PACIFIC JOURNAL OF MATHEMATICS
Vol. 67, No. 1, 1976

TOTAL POSITIVITY OF CERTAIN
REPRODUCING KERNELS

JACOB BURBEA

In this paper we study the total positivity of various
kernels, especially reproducing kernels of Hilbert spaces of
analytic functions. We do so by employing a familiar device
known as the ‘‘composition formula of Pdlya and Szegé.”
Using this formula we are able to give a short proof of the
variation diminishing property of a generalized analogue of
the la Vallée Poussin means. This generalizes earlier work
of Polya and Schoenberg and recent work of Horton. Our
method is also based on the isometrical image of the re-
producing kernel called the generating function. The re-
producing kernel is then expressed as a composition of two
generating functions so that the problem is reduced to
investigating the total positivity of the generating function.
This methods extends earlier work and yields many new re-
producing kernels which are total positive.

1. Introduction. The theory of total positivity and more
generally the theory of sign regularity have been extensively applied
in various fields of mathematics and in particular in the theory of
approximation [9, 10]. In a previous paper [5] it was shown that
the optimality of a quadrature formula is closely connected with the
notion of the total positivity of the reducing kernel of the functions
determining the formula (cf. Karlin [10]). In [5] the notion of total
positivity was extended in a natural manner to domains in the
complex plane. For simply connected domains, for which 'the re-
producing kernel is an automorphic form of arbitrary weight, it was
shown that the reproducing kernel is indeed totally positive thereby
yielding a differential geometric interpretation of total positivity.
It was also shown that in general, reproducing kernels of multiply
connected domains are not totally positive. The methods in [5]
however cannot be applied to reproducing kernels which are not
automorphic forms and the purpose of this paper is to establish the
total positivity of such kernels. We do this by employing a familiar
device (Karlin [9, p. 98]) known as the “composition formula of
Pdlya and Szego.” As mentioned by Karlin, this is the only device
known to us as a binary operation, that permits us to construct a
totally positive kernel from two such kernels.

Using the above composition formula and an explicit formula
for Jacobi polynomials due to Bateman [3], we will give a very short
proof of a theorem, proved first by Horton [8], on the variation
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diminishing property of an analogue of de la Vallée Poussin means.
This generalizes earlier work of Pdlya and Schoenberg [12] and the
work of Horton [8].

Our method is also based on the isometrical image of the re-
producing kernel called the generating function (cf. [15]). The
reproducing kernel is then expressed as a composition of two
generating functions. Hence, the problem is reduced to investigating
the total positivity of the generating function. The method yields
many new reproducing kernels which are totally positive. Explicitly,
kernels which are derived from the generalized hypergeometric
functions are in general totally positive. This extends our previous
work [5].

2. Total positivity. We introduce some notation and definitions
from the theory of total positivity. We shall use Karlin’s book [9]
(especially pp. 1-103) as a basic reference (see also [5]).

A real function (or kernel) K(x, y) of two variables ranging over
linearly ordered sets A and B, respectively, is said to be sign regular
(abbreviated SR)on A x Bif forall m =1,2, «--, 2, < 2, < +++ < &,
Y, < Yy < +o0 < Y, ; €A, y,€B, we have the inequalities

Lyy 00y Ty

@) emK( ) — ¢, det (| K(wy 45)|[F5 = 0

for a sequence of signs ¢, = +1. ¢, = ¢,(K) is also called the mth
order signature of K, K = K(x,y). Whene¢, =1, m =12, .-, we
say that K is totally positive (TP). If ¢, =(—1)™" 22 m=1,2, ---, K
is said to be sign-reverse regular (RR). If in (2.1) strict inequality
holds for m = 1,2, ---, K is said to be strictly SR (SSR), strictly
TP (STP) or strictly RR (SRR) respectively.

Let K(x, y) be of class €°(A X B). K(x, y) is said to be extended
SR (ESR) on A x B if for m =1, 2, ---, we have the inequalities

m

ak+ j—2
N X, *°, X _ H j— m
€mK (y’ cee, Y = Cm det 6xk“3yj‘1K(x’ y) kyj=1 > 0

for a sequence of signs (signatures) e, ==+1. Ife,=+1,m=1,2,--,
we say that K is extended TP (ETP). If ¢, =(—1)"" "2, m=12, ---,
K is said to be extended RR (ERR).

If K(x, y) is ESR (ETP or ERR) on A x B then [9, p. 55] K(x, )
is SSR (STP or SRR) on A x B.

