
PACIFIC JOURNAL OF MATHEMATICS
Vol 66, No 2, 1976

ON FIXED POINTS OF ZERO INDEX
IN ASYMPTOTIC FIXED

POINT THEORY

CHRISTIAN C. FENSKE AND HEINZ-OTTO PEITGEN

The fixed point theory for mappings of compact attraction
type is used to obtain some new asymptotic fixed point
theorems. These investigations have been motivated by the
properties of ejective and attractive fixed points. Special em-
phasis is given to those situations where the fixed points are of
zero index. The generality of the approach admits the useful
formula ind(X,/, F) = Λ(/,X)-Λ(/,X\F) which allows the
computation of the index of FC Fix (/: X—> X) in terms of
Lefschetz numbers.

In this paper we continue the study of isolated fixed points which are
characterized by certain local or global asymptotic properties of the
underlying mapping. Our aim is to show that isolated fixed points of
this sort are always of zero index if they satisfy a certain geometric
boundary condition expressed in terms of a condition on the homology
groups of the underlying space. Examples and a new explicit formula
for the index of such points will indicate that this geometric boundary
condition seems to be the best condition to establish such index
characterizations. In a particular case, i.e. if the mapping can be
considered as a member of a semi-flow on a nice space X, we will show
that the index of a certain isolated fixed point x{) is given by the difference
of the Euler characteristics of X and X\{xQ}.

In particular, our main results contain the case when the isolated
fixed point is repulsive or ejective and in this sense some of the results can
be considered to be extensions of work done in [6], [15], [16], [17] and
[19]. Moreover, it turns out that our index characterizations can be
proved without using any type of (modp)-result as given in [18], [20],
[21], [22] and [23].

The key for this improvement is simply to use the fixed point theory
of a more general class of maps, which includes compact maps, and some
basic point set topological constructions.

For concrete applications of the general results we are concerned
with, the reader is referred to the fundamental papers of R. D. Nussbaum
[14], [15] and [16].

0. Preliminaries. In what follows an essential use will be
made of the notion of the Lefschetz number in the generalized sense as
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given by J. Leray [10] and the fixed point index for metric ANR's
developed by A. Granas in [8].

Let £ be a graded vector space over the field of rational numbers, Φ
an endomorphism of degree zero and N(Φ) = Un>oker(Φn). Then Φ is
said to be a Leray endomorphism iff E = E/N(Φ) is of finite type. In
that case we define Tr(Φ) = trace (Φ), where Φ: E-> E is the induced
endomorphism. The generalized Lefschetz number of Φ is denoted by
Λ(Φ) and is given by the formula

Λ(Φ)=Σ(-l)'Tr(Φ,).
q

We let H* denote the singular homology functor with rational coeffi-
cients and /* is the abbreviation for //*(/), where / is a map. A map
/: X-+X is said to be a Lefschetz map iff /*: H*(X)^>H*(X) is a
Leray endomorphism and in that case the generalized Lefschetz number
of/is given by Λ(/, X) = Λ(/*).

For triples (X, /, U), where X is a metric ANR, U is open in X and
/: ί/—» X iŝ a compact, admissible map (i.e. Fix(/) = {x E U \ f(x) = x)
is compact in [/), a fixed point index /(X,/, U) is defined in [8] which
satisfies the standard properties including the strong normalization
property /(X,/, X) = Λ(/, X).

By °tt(x0) we denote the system of open neighbourhoods of a point JC0

in a space X.
Most of the results will be given for metric ANR's. The considera-

tion of this class of spaces is of interest because it contains important
examples both in topology and analysis; for example,

— convex subsets of a linear normed space
— open subsets of a linear normed space
— finite polyhedra
— compact manifolds
— Banach manifolds
— open subsets of such spaces.

The class of maps — always assumed to be continuous — which we want
to consider is given in the following definitions.

(0.1) DEFINITION (cf. [7]). Let X be a topological space,
/: X-^X a map, A and K two subsets of X.

(0.1.1) The set oκ = Unf
n(K) is said to be the orbit of K under /

and fn(K) is the nth member of oκ.
(0.1.2) We say that A absorbs K provided almost all members of

0K are contained in A.
(0.1.3) We say that A attracts a point x E X provided the intersec-

tion c\(ox) Π A is not empty.
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(0.1.4) We say that A is an attractor for / provided it attracts all
the points in X.

(0.1.5) We say that / is of compact attraction provided
(i) / has a compact attractor and
(ii) / is a locally compact map.
(0.1.6) We say that A is a stable, compact attractor for / provided
(i) A is a compact attractor for / and f(A)CA and
(ii) A possesses arbitrarily small neighbourhoods U such that

f(U)CU and c\f(U) is compact in U.

One encounters attractors in analysis when one considers the map of
translation along trajectories of differential equations or functional
differential equations which satisfy various assumptions of stability.

We are indebted to Andrzej Granas for acquainting us with the
Lefschetz theory for mappings of compact attraction (cf. [7]) and the
concept of a Lefschetz map for pairs of spaces which turns out to be very
useful in §IV.

