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TOTAL POSITIVITY OF CERTAIN
REPRODUCING KERNELS

JACOB BURBEA

In this paper we study the total positivity of various
kernels, especially reproducing kernels of Hubert spaces of
analytic functions. We do so by employing a familiar device
known as the "composition formula of Pόlya and Szegδ."
Using this formula we are able to give a short proof of the
variation diminishing property of a generalized analogue of
the la Vall€e Poussin means. This generalizes earlier work
of Pδlya and Schoenberg and recent work of Horton. Our
method is also based on the isometrical image of the re-
producing kernel called the generating function. The re-
producing kernel is then expressed as a composition of two
generating functions so that the problem is reduced to
investigating the total positivity of the generating function.
This methods extends earlier work and yields many new re-
producing kernels which are total positive.

1* Introduction* The theory of total positivity and more
generally the theory of sign regularity have been extensively applied
in various fields of mathematics and in particular in the theory of
approximation [9, 10]. In a previous paper [5] it was shown that
the optimality of a quadrature formula is closely connected with the
notion of the total positivity of the reducing kernel of the functions
determining the formula (cf. Karlin [10]). In [5] the notion of total
positivity was extended in a natural manner to domains in the
complex plane. For simply connected domains, for which the re-
producing kernel is an automorphic form of arbitrary weight, it was
shown that the reproducing kernel is indeed totally positive thereby
yielding a differential geometric interpretation of total positivity.
It was also shown that in general, reproducing kernels of multiply
connected domains are not totally positive. The methods in [5]
however cannot be applied to reproducing kernels which are not
automorphic forms and the purpose of this paper is to establish the
total positivity of such kernels. We do this by employing a familiar
device (Karlin [9, p. 98]) known as the "composition formula of
Pόlya and Szego." As mentioned by Karlin, this is the only device
known to us as a binary operation, that permits us to construct a
totally positive kernel from two such kernels.

Using the above composition formula and an explicit formula
for Jacobi polynomials due to Bateman [3], we will give a very short
proof of a theorem, proved first by Horton [8], on the variation
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diminishing property of an analogue of de la Vallee Poussin means.
This generalizes earlier work of Poly a and Schoenberg [12] and the
work of Horton [8].

Our method is also based on the isometrical image of the re-
producing kernel called the generating function (cf. [15]). The
reproducing kernel is then expressed as a composition of two
generating functions. Hence, the problem is reduced to investigating
the total positivity of the generating function. The method yields
many new reproducing kernels which are totally positive. Explicitly,
kernels which are derived from the generalized hypergeometric
functions are in general totally positive. This extends our previous
work [5].

2* Total positivity* We introduce some notation and definitions
from the theory of total positivity. We shall use Karlin's book [9]
(especially pp. 1-103) as a basic reference (see also [5]).

A real function (or kernel) K(x, y) of two variables ranging over
linearly ordered sets A and B, respectively, is said to be sign regular
(abbreviated SR) on A x B if for all m — 1, 2, , xι < x2 < < xm,
Vi<V2< — <ym, %i e A, yt 6 B, we have the inequalities

(2.1) εm

for a sequence of signs em = ± 1 . em = em(K) is also called the mth
order signature of K, K = K(x, y). When εm = 1, m = 1, 2, , we
say that K is totally positive (TP). If εm = (_i)»<»-i>/a, m = 1, 2, , K
is said to be sign-reverse regular (RR). If in (2.1) strict inequality
holds for m = 1, 2, •••, K is said to be strictly SR (SSR), strictly
TP (STP) or strictly RR (SRR) respectively.

Let K(x, y) be of class (£°°(A x B). K(x, y) is said to be extended
SR (ESR) on A x B if for m = 1, 2, , we have the inequalities

> 0

for a sequence of signs (signatures) εm = ± 1 . If εTO = +1, m = 1, 2, ,
we say that K is extended TP (ETP). If εm = (_-i)«<»-D/»f m = 1, 2, ,
i£ is said to be extended RR (ERR).

If K(x, y) is ESR (ETP or ERR) on A x B then [9, p. 55] K(x, y)
is SSR (STP or SRR) o n i x J S .

The notion of ESR can be extended to the complex plane as
follows: Let D be a domain in the complex plane. K(z, ζ) of class
K°° in the two complex variables (z, ζ), (z, ζ) 6 D x D, is said to be
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ESR on D if, for m = 1, 2, , we have the inequalities

vζ,

Let 7 be an arc in D. K(z, ζ) is said to be ESR on 7 if

for all (z, ζ), (z, ζ) e 7 x 7, and for εm = ± 1 . If εm = +1, m = 1, 2, ,
i£(z, ζ) is said to be ETP on 7. Similarly, if εm = (-l)m(w~1)/2,
m = 1, 2, , if(2, ζ) is said to be ERR on 7.

Analogously, we can introduce the notion of ESR, respectively
of ETP and ERR, for a kernel K(z, ζ) defined on AL x A2, where A
and A2 are sets in the complex plane.

The "basic composition formula" [9, pp. 16-17] below plays an
essential role in establishing the total positivity of the kernels
considered in our work. Suppose σ(t) is a sigma-finite measure
defined on A, A c JK. Let K, L and M be Borel measurable func-
tions of two variables satisfying

(2.2) K(z, ζ) - ^ L(ί, s)ΛT(ί, ζ)dσ(ί) , (s, ζ) e D x D ,

where the integral is assumed to converge absolutely. We have
(cf. [9, p. 99]):

PROPOSITION 1. Let the assumptions of formula (2.2) prevail,
and let 7 be an arc in D. Then

( a ) // L(t, z) and M(t, ζ) are SR (SSR or ESR) on A x 7 and
A x 7 (7 = {ζ: ζ 6 7}) respectively then K{z, ζ) is SR (SSR or ESR)
<m 7.

(b) // L(ί, s) α^d Λf(ί, ζ) are SR (SSR or ESR) and of the
same signatures on A x 7 and A x 7 respectively then K(z, ζ) is
TP (STP or ETP) cm 7.

For ready reference we also record in the form of a proposition
two simple properties pertinent to SR kernels (cf. [9, p. 18]). We
formulate the proposition in only the case of ESR. The cases of SR
and SSR hold true after minor modifications.

PROPOSITION 2. ( a) If K(z, ζ) is ESR on Aγ x A2 and φ(z) and

α/r(ζ) are nonvanishing ^-functions on Ax and A2 respectively, then
L(z, ζ) = φ(z)φ(ζ)K(z, ζ) is ESR on A, x A2. In fact
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(b) // K(z, ζ) is ESR on A, x A2 cmώ w = <p(z) αwd τ = ψ(ζ)
schlicht on Ax and A2 respectively, then

L(w, τ) =

is ESR on φ{A^) x ψ(A2). In fact

The following proposition is mentioned in [9, p. 101].

PROPOSITION 3. Let KN(x, y) = ΣίLo a»[̂ («)]*[̂ (2/)]*» aΛ > 0, w =
0,1, , N, and u(x) and v(y) are positive functions on the real
intervals I and J respectively. Then

(a) If u and v are increasing (decreasing) on I and J respec-
tively, then KN(x, y) is TP on I x J.