The notion of ESR can be extended to the complex plane as
follows: Let D be a domain in the complex plane. K(z, ) of class
€~ in the two complex variables (2, ), (2,{)eD x D, is said to be
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ESR on D if, for m =1, 2, ---, we have the inequalities

—_— _
R, v, 2 okti—2

K*(z’ . z) = det HWK(Z, 0)

.
b

o #=0.
k,3=1

Let ¥ be an arc in D. K(z, Q) is said to be ESR on 7 if

m

—
Zy 0, R
sK( ) >0
C! SN C
for all (z,0), (z,{)ev x 7, and for ¢, = 1. Ife,=+1,m=1,2, ---,
K(2,%) is said to be ETP on 7. Similarly, if ¢, = (—1)"™ "7
m=1,2, ---, K(z,7) is said to be ERR on 7.

Analogously, we can introduce the notion of ESR, respectively
of ETP and ERR, for a kernel K(z, ©) defined on A, x A,, where 4,
and A, are sets in the complex plane.

The “basic composition formula” [9, pp. 16-17] below plays an
essential role in establishing the total positivity of the kernels
considered in our work. Suppose o(t) is a sigma-finite measure
defined on A, Ac R. Let K, L and M be Borel measurable func-
tions of two variables satisfying

@2  K&O=| Lt )M Dio), 0eDxD,

where the integral is assumed to converge absolutely. We have
(cf. [9, p. 99]):

PRrROPOSITION 1. Let the assumptions of formula (2.2) prevail,
and let ¥ be an arc in D. Then

(a) If L(t, 2) and M, T) are SR (SSR or ESR) on A X v and
AXT (F={CCe}) respectively then K(z,7) is SR (SSR or ESR)
on 7.

(b) If L(,2) and M, C) are SR (SSR or ESR) and of the
same signatures on A X ¥ and A X 5 respectively then K(z,T) 1is
TP (STP or ETP) on 7.

For ready reference we also record in the form of a proposition
two simple properties pertinent to SR kernels (cf. [9, p. 18]). We
formulate the proposition in only the case of ESR. The cases of SR
and SSR hold true after minor modifications.

PrROPOSITION 2. (a) If K(z,7)is ESR on A, X A, and ®(z) and
() are nonvanishing € -functions on A, and A, respectively, then
L(z, ) = P(2)y(0)K(z,C) is ESR on A, x A,. In fact
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—_— —_
z LY z z o o0 z
L*(”’ " = [9(z)(C "‘K*(_’ ’_).
(C""’C) [ ()q;r( )] \C""?C
(b) If K(2,0) is ESR on A, x A, and w = @(z) and 7 = 4({)
are schlicht on A, and A, respectively, then

L(w, T) = K(P™(w), v7(7))
1s ESR on 9(4)) X ¥(4;). In fact

K*(f, ,f) _ [q),(z)m]m(m_”/ZL*(?:l_), cee, 7;0) .
C"--,C z',...’z-

The following proposition is mentioned in [9, p. 101].

PROPOSITION 3. Let Ky(x, ) = Sh_, aJu@)]*[v()]*, ¢, >0, n =
0,1, ---, N, and u(x) and v(y) are positive functions on the real
intervals I and J respectively. Then

(a) If wand v are increasing (decreasing) on I and J respec-
tively, then K, (x,y) s TP on I x J.

(b) If u is increasing (decreasing) and v is decreasing (in-
creasing) on I and J respectively, then Ky(x, y) is RR on I X J.

(c¢) The above statements true for N = « provided the bilinear
sum converges. In that case, if in addition w and v are € -func-
tions, then K.(x,y) ts ETP on I x J in case (a) and ERR on I X J
in case (b).

Proof. All these follow from
KN(:U, y) — S eth-gu(z)etlogv(y)dMN(t)
R

where fty is a discrete measure with jumps a, at n =0,1, ---, N,
and the fact that ¢*¥ is ETP, ¢ *¥ is ERR, and Proposition 2.

COROLLARY 1. (a) K,(x, y)=1—xz)"A—y)" i, a,((1+2)/(1—x))*
(Q+9)/A -y, ¢.>0,k=0,1,---,n, is TP on (—1,1) x (-1, 1).
(b) Ln(x; y) = Kn(—x, y) 18 RR on (—1’ 1) X (—lr 1)'

Proof. Indeed,1 — x>0, v(x) =1 + x)/(L — x) > 0and v'(x) >0
on (—1,1).

3. Variation diminishing property-Jacobi polynomials. Let
f(t) be defined on an ordered set of the real line J. Write
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Vilf]1 = Sup VIS, f(ta), - -+, f(8.)]

where the supremum is extended over all sets ¢, <t, < --- <t,,
t,;ed and V(a, a,, -+, a,) is the number of sign changes of the real
sequence a, Q,, -+-, &,, zero terms being discarded. A real-valued
kernel K(zx, y) defined on I X J is said to be wariation diminishing
(VD) on I if,

VIIK+f1= V,[f] for all feL(yJ).