Typical examples of isolated fixed points that we want to study are
the following:

(0.2) DEFINITION (cf. [2] and [3]). Let X be a topological space,
JCQEX and /: X\{xo}->X a map.

(0.2.1) We say that JC0 is a repulsive point of / relative to U E °U (x0)
provided for any V E °ίl there is an n0 E N such that fn(X\V) is defined
and

fΛ(X\V)CX\U,

whenever n ̂  n0.
(0.2.2) We say that x0 is an ejective point of / relative to U E °lί (JC0)

provided for any x E U there is an nx E N such that fn% (JC) is defined and

/"-(*) ex\ I/.

In view of applications (cf. [15] and [16]) we do not assume that / is
continuously defined at x0. In case / is continuously defined at x0 and
f(x0) = x0 (0.2) provides the definition of a repulsive (resp. ejective) fixed
point of /.

(0.2.3) Let /: X -» X. We say that x0 is an attractive fixed point of
/ relative to U E %(JC0) provided for any VE °U{xo) there is an n 0 EN
such that



394 C. C. FENSKE AND H.-O. PEITGEN

Γ(l/)CV,

whenever n ̂  n0.

1. Ejective and repulsive points. Our aim in this sec-
tion is to establish a relation between ejective and repulsive (fixed) points
which will allow us to transfer the results about repulsive (fixed) points to
ejective (fixed) points. This is of importance because in concrete
applications it is, of course, much easier to verify that a point is ejective
rather than repulsive. The result that we give here is partially based on
a trick from [3] and is stated for Banach manifolds. It can be easily
stated for other spaces (for example; compact, convex, infinite dimen-
sional subsets of a Banach space, cones in Banach spaces) by adding or
leaving out obvious assumptions.

(1.1) LEMMA. Let X be a metrizable, infinite dimensional Banach
manifold, x0 E X , [/£ °lί(xo) and f: X —> X a compact map such that

(1.1.1) jCo is an ejective fixed point of f relative to U E °U (x0). Then
there is a compact map A : X x [ 0 , l ] - > Xand there is W E °lί (xQ) such that

(1.1.3) f o r a l l x E d W a n d t G [ 0 , l ] h ( x , t ) ^ x ;
(1.1.4) jc() is an ejective fixed point of g(x)=h(x, 1) and /(JC) =

Λ(JC,O);

(1.1.5) g(X\{xo})CX\{xo}.
If in addition

(1.1.2) for any V£ΐ(x ( ) ) we have that xofέc\f(U\V)
then

(1.1.6) for any V 6 ΐ ( J C ( ) ) we have that xQ £ cl g(X\V).

The purpose of the lemma is to pass from a situation which is very
convenient for applications via a homotopy leaving the fixed point index
invariant to a situation which fits into the framework of the coming
characterization results. In some sense properties (1.1.4)—(1.1.6) mean
that JCO is almost a repulsive fixed point. In particular using straightfor-
ward arguments and Lemma 1 in [3] (cf. Lemma 1.3 in [15]) one shows
that actually (1.1.4)—(1.1.6) imply that x0 is a repulsive fixed point of g.

If JCo is a repulsive fixed point then (1.1.6) is obviously satisfied. On
the other hand, if x0 is only ejective even the corresponding local
condition (1.1.2) need not be satisfied. This is shown by the following
example which also shows that (1.1.2) can be satisfied:

(1.2) EXAMPLE. Let P be the cone of positive realvalued continu-
ous functions on [0,1] endowed with the sup-norm topology. Let
k: [0,1] x [0,1] -> R+ be continuous and such that 0 < m ̂  k (s, t) ̂  M <
oo for all 5, t. Then
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Ax{t)= P k(s,t)x(s)mds
Jo

is a completely continuous operator leaving P invariant and it is easily
seen that OE P is an ejective fixed point of A.

(1.2.1) Now, let δ > 0 be arbitrary and set xn(t) = δt2n, n E N; then
II*,, || = δ A(xn)->0. Hence, (1.1.2) is not true for any choice of U E
%(0).

(1.2.2) To see that (1.1.2) can be satisfied, consider the cone

C = {x E P I minx(t)^m/M \\x\\}

and observe that A again leaves C invariant and 0 is
ejective. Considered as a mapping from C to C A now satisfies (1.1.2).

Proof of (1.1). Let d denote a metric on X. Choose a coordinate
neighbourhood Uo E % (JC0) such that Uo C 17 and l/0 is homeomorphic to
some Banach space B via a homeomorphism H. Choose W E % ( J C 0 )

such that cl W C ί/0 and

(1.1.7) d(X\ί/,cl\y)=δw>0.

Set C = cov{H(cl/(X)ΠclM/)U/30}, where Γ is some infinite dimen-
sional compact subset of B. By a theorem of Klee [9] we find a
homeomorphism G: C —» C such that G(H(x0)) is an extreme point of
C Define F:C->X by F(JC) - H~\G\x)\ then X = F(C) is a
compact subset of U{h x()EK and cl/(X)ΠclWCK

(1.1.8) Definition of h: X x[0,l]-> X.