(b) If u is increasing (decreasing) and v is decreasing (in-
creasing) on I and J respectively, then KN(x, y) is RR on I x J.

( c) The above statements true for N = oo provided the bilinear
sum converges. In that case, if in addition u and v are &°-func-
tions, then K^x, y) is ETP on I x J in case (a) and ERR on I x J
in case (b).

Proof. All these follow from

KN{x, y) = [ etlosu{x)etlosny)dμN(t)

where μN is a discrete measure with jumps an at n = 0, 1, , JV,
and the fact that exy is ETP, e~xy is ERR, and Proposition 2.

COROLLARY 1. (a) Kn(x, y) = (l-x)n(l-y)nΣϊ=oα*((l + x)/(l-x))k

((1 + y)/(l - y))\ ak > 0, k = 0, 1, , n, is TP on ( -1 , 1) x (-1, 1).
(b) Ln(x, y) = Kn(-x, y) is RR on ( - 1 , 1) x ( - 1 , 1).

Proof. Indeed, 1 - x > 0, v(x) = (1 + α)/(l ~ x) > 0 and v'(a?) > 0
on (-1,1).

3* Variation diminishing property-Jacobi polynomials* Let
f(t) be defined on an ordered set of the real line J. Write
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VΛf] = Sup v[f(td,Λ«Λ ,Λί.)l

where the supremum is extended over all sets t1 < t2 < < tnf

tteJ and V(a19 a2, , an) is the number of sign changes of the real
sequence alf a2, —-,an, zero terms being discarded. A real-valued
kernel K(x, y) defined on / x J is said to be variation diminishing
(VD) on / if,

Vj[K*f] £ VΛf] for all feL^μ, J) .

Here μ is a positive measure on J and the convolution

(K*f)(x) = \ K(x, y)f(y)dμ(y)

is assumed to be finite for every x in the ordered set of the real
line /.

If g is a ©"-function on an open set /, Z\g\ will denote the
number of zeros, counting multiplicity, of g in /. We write A for
the closure of A in R.

The following proposition is a much weaker statement (but it is
all that we need here) than the one found in Karlin [9, p. 21].

PROPOSITION 4. Let I and J be open in B. Assume that K(x, y)
is in (^°°(T x J) and SR on I x J. Then K(x, y) is VD on I and in
fact

vΊ[κ*f]^ZΛK*f]^ v7[f]

for all feLλ{μy J).

The first inequality is obvious due to the continuity of K*f in
/ while the second inequality is the content of Karlin's theorem.

COROLLARY 2. Let Kn{x, y) and Ln(x, y) be defined as in (a) and
(b) of Corollary 1. Then

and

for allfeL^μ), where μ(x) = (1 - x)a(l + x)β on [-1, 1], a, β > -1.

The Jacobi polynomials, P{

n

a'β)(x), α, β > —1, are orthogonal with
respect to the measure μ(x) = (1 — x)a(l + x)β on [ —1, 1] Let
feL^μ), then formally we have
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(3.1) f{x) = Σ ahhhRΐ t\x) ,
k=Q

where

Bίa β)(x) = j£M = J Ί ( - h k + a + β + l a + 1;

and

Let / be as in (3.1) the translate of / is given (cf. [2]) by

/(*; y) = Σ ahhMa'f\χ)Rϊa f)(v).
k = 0

This translate is natural in the following sense; if g(x) is expanded
similarly with coefficients bk then

(f*g)(χ) = (g*f)(χ) = [ f(χ; v)g(v)dμ(y) = Σ (akb

For a polynomial Kn{x) = Σ!?=o ckhkRk

a'β)(x), we have

(Kn*f)(x) - Γ iΓw(^; y)f(y)dμ{y) =
J-i

We choose [8]

(3.2) ^(a?) -

where

2 J ^ W J 2°+^Γ(n + β + l)Γ{a

The translate of Kn(x) is

and by a simplification due to Bateman [3] we have

Kn(x; y) = (1 - xY(l - y)

where

d tn (n ~ k + a
k 4ΛPiα^(l) A! (n-k)\
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Note also that [8] tnck>n —> 1 as n —> oo so that the kernels Kn(x; y)
constitute a positive and finite summability method which is an ap-
proximate identity in the sense that the coefficients of Kn * / converge
to those of /.

The following theorem, proved first by Horton [8] by different
methods, follows now as a special case of Corollary 2.

THEOREM 1. Let Kn(x) be given as in (3.2) and let Ln(x) = Kn{-x).
Then

and

for all feL^μ).

As noted in [8] for a — β — —1/2 and x = cos θ

π (2n)l

which is the de la Vallee Poussin kernel. Hence, Theorem 1 and
more generally Corollary 2 generalize the earlier work of Pόlya and
Schoenberg [12] for the case a = β = —1/2. Note also that for
a = β — —1/2 and x — cos θ

π (2n)\

which could be regarded as the adjoint of the de la Vallee Poussin
kernel.

4* Kernels of the form F(zζ). Suppose F(z) is analytic in
\z\< p, 0 < / o ^ o o and consider the kernel K(z, ζ) = F(zζ) for
\zZ\< p. Then

\ = Wm[F(zZ), IF'izζ), , m = 1, 2, ,

where Wm stands for the Wronskian of the m functions with respect
to ζ. Let 8 = zζ then

Wm[F(zζ), ZF\zZ),
m(w-l)/2

)
dζ
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Thus

(4.1) K*lZ''"'Z) = Wm[F(s), sF'(s),

m = 1, 2,

We say that a sequence of functions (fm(z))%=1, analytic in a
domain D, constitutes an extended complete Tchebycheff system (ECT-
system) on D if

for all 2 e D.
Consequently, using (4.1), one obtains:

THEOREM 2. Let F(z) be analytic in \z\ < p, 0 < p ^ °°. Then
the kernel K(z, ζ) = F(zζ) is ESR for \zζ\ < p if and only if
{zm-ψ{m~1](z))Z=ι is ECT on \z\ < p. Especially, if K(x, y) = F(xy)
is ESR for —p < xy < p, where x,yeR, then K(z,ζ) = F(zζ) is
ESR on all the diameters zζeR, | zζ | < p and all the mth order
signatures are equal.

Several implications of this theorem are immediate. The most
trivial one is of course about F(z) = ez.

COROLLARY 3. The kernel eQ(z, ζ) = ezζ is ESR on all C and
ETP on all rays passing through the origin (cf. [5] and [9, p. 99]).

Proof. This is because

Wm[e% ze% , z-V] = (Iff lc\)e<" , m = 1, 2, . .

COROLLARY 4. The kernel Ea(z, ζ) = ^ ( α ; a + 1; zζ), a > 0, is
ETP on all rays passing through the origin.

Proof. According to Theorem 2 we have to show that the
sequence xm-ιF(m-1], m = 1, 2, - , with F(x) = ^ ( α ; a + 1; x) is ECT
f or - oo < x < co. But

F(x) = — Γ e***" 1^ , α ' > 0 , -
X α Jo

Therefore
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Wm[F(x), xF'{x\ , x^F^-^x)]

= %zw»lG(x), xG\x)t , X-Φ-"(X)]

with

G(x) = [eψ-'dt , G{j+1)(x) = e*xa~ι Σ ί
J k=o \Jc /

3 = 0, 1, . . . .