Here ¢ is a positive measure on J and the convolution

K+ H@ = | K n)iwip)

is assumed to be finite for every z in the ordered set of the real
line 1.

If g is a €~-function on an open set I, Z;[g] will denote the
number of zeros, counting multiplicity, of ¢ in I. We write A for
the closure of A in R.

The following proposition is a much weaker statement (but it is
all that we need here) than the one found in Karlin [9, p. 21].

PROPOSITIQN 4. Let I and J be open in R. Assume that K(zx, y)
is in €°(I x J) and SR on I x J. Then K(z, y) is VD on I and in
fact

VilK+f1 = Z|K+ f]1 = Vil f]
for all fe Ly, J).

The first inequality is obvious due to the continuity of K=xf in
I while the second inequality is the content of Karlin’s theorem.

COROLLARY 2. Let K,(x, ¥) and L,(x, ) be defined as in (a) and
(b) of Corollary 1. Then

Vr—1,1][Kn*f] = Z(—l,l)[Kn*f] = V[—1,1][f]
and
V[—l,l][Ln*f] = Z(—l,l)[Ln*f] = V[——l,l][f] ’
for all fe L(y), where p(z) = (1 — 2)*(1 + x)* on [—1,1], o, 8 > —1.
The Jacobi polynomials, P*#(x), @, 8 > —1, are orthogonal with

respect to the measure p(x) = (1 — z)*1 + x)? on [—1,1]. Let
feL(y®), then formally we have
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(3.1 @) = 3 aduR (@)

where

RiP(z) = —Pj:g; =B~k at B+ Lat 1 - z)
k

and
a=| fOR @), = RE@Te) .
Let f be as in (3.1) the translate of f is given (cf. [2]) by
@i 9) = 3 el R @RS W) -

This translate is natural in the following sense; if g(x) is expanded
similarly with coefficients b, then

(9@ = (g+N@) = || Sz o) = 3 (@b)hRie? (@) -
For a polynomial K,(x) = 3t ¢k Bi*?(x), we have
& N@ = | K 0f@)den) = 5 (@e)hiBe @)

We choose [8]

(3.2) R,(x) = tn< L ; @ ) =t 3 e B (@)
where
I /I +2\ - I'ln +a+ B+ 2)
t, = d = .
U_l< 2 > # (x)} 25 (n + B + )l (a + 1)

The translate of K,(z) is
K. 9)=t, kﬁ‘, Cr.h B P(2) R ()

and by a simplification due to Bateman [3] we have

Ko ) = (0= 00— oy 3y F2) (F5L)

where

4PA(1) k! (n — k)!

dy
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Note also that [8] %,c,,— 1 as m — c so that the kernels K,(z;y)
constitute a positive and finite summability method which is an ap-
proximate identity in the sense that the coefficients of K, f converge
to those of f.

The following theorem, proved first by Horton [8] by different
methods, follows now as a special case of Corollary 2.

THEOREM 1. Let K, (x) be given as in (3.2) and let L,(x) = K,(—2).
Then

Vil K s 1 £ Ze [ Kox F1 = Vil f]
and
VieoulLo* f]1 £ Z o[ Lo+ 1 = Vil f]
for all fe L(p).
As noted in [8] for &« = 8 = —1/2 and & = cos @

_ _ 1 (n!)z I 27
R - L oo )

which is the de la Vallée Poussin kernel. Hence, Theorem 1 and
more generally Corollary 2 generalize the earlier work of Pdlya and
Schoenberg [12] for the case @ = = —1/2. Note also that for
a=p=—1/2 and x = cos 0

_ _ 1 (%')2 .6\
L,(cos 0) = -~ W(Z sin —2->

which could be regarded as the adjoint of the de la Vallée Poussin
kernel.

4. Kernels of the form F'(z{). Suppose F(z) is analytic in
2] <p, 0<p=oco and consider the kernel K(z, C) = F(z{) for
2] < p. Then

m

K* Ry **, % =\ BTl .= S T,
DY) = WARGD, TR, - TRED] e L2y

where W,, stands for the Wronskian of the m functions with respect
to Z. Let s = 2Z then

W F(D), TF' (), -+ -, T F™ ()]
. dz \™m—h/2 S v s\"! (m—1)
= ('E> W ), 2F), ---,(;) Fos) |
= W,IF(s), sF'(s), -+, " F(s)] .
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Thus

m
e A,

(4.1 K( o Z) = WIF(s), sF'(s), - -+, s F" ()],

m:l,z’-...