Define λ:X->[0,l) by λ(x)= 1-1/(1+ min{d(x,cl W),d(f(x),
X\W)}). Then Λ is continuous and has the following properties:

n 1 Q\ A(JC) = O iffxEclM/or/(x)EX\M/
( 1 1 ' V j λ ( x ) ^ 0 iff x£c\W and/(x)E W.

Now choose 2 G C, z ^ F"'(x,,), and define

(/(Jc))+ίλ(x)z}, if λ ( x ) ^ 0

I /(JC), i fλ(x) = 0.

Observe that h is well defined since λ(x)^0 implies f(x)E W, i.e.
f(x)EK. Moreover, observe that h is continuous, compact and
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h(x,0) = f(x). (1.1.3) follows from the fact that x0 is an ejective fixed
point of / relative to U and h(x, t) = f(x) for all x E dW C U.

The proof of (1.1.4) is obvious because g coincides with / in W.

Proof of (1.1.5). Assume there is x^ x0 such that g(x) = x0. Then
two cases might occur:

(a) λ(x) = 0; hence x E cl W — which is impossible, since x0 is
ejective, or g(x) = f(x)Ei X\W— which is impossible, since g(x) =
f(x) = xo(ΞW.

(b) 0 < λ ( j c ) < l ; then F~l(x0) = (1 - λ(x))Fι(f(x)) + λ(x)z, and
again we arrive at a contradiction, since F~1(x0) is an extreme point, but
z^F-'(xo).

To prove (1.1.6) we need the following:

(1.1.10) If (xn) is a sequence in X such that g(xn)^ Xo then x0 is an
accumulation point of (f(xn))-

Proof of (1.1.10). Since λ(xn) E [0,1) we may choose a subsequence
(xn) such that Λ(jcn)^ Λ0E [0,1]. We will show that λo = O. Assume
λ o = l ; then (1-λ(xn))F-ι(f(xn))-»0GB, since (F~' (/(*„))) C C is
bounded. Hence, g(xn)-> F(z) and g(jcn)->jt0; this is a
contradiction. Now AO<1 implies that 1/(1 - λ(xn)) is a convergent
sequence. Hence, F\f(xn)) = (F^g^))- λ(xn)z)/(l- λ(xn)) is a
convergent sequence in C and F\f(xn)-^ u = (F~\xQ)- λoz)/(l - λ o)E
C Of course, we have u^ z because u =z would imply F~1(x0) =
z. Assume Λ 0 ^0; then

F'\g(Xn)) = (1 -λ(xn))F-\f(xn)) + λ(xn)z

i i
Fι(x0) (1 - Λ0)w + Λoz

and again we have a contradiction to the extremality of
F~\x0). However, λ0 = 0 implies F~1(f(xn))^>F~1(x0)9 i.e. /(xn)->x0.

Proof of (1.1.6). Assume that there is V0G °U(x0) such that x0E
clg(X\V0), i.e. there is (jcn)CX\V0 such that g(xn)->x0. If infinitely
many xn were in U\VQ we would have g(xn)—>x0 and from (1.1.10)
/(•̂ π,)—^ *o for a subsequence in C7\ Vo, which would be a contradiction to
(1.1.2). Thus, we may assume that (xn)CX\U. But (xn)CX\U implies
d(xmcl W)^ δw >0 for all n, and f(xnι)^x0 implies d(f(xm), X\W)^
δ0 > 0 for almost all n,. Hence, from the definition of A, we have that

λ(xni)= λo(δw, δ 0 )> 0 for almost all n,,

and this again leads to a contradiction to the extremality of F~\x0).
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(1.3) R E M A R K S .

(1.3.1) Let X be a subset of a linear, n o r m e d space, J C 0 E X ,

/: X - ^ X completely continuous, U E %(xo) and K CX a closed subset
such that (1.1.1) and (1.1.2) are satisfied. Assume that cl U Π cl/(X) CK
and K is homeomorphic to a closed, convex subset of a linear, normed
space such that x0 corresponds to an extreme point. Then the conclu-
sions of (1.1) are true with almost no change of the proof, except that in
this case the homotopy is completely continuous.

(1.3.2) Applying (1.3.1) to the situation where X is a cone in a
Banach space and x0 = 0, i.e. x0 is an extreme point, one gets a
strengthening of a result of Nussbaum [15].

(1.3.3) Obvious modifications of the formulation of (1.1), (1.3.1)
and (1.3.2) and their proofs give immediately corresponding results for
the case when /: X\{JC O }^X and x0 is only an ejective point.

II. Mappings of compact attraction. The following
purely point set topological Lemma (2.1) was communicated to us by A.
Granas. It also follows by a combination of Lemma 5.1 in [7] and an
argument used in Theorem 2.1 in [7]. The construction used there is
attributed to unpublished ideas of Eells and Gleason-Palais and has been
used in similar situations in [4], [5], [6], [12], [13] and [19].

