a
counterexample. (That is hardly the only place to look!)

Problem 6.8. Is there a model of set theory in which every normal
space with an ortho-base is paracompact?

As shown by Theorem 4.4, the following implications hold for a
space with an ortho-base:

σ#-space => quasi-metric space => γ-space

* Added in proof. G. Gruenhage has shown that both 6.5 and 6.6 have affirmative answers.
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Problem 6.9. Which of the above implications is reversible for
every space with an ortho-base?

G. Gruenhage has shown that if the space is paracompact, both
implications reverse [13].
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