We say that a sequence of functions {(f,.(z))m-., analytic in a
domain D, constitutes an extended complete Tchebycheff system (ECT-
system) on D if

Wm[fl(z)""’fm(z)]io’ m:]-yz,"’y

for all zeD.
Consequently, using (4.1), one obtains:

THEOREM 2. Let F(2) be analytic in |z] < p, 0 < p = . Then
the kernel K(z,7) = F(z0) is ESR for |zZ| < p if and only if
GEPEF ™ (2))m=, s ECT on |z| < p. Especially, iof K(z, y) = F(xy)
18 ESR for —o < xy < p, where x, yc R, then K(z,C) = F(z0) is
ESR on cll the diameters 2E€ R, [2| < p and all the mth order
stgnatures are equal.

Several implications of this theorem are immediate. The most
trivial one is of course about F'(z) = .

COROLLARY 3. The kernel ez, £) = ¢ is ESR on all C and
ETP on all rays passing through the origin (cf. [5] and [9, p. 99]).

Proof. This is because
Wle, 26, -, 2] = (T1 kl)e™, m=1,2, -
k=1

COROLLARY 4. The kernel E z,0) = Fi(a;a + 1;20), a >0, is
ETP on all rays passing through the origin.

Proof. According to Theorem 2 we have to show that the
sequence ™ 'F™ Y i =1, 2, .-, with F(z) = F(a; a + 1; z) is ECT
for —co < < . But

F(x)=ﬁsxe‘t“‘ldt, a>0, —oo << o,
x* Jo

Therefore
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WalF(x), 2F"(x), - -+, 2" F"(2)]

= LW, [G(), sG(@), - -, 2 G ()]

am ™

with

G(x) = S:ett“"dt , GYV(x) = e”x“‘lé‘a (;)(—1)"(1 —a)xt,

j=01,--
Consequently

Wm[G(x)r xG’(x)v ) xm_lG(m_l)(x)] = Wm[G(x)’ xaex’ ) xa+m~2ew]
= e™x W, [H(x), 1, «--, 2™ ?]

ez (L k1)(~ 1" H" (),
k=1

I

where

H(z) = e "2 *G(x) = e"”x““sx‘ett““dt = Sl e * (1 — t)*"'d¢ .
0

0

Therefore
W lF (), xF'(x), « -, a™ ' F" " (x)] = a’”(mI—Il k!)em* Sl e "1 — 1) dt
k=1 0

which is strictly positive for all —oo <2z < o, m =1,2, --.. This
concludes the proof.

REMARKS.

(1) The corollary is in fact a special case of Theorem 6 below.

(2) According to the above proof for E.(z, 0) = F\(a; a + 1; 20),
a>0,

e A
E:(f’ ’f) = (I ke | e tmi(t — oy=de, mo=1,2, -0
&< k=1 0
(8) For a =1, E(z,0) = (z0)"(¢** — 1) and

——— _
(m—1)z¢

,2,‘, e, V4 m—1 e _ m—1 (zz)k
* — 1yV—— ?¢ — ~—= = cee
E(c z) A Cae(e — 5 ) m=12

(4) E.2,0)is ETP on all rays passing through the origin (i.e.,
ETP for all 2, {eC with 2Ze€R) but it is not ESR on C. For
example, K. (2kni, 1) =0 for k=1,2, ---.

Part of the following corollary appears also in [5].

COROLLARY 5. The kernel K, (z,0)=(1—20)"", a0, -1, =2, +--,
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is ESR on the unit disc 4 = {z:|z| <1}. For a >0 it is ETP on
all diameters of 4 and for a < 0 (o not an integer) it i¢s ESR on
the above diameters with the mth order signature

sm(Ka) — (__1)([—0(]+1)(m—1—[—a]l2) .
The above is also true when { or z (but not both) lie on the boundary
= {z:|z| = 1}.
Proof. Let F(s) =1 —s)™, a+#0, |s|] <1. Then

Wm[Fa(s), SF;(S)y %y Sm—ngzm—l)(S)]
@ — 8)7% (). s(1 — s)'“_l oo (@) ys™ (L — s)TmH]

= (L @i — oW1, 2 oo, (Z2)7 ]

and putting ¢ = s/(1 — s)

= (I @ — oye=(&)" Wl b, -, 00

- ...‘

3

= (]

Hence K,(z,C) is ESR for [2{| <1 and a # 0, —1, —2, ---. On the
diameters zZe R, [20] <1, e,.(K,) = sign (17~ (2),).  Therefore
en(K,) = +1for @ > 0. For a <0 (a not an integer), let n = [—a]
that is, —(n + 1) < a < —n. Thus

=3

(a)kk')(]- — )Ty

Sign ('rﬁl (a)k) _ (_1)$_‘Z=1k+(n+1)(m—n—1) — (_1)('n+1)(m—1—n/2)
k=1
and the corollary follows.