Consequently

TF«[G(aO, xG'(x), , ^ - 1 G ( m - 1 ) ( ^ ) ] - ϊΓm[G(ί»), x*e% , ^ + m ~ 2 ^ ]

= emxxamWm[H(x), 1, , xw-2]

where

= e-χχ-"G(x) = e^x-λ^eψ-'dt =
Jo Jo

Therefore
m-i f 1

lT»[F(a;), a F'(a ), , SB—1*"—"(a;)] = αra(Π A;!)ema: \ e^t^il - tf-'dt
k = ί Jo

which is strictly positive for all — °o < x < oo 9 m = 1, 2, -. This
concludes the proof.

REMARKS.

(1) The corollary is in fact a special case of Theorem 6 below.
( 2) According to the above proof for Ea(z, ζ) = ^ ( α ; cc + 1; zζ),

a > 0,

Z. * , Z\ m-l _ fl

J _ = αm(Π &!)em2ζ \ e-'^r-^l - ί ) " " 1 ^ , m = 1, 2,
ζ, . . . , ζ/ *=i Jo

( 3 ) For α = 1, E£z, ζ) = (^ζ)'1^^ - 1) and

(4) J5α(2, ζ) is ETP on all rays passing through the origin (i.e.,
ETP for all z,ζeC with zζ eR) but it is not ESR on C. For
example, Etfkπi, 1) = 0 for k = 1, 2, .

Part of the following corollary appears also in [5].

COROLLARY 5. The kernel Ka{z, ζ) = (1 - zζ)-", a^O, - 1 , - 2, ,
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is ESR on the unit disc Δ = {z: \z\ < 1}. For a > 0 it is ETP on
all diameters of A and for a < 0 {a not an integer) it is ESR on
the above diameters with the mth order signature

εm(Ka) = („!)([-«]+!)(—1-[-«]/2) m

The above is also true when ζ or z (but not both) lie on the boundary
dJ = {z:\z\ = l}.

Proof. Let Fa(s) = (1 - s)~a

f a Φ 0, | s \ < 1. Then

= Wm[(l -

- (II (α)*)(II ( ) * ) d ) l, - ? - , ,
*=i L 1 — s

and putting ί = s/(l — s)

m-l //Jf\m{m-l)/2

= (Π (α)*)(l - *)-"-(¥) Wm[l, ί,

Hence Ka(z, ζ) is ESR for \zζ\ < 1 and a Φ 0, - 1 , ~2, . On the
diameters zζeR, \ zζ \ < 1, εm(Ka) = sign (ΠΓ^i1 (̂ )fc). Therefore
sm(Ka) = + 1 for <x > 0. For a < 0 (a not an integer), let n = [ — a]
that is, — (n + 1) < α: < — n. Thus

m — 1

s i g n ( Π (α)fc) = (-l)Σfc=ifc+(*+1^*-»-1) = (_i)<»+iχ«-i-»/2>

and the corollary follows.

COROLLARY 6. The kernel Ha(z, ζ) = ia(z-ζ)'a9 aΦO, - 1 , - 2 , . ,
is ESR o^ the upper half plane U — {z: Im z > 0}. For a > 0 it is
ETP (m αiϊ straight lines in U which are parallel to the imaginary
axis and for a < 0 (a not an integer) it is ESR on the above straight
lines with the mth order sigature εm(Ha) = (~1)^-«]+D(^-I-[-«]/2)# y/^
above is also true when ζ or z (but not both) lie on the boundary

'= {z: Im z = 0}.

Proof. Under the conformal mapping w = (z — i)/(z + ΐ) Ϊ7 is
mapped onto the unit disc Λ = {w:\w\ < 1} and

//Jw\ff/2/ r7τ- \α/2

^,D = ̂ -cr = (f) (f) ir^f),
where T = (ζ — i)/(ζ + ί) and ίΓα(w, T) = (1 — wτ)~a. Since dwfdz =
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2i/(z + if the corollary follows from Proposition 2 and Corollary 5.

COROLLARY 7. The kernel ga(t, z) = (1 - 2zt + z2)~a, a Φ 0, - 1 ,
- 2 , . . . , is ESR (m [ - 1 , l ] x J (ί e [ - l , 1], | z | < 1). For a>0 it is
ETP on [ — 1, 1] x (— 1,1) and for a < 0 (a not an integer) it is
ESR ow [ —1, 1] x ( —1, 1) with the mth order signature sm(ga) —

Proof. For

(4.2) flfβ(ί, «) = (1 - 2 ί̂ + «»)-« , ( { , 2 ) 6 [ - l , l ] x i ,

we put

Then

where ίf«(ζ, t) is as in Corollary 6. We now use Proposition 2 to
obtain

and finally, using Corollary 6 and after some manipulations

Z, - - , Z

m = 1, 2, •••.

Since 1 — 2z£ + ^2 does not vanish for (£, «) e [ — 1, 1] x Δ and it is
strictly positive for (ί, «) e [ — 1, 1] x ( — 1, 1) it follows that ga(t, z) is
ESR on [-1, l ] x z ί for a Φ 0, - 1 , - 2 , . . For (ί, z) e [ - 1 , 1] x
( — 1, 1), ga(t, z) is ESR with em(ga) = sign (ΠΓ^i1 (α0^) aM the corollary
follows.

5. Reproducing kernels and generating functions* Let S^ be
a Hubert space of analytic functions is a domain D with an inner
product (,)•*-. Assume also that Jg^ possesses a reproducing kernel
K(z, ζ), (s, Q e ΰ x P . Thus /(ζ) = (/, iΓ( , ζ))^ for each ζ 6 D and
all / e ^ Let <̂ Λ>n=o be an orthonormal basis of έ%f. Then [4, p.
98]
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K(z, ζ) = Σ ί U Φ κ ( C ) , (z,ζ)eDxD.

We set an isometry T: Sίf —> L2(μ) between Sίf and the Hubert
space Lz{μ). Here μ(t) is a Borel measure on R with finite moments
of all order and with infinitely many points increase. The image of
K{z, ζ) under this isometry is

g τ ( t , ξ ) = T z K ( z , Ό l = t , t e R , ζ e D .

(The subscript in Tz indicates that ζ is held fixed and T is applied
on K(z, ζ) as a function of z.) gτ(t, z), {t, z)eR x D, is called the
generating function of (Tψn).

Assume A c R is the support of μ(t). Then, using the reproducing
property of K(z, Z), one obtains

K(z, ζ) = (K( , ζ), K( , z));, = (TK( , ζ), TK( , z))μ

and so

(5.1) K ( z , ζ ) = ( gτ{(t, z)gτ(t, ζ)dμ(t) , ( z , ζ ) e D x D .
JA

Using (5.1) and Proposition 1, one immediately obtains:

THEOREM 3. Let the assumptions of formula (5.1) prevail and let
7 be an are in D. If gτ(t, z) is ESR on A x 7 then K(z, ζ) is ETP on 7.