(2.1) LEMMA. Let X be α metric space, f: X - > X a mapping of
compact attraction and A a compact attractor for f. Then there is an open
neighbourhood U of A such that

(2.1.1) f(U)CU and
(2.1.2) fiui U -» U is a compact map.

G. Fournier in [7] uses this fact to extend the notion of a Lefschetz
number to mappings of compact attraction. In fact, he shows that
Λ(/, X) is defined and Λ(/, X) - Λ(/!(7, U) if X is a metric ANR.

(2.2) COROLLARY. Let Xbe a metric space, f: X -» X a mapping of
compact attraction and A a compact attractor of f

(2.2.1) Then there is a stable, compact attractor A 0 D A for f

Proof Set Ao = A Uc\f(U), where U is a neighbourhood of A
satisfying (2.1.1) and (2.1.2). Then f(A0)Cf(A Ucl/(t/))CA0. Clearly,
if V is a neighbourhood of Ao and V C U we have cl/(V)Ccl/(t/)C

Corollary (2.2) shows that our concept coincides with Nussbaum's
concept of an attractor (cf. [13]).
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(2.3) LEMMA. Let X be a metric space, f: X —> X a locally compact
map and A CX an invariant compact set. Assume that each open
neighbourhood of A absorbs compact sets in X. Then there exist arbi-
trarily small open neighbourhoods U of A such that

(2.3.1) f(U)CU and
(2.3.2) fu: U—> U is a compact map.

Proof. Even if A is a compact, invariant attractor for / the
conclusion of (2.3) does not follow from (2.2), because, in general, one
has to choose there a bigger invariant attractor Ao. By Lemma 5 in [13]
there is We°ίί(A) arbitrarily small such that f(W)CW. Since / is
locally compact we may assume that c\f(W) is compact. Now W
absorbs points in X, hence compact sets in X, and we find ra0 E N such
that clfm(W)Cclfm-\clf(W))CW, whenever m ̂  m0. Set C =
A Uc\fmiW) and observe that f(C)CC and CCW and
W. Choose Wl9 , Wn^1 E %(C) such that

C C WVi Ccl W^ C--WλCc\W,CW

and set
m o - l

u=wn n
7 = 1

Clearly, C C U C W and one shows easily that clf(U) C U.

The next lemma, again purely point set topological, is motivated by
Theorem (3.1) in [17] and will enable us to prove an extension and
generalization of this theorem (see §IV).

(2.4) LEMMA. Let X be α metric space, f: X-^Xa map of compact
attraction and V open in X such that

(2.4.1) there is an n0 such that fn(X\V)CX\c\V, whenever n ̂  n0.
Then there is Y open in X\cl V such that

(2.4.2) f(Y)CY, fγ: Y^Yis a compact map and
(2.4.3) Y absorbs compact sets in X\ V.

Proof If A is any attractor of /, then Lemma (2.1) implies that
there exists U^°U(A) such that c\f{U) is compact in U. Hence,
Λo = A U cl/((7) is a compact invariant attractor. Note, that U absorbs
points in X, and, hence, compact subsets of X. Thus, if KCX is a
compact set there is an w 0 E N such that fm(K)CU, whenever m §
m0. Then /m+1(,K:)C/(l7)CΛ Ucl/(l/). Hence, Ao absorbs compact
sets in X. Set B = f°((A U cl/(ί/)) Π X\ V) and observe that B is a
compact subset of X\cl V. Set C = U^Ό1 fj(B) and observe that C is in
X\clV and/(C)CC.
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Moreover, if K is any compact set in X\V, we have that /m°(X)CA U
c\f(U) for some m 0 E N; thus /m°+2n°(K) C JB CC, i.e. C absorbs compact
sets in X\V. Since / is locally compact, we find W E °U(C) such that
cl W CX\cl V and c\f(W) is a compact subset of X\V. Hence, there is
k0E.fi such that c\fk°(W)CC Now choose as in the proof of (2.3)
Wu , W^-XEL °U(C) and construct an open set Y with the properties
(2.4.2) and (2.4.3).

(2.5) COROLLARY. Let X be a metric space, f: X-*X a map of
compact attraction, x0 E X a repulsive fixed point off relative to U E °li (JC0)
and V any neighbourhood of x0 such that cl V C U. Then
f: X\{xo}-> X\{x0} has a stable, compact attractor A CX\cl V.

Proof. Choose V E °ίί (JC0), cl V C U. Then there is an n 0 E N such
that /"(X\ V)CX\UCX\c\ V, whenenver n ^ n0. By Lemma (2.4) we
find Y CX\cl V such that A = ς\f(Y) is a compact, invariant subset of Y
which absorbs compact sets of X\V. If x^ x0 then fm(x)E X\U for
some m E N; hence, A absorbs points in X\{xo}

If xQ is only an ejective fixed point and if we assume that
/(X\{jC()})CX\{jt0} — which is reasonable by Lemma (1.1) — an only
slightly less sharp result is possible.