COROLLARY 6. The kernel H (2, ))=1(2—0) % a+0, —1, =2, ..,
1s ESR on the upper half plane U = {z:Imz > 0}. For a >0 it s
ETP on all straight lines in U which are parallel to the imaginary
axis and for a < 0 (a not an integer) it s ESR on the above straight
lines with the mth order sigature €,(H,) = (—1)t-adtvm=i=l=c/n  The
above is also true when C or z (but not both) lie on the boundary
oU = {z: Imz = 0}.

Proof. Under the conformal mapping w = (z — 9)/(z + ) U is
mapped onto the unit disc 4 = {w: |w]| < 1} and

D) = i — 07 = (20) " (E) K, 7).

where 7 = ({ — 9)/(¢ + i) and K (w,7) = (1 — wT)™® Since dw/dz =
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2t/(z + 1)* the corollary follows from Proposition 2 and Corollary 5.

COROLLARY 7. The kernel g.(t, z) =1 — 22t + 2°)™%, a+0, —1,
—2, -+, 48 ESR on [—1,1] x4 (te[—1,1], 2] <1). For a>0 itis
ETP on [—1,1] x (—1,1) and for a <0 (o not an integer) it is
ESR on [—1,1] x (—1,1) with the mth order signature &,(g.) =
(__1)([_0!]4'1)(7”—1—[“01]/2).

Proof. For
4.2) gut, 2) = (1 — 22t + 287, (t,2)e[—1,1] x 4,
we put

_1 1 —_lq_p
C—2<z+z>, djdz = —L(L—#), #ed.

Then

Le—tye=_L mo,

08, ) = (2iz)"

where H,(, t) is as in Corollary 6. We now use Proposition 2 to
obtain

t : ¢ 1 al /2H € : ¢
o m(m—1) o

* y ’ « y )
g“<z, ,z) (2iz)‘“’”<dz> “(t, ...’t) ’

and finally, using Corollary 6 and after some manipulations

m

t’ . -, t m—1
& (z z) = ([T @k)[2(L — g, (8, 2)] =0,

m=1,2 «--.

Since 1 — 2zt + z* does not vanish for (¢,2)e[—1,1] X 4 and it is
strictly positive for (¢, z)e[—1, 1] x (—1, 1) it follows that g.(¢, 2) is
ESR on [-1,1] x 4 for ¢+ 0, —1, —2, .-+, For (¢, 2)e[—1,1] X
(—1,1), g.(t, 2) is ESR with ¢,(g.) = sign ([I= («),) and the corollary
follows.

5. Reproducing kernels and generating functions. Let 57 be
a Hilbert space of analytic functions is a domain D with an inner
product (, ). Assume also that 57 possesses a reproducing kernel
K(2,0), (,0)eD x D. Thus f(Q) = (f, K( , £))» for each {eD and
all feoZ Let (4,7, be an orthonormal basis of 22 Then [4, p.
98]
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K(z D) = 36,050 , (@ 0eDx D,

We set an isometry T: 57 — Ly(¢t) between 57 and the Hilbert
space L,(#). Here z(t) is a Borel measure on R with finite moments
of all order and with infinitely many points increase. The image of
K(z, ) under this isometry is

9:(t,8) = T.K(2,0)|,~., teR, (eD.

(The subscript in T, indicates that { is held fixed and T is applied
on K(z2,%) as a function of z.) g¢.(t, 2), (¢, 2)€ R x D, is called the
generating function of {(T¢,).

Assume A C R is the support of ¢(t). Then, using the reproducing
property of K(z, ), one obtains

K(z7 Z) = (K( ’ Z)’ K( ’E))W = (TK( ’ Z)9 T—K( ’ E))!l

and so

(5.1) K(z,0) = SAgT((t, 2)9:(t, dpt) , (2,{)eD x D.
Using (5.1) and Proposition 1, one immediately obtains:

THEOREM 3. Let the assumptions of formula (5.1) prevail and let
Y be an arc in D. If g.(t, z) is ESR on A x 7 then K(z, £) is ETP on 7.

Specifically, let P,(t), » = 0,1, ---, be an orthonormal basis of
polynomials of degree n in L,(¢). We write T¢, = P,, n = 0,1, «--.
Since the corresponding elements are orthonormal bases in the spaces
&2 and L,(p) respectively, this correspondence does indeed induce
an isometry of 577 onto L,(#¢). Therefore

(5.2) 0:i(t, 2) = S, Ps(a), (6, 2)eAx D,

is the required generating function.