Specifically, let Pn(t), n = 0, 1, , be an orthonormal basis of
polynomials of degree n in L2(μ). We write Tφn = Pn, n = 0, 1,
Since the corresponding elements are orthonormal bases in the spaces
Sίf and L2(μ) respectively, this correspondence does indeed induce
an isometry of 3ίf onto L2(μ). Therefore

(5.2) gτ(t, z) = ± PMΦM , (t,z)eAxD,

is the required generating function.

THEOREM 4. Let the assumptions of formula (5.2) prevail and
let 7 be an arc in D. If gτ(t, z) is ESR on A x Ύ then (φnyζ=Q is
an EGΎ-system on 7. In this case em(gτ) = εm(Φ), where Φ(n, z) = φn(z),
(n, z) e ΛT x 7, ^r — {0, 1, 2, •}. That is, Φ(n, z) is ESR on

Proof. One has

Φ(n, z) = φM = (φn, K{ , z))* - (Tφn, TK( , z))μ

= (Pn, 9τ( , z))μ = ( ί7r(ί, z)Pn(t)dμ(t) .
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Since <P»(£)> is a sequence of polynomials of degree n, <Pft(ί)>»=0 is
an ECT-system on R. The theorem now follows from Proposition 1.

In the sequel we will show that many reproducing kernels are
ESR due to Theorem 3. This, in turn, generalizes our previous
results in [5]. We list several examples of this procedure.

6* The Paley-Wiener kernel* The Paley-Wiener space ^ a is
the space of entire functions f(z) of exponential type ^a which
belong to L2 on the imaginary axis. This is a Hubert space with
the norm

11/11'= Γ \Λiy)\'dy.
J - c o

By a Paley-Wiener theorem [11, p. 13] any fe^a is a Laplace
transform of a function in L2( — a, a). Thus T: &"a —* L2(—a, a) given
by

(TWz) = -f- Γ e<*g(t)dt = f(z) , geL2(-a,a),

is an isometry. The reproducing kernel of ^ a is

π(z + ζ)

The generating function (the image of Ka(z, ζ) under T) is
etzX(-a,a), where χ(_α,α) is the characteristic function of ( — α, a). Thus,
the following obvious identity

\ etze^dt, z,ζeC,

holds.
Since etz is ESR on C x C (Corollary 3) it follows, by Theorem 3,

that Ka(z, ζ) is ETP on all straight lines in C which are parallel to
the real axis. Moreover, Ka(z, ζ) is ESR on all the strips
{z: (2k - l)(π/a) <lmz<(2k + l)(π/α)}, k = , - 1 , 0, 1, .. .

7 The Hardy kernels. The Hardy space &q = &q(&), q > 0,
is the space of all functions f(z), analytic in the right half plane
&£ = {z: Rez> 0}, of the form

f(z) - Γ e-ztF(t)tq-{1/2)dt , q > 0
Jo

with FeL2(Q, °o). ^ is a Hibert space with the norm

11/111 = [°\F(t)\*dt.
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This Hubert space has the Hardy reproducing kernel

(7.1) Kq(z, ζ) = Γ(2q)/(z + ζ)2? , <Z > 0 , zfζe^.

The image of Kg(z, ζ) under the above isometry is e~κ and in fact
the well-known identity

Kq(z, ζ) = Γ
Jo

holds. Therefore, Kq(z, ζ) is ESR on & and ETP on all straight
lines in & which are parallel to the real axis. When q — 1/2 the
Hardy kernel reduces to the famous Cauchy kernel K1/2(z, ζ) = l/(s + ζ).
The fact that this kernel is ETP on (0, °o) is used to establish the
well known Mϋntz theorem on best polynomial approximation.

Clearly, Kg(z, ζ) and H2q(z, ζ) of Corollary 6 (and for that matter
also Corollary 5) are essentially the same (they are melely different
realizations of the same object on the conformally equivalent under-
lying domains & and U). In fact let D be a simply-connected
domain with the Bergman reproducing kernel, [4, p. 21], KD(z, ζ)
and let φ: & —* D be a conformal mapping of <% onto D. Let
ψ = φ~γ then Tf = foψ[ψ'γ is an isometry of 3rq{&) onto &rq{D).
The reproducing kernel of 3?q{D) is therefore

(7.2) K q

D \ z f Z ) = Γ(2q)π*[KD(z,l)Yf q > 0 , z , ζ e D .

Using Corollary 5, Proposition 2 and the above discussion we
obtain:

THEOREM 5. Let D be a simply-connected domain with a
Bergman reproducing kernel KD{z, ζ) Then Γ(2q)πq[KD(z, ζ)]q is the
reproducing kernel of 2$q(Ό) for q > 0. Moreover, [KD(z, ζ)]%
2q Φ 0, - 1 , 0, 2, ., is ESR on D. For q>0 it is ETP on all arcs
7 in D which are images of the diameters of the unit disc under
the Riemann mapping. For q < 0 (2q not an integer) [KD(z, ζ)]q is
ESR on the above mentioned arcs with the mth order signature
εm{K9n) = (-l)([-2^+1)<«-1-t-2ί]/2,β F o r L(Zf ζ) ^ [κD(z9 l)\q we have

L*l _J ' _ ) = ( Π (2q)kk])πm{m-1)/2[KD(z,

m = 1, 2,

In obtaining the above theorem we made also use of the well-
known fact [4, p. 33] that if φ: D —> D* is a conformal mapping of
D onto £>* then

(7.3) KD(z, ζ) - φ\z)φ%)KΌ * Mz), ?>(ζ)) ,
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A kernel K(z, ζ) which is ESR on D and is of the form F(z - ζ)
is generally called an extended Pόlya frequency (EPF) function on
D. Combining (7.1), (7.3) and Theorem 5 we obtain:

COROLLARY 8. Any power (not of the form —n/2, n = 0, 1, •)
of the Bergman kernel is EPF on the right half plane.

Another interesting kernel is obtained by mapping the unit disc
A onto the strip Da = {z: |Im z\ < a}. Since φ(z) = tanhπ 2/4α maps
Da conformally onto A it follows from Theorem 5:

COROLLARY 9. Γ(2q)[(π/4a) sech π(z - ζ)βa]2q, g > 0, is the re-
producing kernel of ^ ( ΰ α ) . Moreover,

Lg(z, ζ) = Γsech ^-—51.T , 2q Φ 0, - 1 , - ,
L Aa J

is ESR on Da. Fox q > 0 it is ETP on all arcs Ύθ, 0 ^θ < 2π, given
by

^ ( )

For g < 0 (2q not an integer) it is ESR on the above arcs with the
mth order signature εm(Lq) = (-iyi-w+»«*-i-t-**v*\ Especially,
Lq(x, y), q > 0, is ETP on ( - oo, oo) x ( - oo, oo),

For q ^ 1/2 the norm of Sfq can be realized in a form which
appears frequently in function theory. In fact by another theorem
of Paley and Wiener [11, p. 8] one has

II/IIJ = Γ ( 2 ^ _ 1 } \ y \ \f(zm2RezΓ-*dxdy , q > 1/2 ,

||/||}/2 = - i - s u p Γ \f(x + iy)\2dy .