(2.6) LEMMA. Let Xbe a metric space, f: X-^Xa map of compact
attraction, x0E X an ejective fixed point of f relative to U E °U (x0) and
/(X\{xo})CX\{xo}. Then /: X\{xo}-+ X\{x0} has a stable, compact at-
tractor.

Proof. By Corollary (2.2) we find a stable, compact attractor A for
f: X-*X which absorbs points of X. Set B = A Γ\ X\U and observe
that B attracts points of X\{x0}.

The close connection between the notion of ejectivity and the notion
of a compact attractor is shown by the

(2.7) LEMMA. Let X be a metric space, f: X —» X a map of compact
attraction and F CX a closed subset such that f(X\F)CX\F. Then the
following are equivalent

(2.7.1) fX\F: X\F-> X\F is a map of compact attraction;
(2.7.2) F is an ejective set for f.

Proof. Lemma (2.6) indicates one direction of the proof. By
Corollary (2.2) we find a stable, compact attractor A CX\F which
absorbs compact sets in X\F. Choose V E°U(F) such that c l V Π Λ =
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0. Let x be in V\F. Then /"(x)GΛ for some n E N. Hence,
fn(x) £ V, i.e. F is an ejective set for / relative to V.

III. The fixed point index for mappings of compact
attraction. The following definition is based on the definition of a
fixed point index for compact maps of metric ANR's as given by A.
Granas in [8] and his generalization to admissible maps /: U-^X (X is a
metric ANR, U is open in X and Fix(/) is compact in 17) such that for
some neighbourhood V of Fix(/) the restriction /|V is a compact
map. Note that if /: £/—>X is an admissible and locally compact map
then there is VG ύίί(Fix(f)) such that f]v is a compact map.

(3.1) DEFINITION. Let X be a metric ANR, /: X-+X a map of
compact attraction and U open in X such that f(x)^x for all x E
dU. Choose Y open in X such that Y absorbs compact sets in X,
f(Y)CY and fγ: Y-> Y is a compact map. Define

i(X9f9U)=i(Y,f,YΠU).

From ([8], §10) we know that i(YJ,YΠ U) is well defined, since Y is
itself an ANR. The existence of such an open set Y is guaranteed by
Lemma (2.1). An easy computation shows that this definition is inde-
pendent of the choice of Y. Moreover, this index is a fixed point index
in the usual seftse, i.e. it satisfies the following axioms:

(3.2) ADDITIVITY. Let £/, Uu U2 be open in X such that Uu U2C
U, UιΠU2 = 0 and f(χ)μ x for all xEcl t/\(l/, U U2). Then

i(x,/, [/) = i(x,/, CΛ) + ;(x,/, t/2).

(3.3) HOMOTOPY. Let Λ: X x [0,1] -» X be a map such that for all
xGdU and for all t E [0,1] h(x,t)/x. Let ff: X x [0,1]->X x [0,1]
be defined by //(JC, ί) = (h (x, ί), ί). Assume that H is a map of compact
attraction, then

i(X,ho,U)=i(X,huU)9 where ht(x) = h(x, t).

(3.4) COMMUTATIVITY. Let X, Z be metric ANR's, /: X—> Z and
g: Z —> X locally compact maps, U open in X and V open in Z such
that

(3.4.1) /([/)CV and
(3.4.2) for all JC E 3t/ gf(x)^ x (which is equivalent to: for all

yedg-ι(U)fg(y)ϊy). Then, if
(3.4.3) fg has a compact attractor then gf has a compact attractor

and, in either case,
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Proof of (3.4). Let A be an attractor for gf Then f(A) is an
attractor for fg. Choose Y open in X such that gf(Y)CY and
(s/)ιv5 ~̂~̂  "̂  is a compact map and absorbs compact sets in X. For any
x E clg/( Y) choose Ux CY such that cl f(Ux) is compact. The compact-
ness of gf(Y) implies that

Ϋ= U UXiDdgf(Y)CY.
7 = 1

Now, clg/(y)Cclg/(Y)C y and y absorbs compact sets in X. Set
W = g-'(γ). Then, clgf(Ϋ)CΫ implies that g(clf(Ϋ))CΫ and this
implies that clf(Ϋ)Cg-\Ϋ) = W. Thus,

cl/g(W) = clfgg-\Ϋ) = cl/(Y) C W.

Moreover, W absorbs compact sets in Z with respect to fg. To see this
let K be a compact set in Z. Then (g/)n (giC) C Ϋ for some n. Hence,

= f(gf)ng(K)Cf(Ϋ)CW.

Finally,

;(x,g/, ι/)- i(tgf Ϋ n u)=i(w,fg,g-ι(unγ))

w)=i(z,fg,g-\u)).

(3.5) NORMALIZATION. Let X be a metric ANR and /: X-+X a
map of compact attraction. Then

Proof of (3.5). Choose Y open in X such that (3.1.1>-(3.1.3) are
satisfied. Then i(X, /, X) = i(y, /, Y). On the other hand G. Fournier
in [7] has shown that the Lefschetz number of /: X—> X is defined and
Λ(/, X) = Λ(/, Y) (cf. the proof of (4.8)).