THEOREM 4. Let the assumptions of formule (5.2) prevail and
let v be an arc in D. If g.(t, z) is ESR on A X 7 then {¢,)n-0 18
an ECT-system on v. In this case €,(9;) = €.(D), where D(n, z) = $,(2),
(n,2)e " x7v, 4 =1{0,1,2,---}. That is, D(n,2) s ESR on
A7 X,

Proof. One has
= (Poy 02, D) = | 0:lt, DP,(OAAE) .
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Since (P,(t)) is a sequence of polynomials of degree =, (P,.(t))5, is
an ECT-system on R. The theorem now follows from Proposition 1.

In the sequel we will show that many reproducing kernels are
ESR due to Theorem 3. This, in turn, generalizes our previous
results in [5]. We list several examples of this procedure.

6. The Paley-Wiener kernel. The Paley-Wiener space 7, is
the space of entire functions f(z) of exponential type =<a which
belong to L, on the imaginary axis. This is a Hilbert space with
the norm

1r1e =" 1fwray .

By a Paley-Wiener theorem [11, p. 13] any fe.&? is a Laplace
transform of a function in L(—a, a¢). Thus T: &2, — L,(—a, a) given
by

(T9)@) = o | "ot = ), geLi~a,a),
is an isometry. The reproducing kernel of &7, is

K.z, T :w, 2, leC.
(2, 0) 7 £ D)

The generating function (the image of K,(z,C) under T) is
€"Y(_a,a)y WheTe Y, . is the characteristic function of (—a, ¢). Thus,
the following obvious identity

Ka(z’ Z) = % S:l eet*dt , &, LeC,

holds.

Since ¢ is ESR on C x C (Corollary 3) it follows, by Theorem 3,
that K.z, £) is ETP on all straight lines in C which are parallel to
the real axis. Moreover, K,2,7) is ESR on all the strips
{z: 2k — D(z/a) < Imz < (2k + D(x/a)}, k= ---, —1,0,1, ---.

7. The Hardy kernels. The Hardy space =, = Z,(#), ¢ > 0,
is the space of all functions f(z), analytic in the right half plane
B = {z: Rez > 0}, of the form

f@) =\ e F@eprorar, q>0
0
with F'e L,0, «). =, is a Hibert space with the norm

11 = 1F@ Fat



114 JACOB BURBEA

This Hilbert space has the Hardy reproducing kernel
(7.1) K20 =T2)/(z+0, ¢>0, 2 leH.

The image of K,(z, C) under the above isometry is ¢ * and in fact
the well-known identity

K,(2,0) = S:o e e gL 2, e B,

holds. Therefore, K,(2,Z) is ESR on < and ETP on all straight
lines in <7 which are parallel to the real axis. When ¢ = 1/2 the
Hardy kernel reduces to the famous Cauchy kernel K, ,(z, £) = 1/(z+70).
The fact that this kernel is ETP on (0, ) is used to establish the
well known Miintz theorem on best polynomial approximation.

Clearly, K,(z, C) and H,,(z, £) of Corollary 6 (and for that matter
also Corollary 5) are essentially the same (they are melely different
realizations of the same object on the conformally equivalent under-
lying domains <# and U). In fact let D be a simply-connected
domain with the Bergman reproducing kernel, [4, p. 21], Ky(z, Q)
and let 9: < — D be a conformal mapping of <Z onto D. Let
= @' then Tf = fo[4']? is an isometry of =Z,(<=#) onto Z(D).
The reproducing kernel of <7,(D) is therefore

(7.2) K"z, 0) = I'Cen'[Kp(z, DI, ¢>0, 2 (eD.

Using Corollary 5, Proposition 2 and the above discussion we
obtain:

THEOREM 5. Let D be a simply-connected domain with a
Bergman reproducing kernel Ky(z,2). Then ['(29)n'[K,(z, 0)]° is the
reproducing kernel of <=2,(D) for q > 0. Moreover, [Ky(z, Q)]
2¢g #0, —1,0,2, ---, is ESR on D. For q¢ >0 it s ETP on all arcs
v im D which are tmages of the diameters of the unit disc under
the Riemann mapping. For q < 0 (29 not an integer) [K,(z, §)]° is
ESR on the above mentioned arcs with the mth order stgnature
en(K%) = (—1)2atnm=i=i=2qi/n  Fop [(z, £) = [Ky(z, {)]* we have

m
P Wy

(277 2] = GO ey K e, D

oo
’ ’

m=12 ---.