Therefore the norm of Sfqφ), D is simply-connected, is given by

(7.4) 11/111,,, = ζQ_ ^ j \f(z)\*KD{z, zY-dxdy , q > 1/2

(7.5)

where in the last integral / stands for the nontangential boundary
values of the analytic function f(z) in Zλ Consequently, 3rq(J)\
q > 1/2, is in fact the Bergman-Selberg space [14], namely, it is the
space of all analytic functions f(z) in D normed by (7.4). This
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Hubert space possesses the reproducing kernel Kq

D)(z, ζ) given in
(7.2), q > 1/2. Similarly, &ί/2(D) is the Szego space [4, p. 110]
consisting of all analytic functions f(z) in D normed by (7.5). Its
Szego reproducing kernel is given by K[f2\z, ζ) = π1/2[KD(z, ζ)]1/2.

These methods can be applied to spaces of square summable
series.

8* Spaces of square summable series* Let Dp — {z: \z\ < p}9

0 < p ^ c>o, and assume that φ{z) = Σ?=o^^ % , cn > 0, is analytic in
DP. Let

Hφ = \feH(DP):f(z) = ±anz*, Σ ^ t ! 2 < c o l ,

where H(DP) designates the class of analytic functions in DP. Clearly,
Hφ is a Hubert space with the scalar product

(/, g) = Σ ^ (f(z) = Σ anz*9 g(z) = ± δ^ ) .
%=0 (5% %=0 n = 0

We have

ΛO = Σ α.ζ" = Σ ^ ^ = (/(*), 9>(2U)) .

Consequently, K{z, ζ) = φ(zζ) is the reproducing kernel of Hφ and
<i/cw ^TO)ϊ=o is an orthonormal basis for Hφ (cf. [15]).

Assume now that J is a real interval and μ is a finite Borel
measure on J with finite moments of all order and with infinitely
many points of increase. Consider the Hubert space L2(μ) normed
by

with Pn(t), n = 0, 1, , as an orthonormal basis of polynomials (with
real coefficients) of degree n. We set up an isometry between Hφ

and L2(μ) by

T{V7~n z") = Pn(t) , n = 0, 1, .

The generating function is therefore

g&, z) = Σ V T n Pn(t)zn > (t,z)eJx DP ,
Λ = 0

a n d

K(z, I) = φ{zζ) = ^ gτ(t, z)gτ(t, ζ)dμ(t) , z,ζeDP.



TOTAL POSITIVITY OF CERTAIN REPRODUCING KERNELS 117

Notice that

K(z, z) = φ(\z |2) - ( [gτ(t, I z \)fdμ(t) , zeDP.

Consequently, the question of the total positivity of K(z, ζ) on
Dp is reduced, via the above composition formula, to the correspond-
ing problem for gτ(t, z) on J x Dp. Here gτ(t, z) is a generating
function for certain classical polynomials. We give some examples
of this procedure. In these examples we adhere to the convention
and standardization of orthogonal polynomials employed in [1, 6, 13].

9* Exponential kernels and Hermite polynomials* Designate
by H(C) the class of all entire functions and let

Define

Ha = {feH(C):\\f\\a< oo}.

ijΓα is a Hubert space normed by | | / | | α and in fact

a > -

\zn\\l= n / -1

 i X Γ r*+«β-^r = (a: + 1), , w = 0, 1,
i (α + 1) Jo

The reproducing kernel of Ha is

^ 0 Σ τ Γ i ί i ( l ; α + l : 2 ζ ) , α > l»=o (α + 1),

Therefore (see Corollary 3)

φ, ζ) = ^ ( 1 ; 1; zl) = β*

and

βα( ,̂ ζ) = a [ ez~ζt(l - tγ-χdt , α: > 0 .
Jo

Especially

βl(«, ζ) =

which, according to Corollary 4, is ETP on all rays passing through
the origin.

Define now another family of norms by

a H , a > 0 ,
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and let

^ a = {feH(C):\\f\\a< 00} .

3ίfa is also a Hubert space normed by |(/| |α and in fact

H l̂lα = or1 ί°V(r + a - l)e~rdr = ar\a + ri)n\ , n = 0, 1,
Jo

The reproducing kernel of ^fa is

EJz, Z) = a± {zl)\ = ^ ( α ; α + 1; zξ) , α > 0 , z,
=̂0 (α + n)nl

and again, according to Corollary 4, is ETP on all rays passing
through the origin. Notice that E&, ζ) = efa, ζ) - (^O'^e^ - 1).
In fact the following relationship

ea(z, ζ) = e*Ea(-z, ζ) , α > 0 ,

between the two families of producing kernels hold.
These kernels are closely connected to the Hermite polynomials.

The Hermite polynomials Hn(t) are orthogonal with respect to the
measure w(t) = e~ί2 on (—°°, °°) and are normalized by

Γ [Hn(t)fw(t)dt = hn = l/τΓ 2wn! , w = 0, 1, .

In addition they assume the standardization fliw)(0) = 2nn\. We set
an isometry T between Ho and L2(w) via the rule

, ^ = 0, 1,

The Hermite generating function is therefore

g(t, ζ) = Teo(z, ζ) - π-1/4 Σ ^ ) ( 2 - / 2 ζ ) -
o nl

or

ί/(t, «) = π~-lfie-z2/2eVJtz , (ί, 2) e R x C .

Consequently,

eQ(z, ζ) = ββc" = τr1 / 2β-*2 / 2-~ζ 2 / 2 Γ β ^ ^ ' ^ β " * 2 ^ ,
j —00

which is a well-known identity.

1O* Hardy kernels and Laguerre polynomials* The Hardy space
-®Wi)/2> cc> —1 (see (7.4)) is defined as the space of all analytic
functions in the unit disc Δ with the moments
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\\z%\\% = nl/Γ(a + n + 1) , a > - 1 , n = 0, 1, .

The norm induced by these moments can be realized as in §7 and
in fact for a > 0

II/Hi - - ^ (( l/(z)l2(l -
1 \<X) J JΔ

while

The reproducing kernel of Ha = ^ r

( α + 1 ) / 2 is

#(z, ζ) = Σ Γ ( α ' + f + 1 }K)" = Γ(α
o ^ ϊ

, ζ 6

The fact that these kernels are totally positive is the content of
Theorem 5. However, this fact could also be deduced from the
Laguerre generating function. The Laguerre polynomials, L(

n

a)(t),
a > — 1, are orthogonal with respect to the measure w(t) = e~Ha on
[0, oo) and are normalized by

Γ [U:\t)fw{t)dt = hn = Γ(a
Jo

l)/n\ , n = 0, 1,

We assume also the standardization dn/dtnL(

n

a)(0) = (-l)n. Clearly,
T: Ha -> L2(w) given by T(VK zn) = L{

n

a)(t)/VΊκ is an isometry of Ha

onto L2{w). The Laguerre generating function is therefore

9(t, z) =

Hence

JSΓβ(2, ζ) =

" - (1 - s)-*-^-"/"-') , (ί, «) e [0, x

f ( l z ) \ 1 IY
\l ZL,)

which is, according to Propositions 1, 2 and Corollary 3, the required
result.