IV. Some new asymptotic fixed point theorems. To
prove our main results we need the following two lemmata which were
communicated to us by A. Granas (cf. [1], [5] and [11]). The first is a
generalization of the well known formula for the relative Euler charac-
teristic.
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(4.1) LEMMA. Let (X,A) be a pair of topological spaces and
/: (X, A)-» (X, A) a map. If any two among f fx: X -> X, fA: A -> A
are Lefschetz maps, then so is the third and in that case we have

A(f (X, A)) = Λ(/jx, X) - Λ(/,Λ, A).

The second lemma follows immediately from the definition of a
Leray endomorphism.

(4.2) LEMMA. Let E be a vector space (over the rational numbers)
and T: E —» E weakly -nilpotent (i.e. for all e E E there is an n E N such
that Tn(e) = 0).

Then Tr(T) = 0 (Tr(Γ) denotes the generalized trace in the sense of
Leray [10]).

By the generality of our approach the following lemmata are now
almost trivial, though their interpretation (cf. Lemma (2.7)) in the
instance of ejective (fixed) points extends and refines the results known
for such points (cf. [2], [3], [6], [15], [16], [17] and [19]).

(4.3) LEMMA. Let X be a metric ANR and f: X->X a map of
compact attraction. Let F CFix(f) be open and closed in
Fix(/). Assume that f(X\F)CX\F and that fX\F is a map of compact
attraction. Then

i(X, f W) = Λ(/, X) - ΛOW, X\F)

for any neighbourhood W of F such that c\W Γ\ F ix(/)\F = 0 .

Proof. Since F is an isolated component of Fix(/) it is also a closed
subset of X; hence, X\F is a metric ANR. Choose W E °U (F) such that
cl W Π Fix(/)\F = 0 . If A is any stable, compact attractor (cf. Corol-
lary (2.2)) for / |^ F and Y is open in X\F such that A C Y and cl/( Y) is
compact in Y, then Λ(/,X\F, X\F) = Λ(/(y, Y). Now, the normalization,
commutativity and additivity properties of the index imply

Λ(/,y, Y) = ΐ( Y,/, Y) = i(X,f, Y) = ΐ(X,/, X\cl W) and

(4.4) COROLLARY. Let X be a metric ANR, /: X-^X a map of
compact attraction and x0 E X an ejective fixed point of f relative to
We°U(x0) such that f(x)^x for all x <Ξ dW and f(X\{xo})C
X\{JC0}. Then
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i(X, f, W) = A(f, X) - A(fmai, X\{x0}).

Note that if / is already a compact map then fx^} is not a compact
map. This demonstrates that the class of maps which are of compact
attraction, not only leads to more general results but also, and, this seems
to be more important, leads to sharper results.

Some concrete applications of (4.4) should be mentioned.

(4.5) COROLLARIES (cf. [2], [3], [6], [15], [16], [17] and [19]).
(4.5.1) Let X be a cone in a Banach space and f: X->X a

completely continuous map. Assume xQ = 0 is an ejective fixed point
relative to a bounded IVGΐ(O) and f(x) ^ x for all x <Ξ dW. Then

i(X,f,W) = 0.

(4.5.2) Let X be a compact, convex, infinite dimensional subset of a
Banach space and f: X-> Xα continuous map. Then f has a nonejective
fixed point.

(4.5.3) Let X be a compact manifold with boundary dX, f: X -» X α
continuous map, JC0 E dX an ejective fixed point of f relative to W E °U (xQ)
and f(x) / x for all x E dW. Assume that f(X\{xo})CX\{xo}. Then

i(X,f,W) = 0.

(4.5.4) Let X be an infinite dimensional, metrizable Banach man-
ifold, f: X -* X a compact map, x0 E X an ejective fixed point of f relative
to WE U(x0) and f(x)/x for all x E dW.

i(X,f,W) = 0.

Proof of (4.5.1). By Lemma (1.1) and Remark (1.3) we may assume
that /(X\{0})CX\{0}. Choose R>0, such that cl W U clf(W)CBR,
where BR = {x E X \ \\x || ̂  R}. Let p: X-*BR be the radial retraction
and define F: X-> X by F(x) = f(p(x)). Then F is a compact map and
F(x)^0 for all x^Q and 0 is an ejective fixed point of F relative to
W. Observe that X and X\{0} are acyclic, thus

i(X, f W) = i(X, F, W) = Λ(F, X) - Λ(F|xy{0}, X\{0}) = 0.

Proof of (4.5.2). The compactness of X implies that / has at most
finitely many ejective fixed points. By a result of Klee [9] we may
assume that the ejective fixed points of / are extreme points of X. If x0

is a typical one we obtain i (X, /, x0) = 0 again because X\{x0} is
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convex and by (1.3.1) we may assume that f(X\{xo})CX\{xo}. Then the
conclusion follows from the additivity and normalization properties of
the index.

Proof of (4.5.3). Cf. remarks in [17] and [19].