In obtaining the above theorem we made also use of the well-
known fact [4, p. 33] that if @: D — D* is a conformal mapping of
D onto D* then

(7.3) Kz, 0) = ()P QKo+ (2(z), Q) , #{eD.
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A kernel K(z, ) which is ESR on D and is of the form F(z — Q)
is generally called an extended Pélya frequency (EPF) function on
D. Combining (7.1), (7.3) and Theorem 5 we obtain:

COROLLARY 8. Any power (not of the form —u/2, n =0,1, --.)
of the Bergman kermel is EPF on the right half plane.

Another interesting kernel is obtained by mapping the unit disc
4 onto the strip D, = {z: |[Im 2| < a}. Since ¢(z) = tanh 7z/4a maps
D, conformally onto 4 it follows from Theorem 5:

COROLLARY 9. [I'(29)[(w/4a)sech (z — 0)/4a]**, q¢ > 0, is the re-
producing kernel of =,(D,). Moreover,

Lz, Q) = [sech ELZ——C)TG , 2¢ #0, -1, ---,
a

is ESR on D,. For ¢ > 0 it is ETP on all arcs 7, 0 =< 0 < 27, given
by

zo(t) = —2—0’—10g1 * tef" , te(—1,1).
T 1 — te*?

For ¢ < 0 (2¢ not an integer) it is ESR on the above arcs with the
mth order signature ¢,(L,) = (—1)t 2tz Especially,
Lz, y), ¢ >0, is ETP on (— oo, o) X (— o0, o).

For ¢ = 1/2 the norm of <&, can be realized in a form which
appears frequently in function theory. In fact by another theorem
of Paley and Wiener [11, p. 8] one has

2 Tt 2 2¢—2
17 = Fe— ) | M@ 2R 2l dady , a > 1/2,

ke =5=sup | 1@+ ipray .
T x>0 —o0

Therefore the norm of <Z,(D), D is simply-connected, is given by

e T ! 2 Z)i—¢
@8 15l = i |, [ K 2y edsdy 0> 172

(1.5) 1F s = =, @A

where in the last integral f stands for the nontangential boundary
values of the analytic function f(z) in D. Consequently, <Z,(D),

g > 1/2, is in fact the Bergman-Selberg space [14], namely, it is the
space of all analytic functions f(z) in D normed by (7.4). This
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Hilbert space possesses the reproducing kernel K!”(z,{) given in
(7.2), q > 1/2. Similarly, =,,(D) is the Szegd space [4, p. 110]
consisting of all analytic functions f(z) in D normed by (7.5). Its
Szego reproducing kernel is given by KB(z, Q) = n')[Ky(z, 0)]%

These methods can be applied to spaces of square summable
series.

8. Spaces of square summable series. Let D, = {z: 2| < p},
0 < p = o, and assume that @(z) = D7, c.2" ¢, > 0, is analytic in
D,. Let

H, = {feH(D,,):f(z) :%anzﬂ, g]a D OO} |

Cu
where H(D,) designates the class of analytic functions in D,. Clearly,
H, is a Hilbert space with the scalar product

(0 = 3,9 () = 5 0., o(e) = 30,57

Cu

We have

0 = S a0 = 3 B4 = (), 9D -

n=0 -

Consequently, K(z, ) = (20) is the reproducing kernel of H, and
Ve, 2*)e., is an orthonormal basis for H, (cf. [15]).

Assume now that J is a real interval and g is a finite Borel
measure on J with finite moments of all order and with infinitely
many points of increase. Consider the Hilbert space L,(#) normed
by

171 = | 1A rdme

with P,(t), » =0,1,---, as an orthonormal basis of polynomials (with
real coefficients) of degree n. We set up an isometry between H,
and L,(#) by

Tz, 2*) = P.(t), n=01, -
The generating function is therefore
gilt, 2) = X Ve, P(0)", (t,9)e] x D,
and

K D) = (0 = | 0:(t, 9oslt, Dapt) , 2, CeDy .
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Notice that

K2 = #(2) = | lo:t, |2DFdt) . 2D, .

Consequently, the question of the total positivity of K(z, ) on
D, is reduced, via the above composition formula, to the correspond-
ing problem for ¢,(¢,2) on J x D,. Here g,(t,z) is a generating
function for certain classical polynomials. We give some examples
of this procedure. In these examples we adhere to the convention
and standardization of orthogonal polynomials employed in [1, 6, 13].

9. Exponential kernels and Hermite polynomials. Designate
by H(C) the class of all entire functions and let

171 = gy W @ FIzie Pdady , > —1.

Define
H, ={f e HC): [|f|la < e} .
H, is a Hilbert space normed by || f||. and in fact

wllz — 1 Soo n+a—rd:_. 1 :01...
11 = prgy ), e = @ D, n =01,

The reproducing kernel of H, is

7w @) _ ) . 7 o
ez, ©) g;}(a+1>n FLa+1:20), a> -1, 2z LeC.