11* Logarithmic kernels and Laguerre polynomials* Consider
the unit disc Δ and let the moments be given by

α:2
VA

— • • — — ,

Γ(a + n + ΐ)
α 0 <n — 0υ , n — υ,

With (11.1) we have a Hubert space <%̂  of analytic functions f(z) =
Σ?=oG^ in ^ The reproducing kernel of Sίfa is given by
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KM ζ) = α2 Σ Γ ( < * + n + 1 } - ^ - Γ(α + 1 ) 2 ^ K α; α + 1; zζ) ,
=̂o (a + π)2 w!

for z,ζeJ T:^a->L2(w) given by Γ(i/c7z%) = W(t)jVTn, where
cί1 = II3* II! and &Λ = /"(α + n + l)/w!, w = 0, 1, , is an isometry
of Sίfa onto L2(w). Here, as before, w(t) = β"*ία on [0, oo). The
generating function (cf. [13, p. 202]) is therefore

Ga(t, ζ) = ΓJSΓβ(«, ζ) = Σ
o-o (a + 1).

- (1 - Zr^Fla; a + 1; - :

Thus

Xβ(«, ζ) = (1 -

x 1F1(a; a + 1; --JL-W/α; a + 1; -
\ 1 — «/ \

/ α ; a + 1;
1 — «/ \ 1 — ζ

Since, according to Proposition 2 and Corollary 4, Gα(ί, «) is ETP on
[0, oo) x ( - 1 , 1) it follows that Ka(z, ζ) is ESR on Δ and ETP on all
diameters of A.

An interesting special case occurs when a = 1. In this case Sίfx

is the Dίrίchlet space consisting of all analytic functions in the unit
disc Δ normed by

(11.2) | | / | | ; = i \ \ \f'(z)\2dxdy + — \ \f(z)\2\dz
π JJΔ 2π J3j

where / in the second integral stands for the nontangential boundary
values of the analytic function f(z) in A. 3ff± has the logarithmic
reproducing kernel

(11.3) Kx(z, I) = -(zZΓ log (1 - zζ) , z, ζ G A .

The same applies when a = 2. In this case

Kt(z, ζ) = 4 l ( l - zZY1 + (sCΓ log (1 - «ζ)] , «, ζ e Δ .
zζ

As stated before both kernels are ETP on all diameters of A.
We should remark however that actually not only JΓ^a, a; a + 1; zζ),
a > 0, is ETP on the diameters of A but also %Fx{a, β; a + 1; zζ),
a, β > 0. This will be shown as a special case of Theorem 7.

12* Tchebychefϊ kernels. We now treat three different Hubert
spaces, arising from the Tchebycheff polynomials, all of which have
ESR reproducing kernels.
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Designate by Hλ the Hubert space of analytic functions in the
unit disc Δ with the scalar product

, f,geHl9

where, as usual, the integral is carried over the nontangential
boundary values of / and g. Here, of course,

= (/,A< 00} ,

and

(z*f z% = -±-[δn>m + δ0J0,J ,
2π

where δn>m stands for the Delta of Kronecker for n and m. Con-
sequently, Vcn zn, n = 0, 1, , with cQ = π and cn = 2π for n ^ 1,
is an orthonormal basis for Hx. The reproducing kernel is

( 1 2 . 1 ) K1(x,Z) = π + 2 π ± ( z l ) * = π \ ± ^ , z f ζ e A .
1 ^ ζ

We will now show that K&, ζ) is ESR on A.
The Tchebycheff polynomials (of the first kind) Tn(t) are

orthogonal with respect to the measure w(t) = (1 — £2)~1/2 on [ — 1, 1]
and are normalized by

Γ [Tn(t)]2w(t)dt = hn = -J( l + δnt0) , n = 0, 1, .
j —1 ^

We assume also the standardization TJ1) = 1. T: Hι—+ L2(w) given
by Γ(τ/cΓ 2") = Tn(t)lVK,, n = 0, 1, , is an isometry of ^ onto
L2(w). The generating function (cf. [7, p. 186]) is

g(t, ζ) - TKlz, ζ) = Σ (2 - β..o)Γ.(ί)ζ - (1 - ζ2)^(ί, ζ)

where ^L(ί, ») is as in (4.2)

git, 2) = (1 - 2z£ + ^ 2 )- 1 , ( ί , 2 ) e [ - l , l ] χ j .

Consequently,

I Γ ^ , ζ) = (1 - ^2)(1 - ζ2) J1 Jflfiί*, «)flri(*, ζ)w(ί)d* , z,ζeΔ.

It follows, using Corollary 7, that i^z, ζ) is ESR on Δ and ETP on
all diameters Δ.

Let H2 = {feH(Δ): \\f\\2 < 00}, where
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This is clearly a norm for, π|/(0)|2 ^ 2π|/(0)|2 ^ ( \f(z)\*\dz\. (The

integral as usual is carried over the nontangential boundary values
of /) . H2 is a Hubert space with the scalar product

and

I I * II2 — cn — — l

The reproducing kernel is

#2(z, I) = 8π + 4 π Σ (2ζ)» = 4τr|^=-^ , », ζ G J .
w=i 1 — zζ

This kernel is also ESR on J. For this we introduce (cf. [1, p. 774])
the modified Tchebycheff polynomials (of the first kind) Sn(t). These
polynomials are orthogonal with respect to μ(t) = (1 — £2/4)~1/2 on
[ — 2,2] and normalized by

Γ [Sn(t)fμ(t)dt = K = 4ττ(l + dny0) , w = 0, 1, - .
J-2

In addition Sn(t) assumes the standardization Sn(2) — n + 1. In this
case the generating function is given by [1, p. 784]

(12.2) G(t, z) = Σ Sn(t)z* = (1 - si + * 2 Γ = flri(ί/2, «) ,
%=0

where (ί, 2;)e[ — 2, 2] x z/. Here hn = cw and T: H2-+L2(μ) given by
ϊXv7^ ^%) = Sn(ί)/i/c7 is an isometry of iϊ2 onto L2(^). Therefore

ΓίΓ2(«, ζ) = Σ Sn(t)ζn = 0l(tl2, ζ) , ( U ) e [ - 2 , 2 ] χ j .

But according to Corollary 7, ^(ί/2, z) is ESR on [-2,2] x J whence
K2(z, I) is ESR on Δ and ETP on all diameters of Δ.