Proof of (4.5.4). By Lemma (1.1) we may assume that /(X\{jto})C
X\{xo}. Since x0 is homotopy negligible, we have that

, X) = Λ(/*) = Λ((/|XUx()})*) = Λ(/(XUxo},

Another lemma can be stated now which is related to the character-
ization of ejecίive points (i.e. the map might not be defined in the critical
point).

(4.6) LEMMA. Let X be a metric ANR, FCX a closed subset,
f: X\F^> X locally compact, f(X\F)CX\F and fX\F a map of compact
attraction. Then

for any W such that cl W ΓΊ Fix(/) = 0 .

Proof See proof of (4.3).

(4.7) COROLLARY. Let X be a metric ANR, x0 G X, /: X \ { J C 0 } ^ X
a compact map, /(X\{x()}) CX\{x()} and x0 an ejective point of f relative to
We°U(x()) and f{x)^x for all x G dW. Then

i(X, /, X\cl W) = Λ(/!XUΛ)}, X\{JCO})

Proof We have that cl/(X\{x0}) Π X\ W is a compact attractor for

/:χ\{χ<>}

(4.7) is an extension of Nussbaum's result in [15]. In the previous
results (4.3) and (4.4) we certainly obtain fixed points of zero index if
j:X\F-*X induces isomorphisms in H* and (4.5) provides simple
examples for this situation. The following results are devoted to fixed
points of zero index.

(4.8) THEOREM. Let X be a metric ANR and f: X—> X a map of
compact attraction. Let F CFix(/) be open and closed in
Fix(/). Assume that f(X\F)CX\F and that fX\F is a map of compact
attraction. Let A CX\F be a stable, compact attractor for fX\F. If
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(4.8.1) /: X\F-+ X induces isomorphisms in H*\ or

(4.8.2) there is an open neighbourhood U of F such that cl U Π A =
0 and /: X\U->X induces isomorphisms in //*; or

(4.8.3) there is an open neighbourhood V of A such that cl V Π F =
0 and j : V—>X induces isomorphisms in H*\ then

(4.8.4) i(X,f W) = 0 for any open neighbourhood W of F such that
clWΠFix(/)\F = 0 and

(4.8.5) Λ(/, X) ϊ 0 implies that F^ Fix (/).

Proof. Since F is an isolated component of Fix(/) it is a closed
subset of X, hence, X\F is a metric ANR. The proof of (4.8.1) follows
by the same argument as (4.5.4).

Proof of (4,8.2). Since A is a stable, compact attractor in X\F we
can find Y open in X\F such that cl Y Π cl U = 0 , cl/( Y) is compact in
Y and Y absorbs compact sets in X\F. It suffices to prove Λ(/, X) —
Λ(/y, Y) because the additivity, commutativity and normalization prop-
erties of the index imply

A(f9X)=i(X9f9 U)+i(X,f, Y)=i(XJ, U)+i{Y9f9 Y)

By Lemmata (4.1) and (4.2) we obtain Λ(/, X) = Λ(/,γ, Y) after we
have proved that /*: H*(X, Y)-»H*(X9 Y), /(*) = / ( * ) , is weakly-
nilpotent. Hence, we have to show that for any a E H*(X, Y) there is
a n n E N such that /* (α) = 0. Observe that assumption (4.8.2), together
with the five lemma, imply that the inclusion k: (X\U, Y)—> (X, Y)
induces isomorphisms in H*. Let a be in JF/*(X, Y); then we find
b E H*(X\U, Y) such that a = k*b. Since H* has compact supports,
we find a compact pair (K,L), L CK CX\U and L C Y, such that
b = iΐ*(c), where cGH*(K,L) and ϊ £ (K,L)->(X\l/, Y) denotes the
inclusion. Now, Y absorbs compact sets of X\U C X \ F ; hence, there is
an n* such that fnκ (K) C Y Denote (/"K ) ) ( K L ) by gκ. Then the following
diagram of pairs is commutative

iK k

(K, L )c L-^ (X\ U, Y)c • (X, Y)

gK 1 i /""

(y v ) c ( x Y)
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Thus, (/*)"* °fc*°/£*(c)= /*°g**(c) = 0; which implies (f*)n*(a) = 0.

Proof of (4.8.3). We find Y open in X\F such that Λ C Y C V and
cl/(Y) is compact in Y and Y absorbs compact sets in X\F. Now, we
can follow the arguments of the proof of (4.8.2) replacing X\U by V.

Note that by Lemma (2.7) we can consider F as a repulsive or
ejective fixed point.

In ([17], Theorem 3.1) the second author gave an application of what
has recently come to be known as the (mod p)-theorem of
Zabreϊko-KrasnoseΓskiϊ [23] and Steinlein [20], [21] and [22]. The next
theorem is a strengthening and generalization of the corresponding result
in [17] and we will suggest a proof without using any type of (mod p)
argument. Moreover, this result has a very useful interpretation in
cones of Banach spaces (i.e. asymptotic expansion and asymptotic
compression of a cone cf. [14]) which will be carried through in another
paper.