We now introduce a third Hubert space H3 of analytic functions
in the unit disc Δ. Hs is normed via the moments

The reproducing kernel of Hz is therefore
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ΊKJίz, ζ) = 8 π + 4ττ Σ (n + l ) \ z ζ γ = 4ττΓl + * + f Ί , z , ζ e Δ .
»=i L (1 — zζfJ

In order to prove that K3(z, ζ) is ESR on Δ we differentiate zG(t, z)
with respect to z, where G(ί, 2) is given by (12.2). We obtain

(zG(t, z))f = Σ fa + lR(£)z* - (1 - z2)(l - ^ί + z2)"2 = (1 - z2)g2(t/2, z) ,
Λ = 0

where (ί, z) e [-2, 2] x J and g2(t/2, z) is as in (4.2). According to
Corollary 7, (1 - z2)g2{tj2, z) is ESR on [ - 2 , 2 ] x J and ETP on
[-2, 2] x (-1,1). The natural isometry T:H3->L2(μ) given by
(TVTnz*) - Sn{t)lVh~n, yields

s, Q = Σ (f)U2Sn(tKn = ±(n + l)Sn(t)Zn = (1 ~

and

Xa(2, ζ) = (1 - z2)(l ~ C

Consequently KB(z, ζ) is ESR on J and ETP on the diameters of Δ.

13. Gegenbauet kernels. Let HaJ 0 Φ a > —1/2, be the Hubert
space of analytic functions in the unit disc Δ which is normed via

The reproducing kernel of Ha is

(13.1) ί β ( * , ζ ) = Σ '

= 5(1/2, a + 1/2)^(2*, α; a + 1; zζ) , z,ζeΔ.

Here B(p, q) is the Beta function and in obtaining (13.1) we made
use of the duplication formula

Vπ~ Γ(2a) = 22a~ιΓ(a)Γ(a + 1/2) .

The Gegenbauer polynomials C{

n

a)(t) are orthogonal with respect
to the measure w(t) = (1 - t2)a'u\ 0 Φ a > -1/2, on [-1,1] and
normalized by

= hn , n = 0, 1, .

They assume the standardization Ciα)(l) = (2a)Jn\. We again set an
isometry ϊ7: Ha ^ L2(w) by the rule T(Vhl zn) - C(

n

a)(t)/λ/K so that
the generating function is
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TKa(z, ζ) = Σ &:\φ = (1 - 2ζί + ξTa = ga(t, ζ)
» = 0

and so

(13.2) -KΓβ(«, ζ) -

Since α\Φ 0, — 1, — 2, , it follows from Corollary 7 that Ka(z,ζ)
is ESR on J and ETP on the diameters of Δ.

For a > 0, Ka(z, ζ) admits various integral representations
namely,

Ka{z, ζ) - α£(l/2, α- + 1/2) [ ^ ( l - ίzζ)-2αdί , α > 0 .
Jo

If in addition a < 1 then

ULα(s, ζ) - 2l~2a sin (α-π) Γ ί^-^l - t)~a(l - tzZ)~adt , 0 < a < 1 .
Jo

The special case when a = 1 is well known. In this case
C^1}(£) = Ϊ7n(ί) are the Tchebycheff polynomials (of the second kind)
and \\zn\\l = 2/ττ. Then norm of Hx is realized via

\f(z)\2\dz\, feHx.

H1 is therefore the Szego space with the Szegό kernel

Another special case is when α' = 1/2. In this case C{

n

ί/2)(t) = P%(ί)
are the Legendre polynomials and ||z*||?/2 = n + 1/2. The norm of
H1/2 is realized via

ll/llϊ/. = - ( ( \W/2f(z)Y\2dxdy , feHι/2.
π J J ^

The space H1/2 is essentially the Dirichlet space Sίfx introduced
in (11.2). In fact, it is easily verified t h a t 2- 1 | | / | | ? ^ | | / | | ί / 2 £ \\f\\\
where | | / | | ? is as in (11.2). Moreover,

K1/2(z, ζ ) = 1 l o g i ± Z ^ = 2 ^ ^ VΓζf Zfζe/}f

V zζ 1 — Vzζ Vzζ

and it should be compared to the other ESR reproducing kernel in
(11.3). Note that K1/2(z, z) = 2pN(0, z)/\z\ where ^(0, z) is the
hyperbolic distance of 0 to z in the unit disc A. Therefore
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IwIK1 / 2(w, w) <L \z\K1/2(z, z) for any analytic mapping w = φ{z) of Δ

into itself and φ(0) = 0. Equality holds if and only if φ(z) = eίθz.
Using the reproducing property of KU2(z, ζ) one obtains

(( \zl\-*\z\-ιdxdy.
π J J J

We now consider another family of Hubert spaces Sίfa.
0 Φ a > —1/2, is the space of analytic functions in the unit disc Δ
normed by

π Ί | 2 „ x _ [Γ(a + I)]2 nl , _ 0 1 . . .

The reproducing kernel of Sίfa is

(13.3) JΓα(z, ζ) = 5(1/2, a + 1/2)^(2^, α + 1; a; zζ) , z,ζeΔ.

Here, again, we have used the duplication formula. According to
[6, p. 101]

(13.4) JiΓlz, ζ) = .5(1/2, a + 1/2) 1 + f^
(1 — £ζ)

Though (13.3) is not defined for αf = 0 we can actually incorporate
this value in (13.4). In fact ^J(s , ζ) is exactly Kλ{z, ζ) defined in
(12.1). 3£l(z, ζ) is therefore ESR on Δ. For a Φ 0 we set the
isometry T: £έ?a -> L2(w) by the rule Γ(τ/c7 «Λ) = Cι

n

a)(t)/VK so that
the generating function is

r^(s, ζ) = Σ (f

This generating function admits a closed form expression. Indeed,
by differentiating the identity

-,α V'1 f(α)/fU>ι — \<y(Λ 9<y+ _|_ V2\~ιλa Π =A SY >> 1/9
<v / i vy'^ I (/ I/O I <v\ i Luιi/U ~\~ fy I J j \J -/— LA> ^ J-J t-i ,

with respect to z, we obtain

Σ
a

Therefore T^Ta(z, ζ) = (1 - ζ2)<7α+1(ί, ζ) and

ra(z, ζ) = 5(1/2, a
(13.5)

- z 2 ) ( l - ζ 2 ) I ga+1(t, z)ga+1(t,
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is in fact true for all a > — 1/2 (including a = 0). Consequently,
using Corollary 7, J%Ta(z, ζ) is ESR on A and ETP on all diameters
of Δ.

Since j 1 w(t)dt = J1 (1 - t2f-l/2dt = £(1/2, a + 1/2) by reasons of

continuity Corollary 7 coupled with (13.5) actually yields a stronger
result, namely, that

(13.6) tFt(2a9 a + 1; a; zζ) - (1 + zζ)(l - zζ)~ (2«+1) , z9 ζ e Δ ,

is ESR on Δ and ETP on the diameters of Δ for all a, a. Φ —n/2,
n = l, 2, . . . .

We again take two special cases a = 1/2 and a — 1 (corresponding
to Legendre and Tchebycheίf (second kind) polynomials respectively).
For a = 1/2 the moments are ||z*||?/2 = 2r\2n + I)"1. The norm of

f/2 is realized through

ί/a =

and J^ / 2(s, ζ) = 2(1 + zζ)(l - zζ)'\ For a = 1 the moments are
||2*||? = 2π"1(w + I)2 and the norm of <%t is

\F(z)\*\dz\, f

where F\z) = zf(z) and the integral is carried over the nontangential
boundary values of F(z). Here JίTfe, ζ) = 2"^(1 + zζ)(l - ^ζ)~3

14* Generalized hypergeometric kernels* The previous results
can be generalized to include kernels formed from the generalized
hypergeometric functions. The generalized hypergeometric function
[13, pp. 73-85] is defined by

(14.1)

where

z 1 = n\ '

P

Π to). , Bn(g) = Π (&)• , n = 1, 2,
i l

Here /S3 $ {0, — 1, —2, •}, i = 1, 2, - , g. We exclude the polynomial
case, that is, when a3- = 0 for some j , 1 ^ j ^ p. In this case the
series in (14.1) diverges for z Φ 0 if p > # + l and we therefore
only consider the case in which p ^ q + 1. If p ^ q the series in
(14.1) represents an entire function while if p = g + 1 it is an analytic
function in the unit disc A. In the notation of (14.1) we have

0F 0(-; - z) = e , ^(a; - s) = (1 - z)~a .
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If An(p)/Bn(q) > 0, n = 1, 2, . . ., then

~aί9 •••, a p ;
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is the reproducing kernel of the Hubert space of analytic functions
(in C if p <; q and in Δ if p = q + 1) /(z) = Σ ^ = o ^ z % normed by

(14.2)

The generalized hypergeometric functions admit the following
[13, p. 85] integral representation;

F

(14.3)
, A, z

zt

w h e r e R e A > R e α:x > 0. F o r p^q (14.3) h o l d s f o r al l zeC a n d
f o r p = g + 1 (14.3) h o l d s f o r all ^ e l

W e now p r o v e a g e n e r a l i z a t i o n of C o r o l l a r y 4.

T H E O R E M 6. Fq(zζ) = qFq\^ > * " ' J*« ^ z ζ ] , α:, > 0, i = 1,

• , g, is ίfce reproducing kernel of the Hilbert space of entire func-

tions normed by (14.2) and is ETP on all rays passing through the

origin.

Proof. It suffices, according to Theorem 2, to show that Fq(xy)
is ETP on R. This is shown by induction on q. For q = 0 the
theorem trivially holds true for F0(xy) = oi^o(-; - xy) = e3^. Assume
now that Fg(α;τ/) is ETP on R. According to (14.3) for a > 0

_a + 1, α:t + 1, •••, α;, + 1; B(a, 1)
ta-ιFq{xyt)dt

where x > 0,

a Jo

- Γ Fq(yt)K(t9 x)dμ(t)
Jo

= (l/cήF-'dt, a > 0 and

;α?-β, 0 < ί ^ ajΛΓ(ί, a?) -
0, t> x> 0 .
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K(t, x) is TP on (0, oo) x (0, oo) [9, p. 102]. Since Fq(yt) is ETP on
(—00, 00) x (0, 00) it follows easily from the composition formula that

q+1Fq+ί(xy) is STP on (0, °o) x (—oo, 00). The analyticity of this
kernel implies [9, p. 50] that it is in fact ETP on (0, 00) x (— 00, 00),
For x < 0 we have

q+ιFq+ί(xy) = ( > g ( - i / ί ) ϊ ( t , -x)dμ(t) .
Jo

Here K(t, -x) is RR on (0, 00) x (_oo,0). Therefore, as before,

q+ίFQ+1(xy) is ETP on (—00, 0) x (—00, °°). By continuity Q+ίFq+ί(xy)
is ETP on (— 00, 00) x (—00, 00) as required.

A more general theorem holds for the case p = q + 1, however
the proof is virtually the same.

THEOREM 7. The following hold

( i) Let Fq(zζ) - «+i^{5 + ϊ, ' V.
rβαϊ number Φ 0, — 1, —2, •••. TΛew Fq(zζ) is ESR ow

J. For α'o > 0, Fq{zζ) is the reproducing kernel of the Hilbert space
of analytic functions in A normed by (14.2) and is ETP on all
diameters of A. For a0 < 0 (α'o not an integer) Fq(zζ) is ESR on
the above diameters with the mth order signature

αίi 4 α ' >

e (F ) = ( — l)(t~αo3+ i)(w-i-[-«o]

; + 1 ; •' •':«:::+Γ«o
i = 1, , g - 1 and a0 Φ 0, - 1 , -2 , . Then Gq(zQ is ESR 0^ Δ
and ETP 0^ αW diameters of A. Moreover, for 0 Φ α0 > ~ 1/2, Gq(zζ)
is the producing kernel of the Hilbert space of analytic functions
in A normed by (14.2).

(in) Let Hq(zζ) = ff+ι2d~J , {[ J-» ^
• , q — 1 cmc£ α'o ^ — n/2, n = 1, 2, . TA,β^ i ϊ g (^ζ) is ESR <m J

α?ιcί ETP on all diameters of A. Moreover, for aQ > —1/2, Hq(zζ)
is the reproducing kernel of the Hilbert space of analytic functions
in A normed by (14.2).

Proof. Again it suffices to prove that the kernels in question
are ESR on the real diameter of A, ( — 1, 1). The proof is carried
by induction on q.

( i ) For q = 0, F0(xy) = ̂ (a^ - xy) = (1 - xy)~a° and so by
Corollary 5 (or Theorem 5) the statement holds true for q = 0. As-
sume the statement is true for q. According to (14.3) for a > 0
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xy
a, + 1, ••-,«, + l , α + 1; .

ta-ιFq(xyt)dt
B(a, 1) Jo

a Jo

- [ Fq(yt)K(t, x)dμ(t) f

Jo

where x > 0, dμ(t) = (l/α:)^" 1 ^, α: > 0 and

K(t, x) = ]
(0, 1 > ί > a? > 0 .

is TP on (0, 1) x (0, 1). Assume first that a0 > 0. Since
Fq(yt) is ETP on ( —1, 1) x (0, 1) it follows from the composition
formula that Q+2Fq+1(xy) is STP on (0, 1) x ( - 1 , 1). The analyticity
of g+2FQ+1(xy) implies that it is in fact ETP on (0, 1) x ( - 1 , 1). For
x < 0 we have

= [Fq(-yt)K(t, -x)dμ(t) .
Jo

But K(t, -x) is RR on (0, 1) x ( - 1 , 0) and Fq(-yt) is ERR on
( - 1 , 1) x (0, 1). Hence as before g+2Fq+1(xy) is ETP on ( - 1 , 0) x (1, 1).
By continuity g+2Fq+ι(xy) is ETP on ( —1, 1) x ( - 1 , 1) as required.
The same applies when α:0 < 0 (α'o not an integer).

(ii) The case q = 1 holds true, for then,

G^zl) = 2F1(2a0, ao; a0 + 1; zζ)

and the statement was verified in (13.1), (13.2) and Corollary 7. The
induction now carries exactly as in (i).

(iii) The case q = 1 was shown in (13.5) and (13.6). Indeed, in
this case Hizζ) = 2^(2α'o, a0 + 1; αo; zζ) = (1 + zζ)(l - zζ)~(2α°+1) and
again the induction carries as before. This completes the proof of
the theorem.
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