(4.9) THEOREM. Let X be a metric ANR, f: X-+X a map of
compact attraction, U open in X such that

(4.9.1) there is an n 0 EN such that fn(X\U)CX\c\U, whenever
n ^ n0, and j : X\U —» X induces isomorphisms in if*. Then

i(X,f,U) = 0 and i(XJ, X\cl U) = Λ(/, X).

Proof By Lemma (2.4) we find Y open in X\cl U such that cl/( Y)
is compact in Y and Y absorbs compact sets in X\U. Following the
proof of (4.8.2) we obtain Λ(/, X) = Λ(/y, Y) which implies the conclu-
sion by the same arguments as before.

Clearly, Theorem (4.9) especially characterizes repulsive fixed
points. But it also characterizes attractive fixed points:

(4.10) COROLLARY. Let X be a metric ANR, x f l G X , / : X ^ X α
map of compact attraction, xQ an attractive fixed point of f relative
UE U(x0) and f(x)/ x for all x E dU. Assume there is VG %(JC0),

cl V C (7, such that j : cl V—> X induces isomorphisms in H*. Then

i(X,f,U) = A(f,X).

Proof Set W = X\clV; then i: X\W—> X induces isomorphisms
in //*. Since xQ is attractive there is an n 0GN such that /π(clV)C
/"(Ϊ/)C V, i.e. fn(X\W)CV = X\c\W, whenever n ^ n0.
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(4.10) provides a characterization of attractive fixed points without
the assumption that the fixed point has an acyclic neighbourhood (cf.
[19], Theorem 3).

(4.11) EXAMPLE. Let D = {x G R21 | |* | | ^ 1}, U = {x ER2 \\\x\\<
1/2} and f\D->D the following mapping:

Define

(2x I || x || ^1/2

* ( * ) =

U / | | x | | I II x II ^ 1 / 2 ,

let g: D -» D be an irrational rotation; and set / = g ° /ι. Then 0 is the
only fixed point of / in D. Moreover, 0 is a repulsive fixed point relative
to U and clearly i(DJ, U)= 1.

Note that assumption (4.8.2) is not satisfied here and that, in view of
the existence of non-ejective fixed points (cf. Corollary (4.5.2)) 0 is the
only fixed point of / in D.

V. A remark on semi-flows. Lemma (4.3) suggests the
following observation. If the assumptions are those of (4.3) and in
addition / is homotopic to idx and fX]F is homotopic to idxψ, then

i(X,f,W) = χ(X)-χ(X\F),

where χ denotes the Euler characteristic.

(5.1) DEFINITION. Let X be a topological space and Φ = {φ,},GR+ a
continuous family of maps φt: X->X.

(5.1.1) Φ is said to be a semi-flow on X provided φtι+t2 = φtl°φt2 and
φ 0 — idx.

(5.1.2) A point x0 G X is said to be an ejective stationary point for
Φ relative to UE°lί(x0) provided φt(x0)=x0 for all ί ^ O ;
and for all x G U\{x0} there is a t such that φt(x) £ U.

(5.2) PROPOSITION. Let Φ = {<M,eR+ be a semi-flow on X. Then
{φ(}t(ΞQ+ is divisible (i.e. for any pair tu t2 E Q+ there is t0 G Q+ such that for
some nu n2 G N φtι = (φkX% i = 1,2). Assume that for any t > 0 we have
that F i x ( φ t ) / 0 and compact', then Π f F i x ( φ f ) ^ 0 and compact.

(5.3) PROPOSITION. Let X be a metric ANR, Φ a semi-flow on X,
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φ(: X - » X α map of compact attraction for all t > 0 and JC0 €= -
x0 is an ejective stationary point of Φ relative to U E ̂ (xo) and φr(x) 7̂  x
for all x E dU and t > 0. Then, χ(X) and χ(X\{x0}) are defined and

and

i(X,Φ,X\c\U) = χ(X\{x0}),

where i(X, Φ, U) = i(X, φn U), t > 0.

Proof Fix t > 0. Then x0 is an ejective fixed point of φ{ relative to
U E °U (JCO). Applying Corollary (4.4) we obtain

/(X, <fc, 17) = Λ(φ f t X ) - Λ ( φ ί | X U x o } ? X\{xo})

Now (φf)# - (id*)* and (φf|XUx<)})* = (idXUxo})* are Leray endomorphisms,
thus, H*(X) and H*(X\{JC 0 }) are of finite type and the conclusion follows
from the definition of the generalized Lefschetz number.

(5.4) EXAMPLE.

(5.4.1) If X = S2 (the two dimensional sphere), x 0 E X is an
ejective stationary point of a semi-flow Φ on S2, then

and Proposition (5.2) implies that Φ must have another stationary point.

FIGURE 1

(5.4.2) Let K be a cross in R2 centered at 0. Let Φ be a semi-flow
on K such that 0 is an ejective stationary point of Φ relative to U. Then

i(K,Φ, U) = χ(K)-χ(K\{0})=l-4= -3 and
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which suggests that the four "endpoints" of K have to be stationary
points.

FIGURE 2
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