Therefore (see Corollary 3)
ez, 0) = F\(1; 1; 20) = ¢~
and

02, 0) = a Sle’a(l — e, a>0.
0
Especially
ez, T) = S Tt = (D) (e — 1),

which, according to Corollary 4, is ETP on all rays passing through
the origin.
Define now another family of norms by

11 = Z (] 1@ Rl + @ = Ve dndy , @ >0,
[44 c
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and let
= {f€HQC): || flla < o=} .

%, is also a Hilbert space normed by [|f||. and in fact
l2*|2 = r’r”('r ta—Derdr=a@+mml, n=01 -
0
The reproducing kernel of 57 is

Ea(z,Z)=a§G—(f%—n—,=lFl(a;a+l;zi), a>0, 2(eC,

and again, according to Corollary 4, is ETP on all rays passing
through the origin. Notice that E.(z, Q) = ez, §) = (20)7'(¢** — 1).
In fact the following relationship

ef2,0) = eE (2,0, a>0,

between the two families of producing kernels hold.

These kernels are closely connected to the Hermite polynomials.
The Hermite polynomials H,(t) are orthogonal with respect to the
measure w(t) = ¢~ on (— oo, ) and are normalized by

Sf [HOFw(t)dt = hy = VT 201, n=01, ---.

In addition they assume the standardization H*(0) = 2"n!. We set
an isometry T between H, and L,(w) via the rule
T(z"/V'nl ) = H,({t)V'h, , n=01 ---.

The Hermite generating function is therefore

ot, 0 = Tez, ) = = 3, LD gy
or

g(t, z) = TV %V | (t,2)eR x C.

Consequently,

= 3 —1/2,.—22/2—F « Stz T) — 12
GO(Z, C) =t =71 1/2¢ 22/2 ,2/28 e«/zt(zh)e tdt ,

which is a well-known identity.
10. Hardy kernels and Laguerre polynomials. The Hardy space

Diwrnyy &> —1 (see (7.4)) is defined as the space of all analytic
functions in the unit dise 4 with the moments
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2" =n!/l(@+n+1), a>—-1, n=01---.

The norm induced by these moments can be realized as in §7 and
in fact for a >0

-1

s . T
IIF1le = @

), 7@ E — 121 dady
while
2 1 2
1l = 5=, 1@ral.
T Jadt
The reproducing kernel of H, = & ., is

K(z D) =3 I(LE'&JF_U(Z@ = (e + DA — 2B, 2 Ced.

The fact that these kernels are totally positive is the content of
Theorem 5. However, this fact could also be deduced from the
Laguerre generating function. The Laguerre polynomials, L{*(t),
a > —1, are orthogonal with respect to the measure w(t) = e ‘* on
[0, <) and are normalized by

S“’ [LO@OFwE)dt = hy = M@ +n + Ljnl, n=01,--

We assume also the standardization d"/dt”Li%O) = (—1)~. Clearly,
T: H, — Ly(w) given by T(V'h, 2*) = L{®(t)/V'h, is an isometry of H,
onto Ly w). The Laguerre generating function is therefore

9(t, 2) = 3 LEWe" = (L— 9"/, (¢, 2)e[0, ) x 4.

Hence

I'a+1)

K[z, 0) = T

= Q=g = | et awar
0

which is, according to Propositions 1, 2 and Corollary 3, the required
result.

11. Logarithmic kernels and Laguerre polynomials. Consider
the unit disc 4 and let the moments be given by

11.1 o = () n! />0 = 0,1, ...
(11.1) 2" ] F TainiD’ a>0, n , 1,

With (11.1) we have a Hilbert space 52, of analytic functions f(z) =
S sa,2" in 4. The reproducing kernel of 57, is given by
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K0 =a 50 D E ot nre e 12D,

for z,{ed-T: 5, — L(w) given by T(V'c, z") = L t)/V'h,, where

¢;t=|z"|l> and h, =I'(@¢ +n + )/n!, n=0,1, ---, is an isometry
of 7, onto L,(w). Here, as before, w(t) = e %t* on [0, «). The
generating function (cf. [13, p. 202]) is therefore

Gt, D) = T3, ) = 5 —@e LT
=1-0™ (a a+1; —L> :
Thus

K(,0) =1 —2)"Q -0
X Sj 1F1<a'; a4+ 1; —1 bz z>1F1<a'; o+ 1; —1L>w(t)dt

Since, according to Proposition 2 and Corollary 4, G,(¢, z) is ETP on
[0, <) x (=1, 1) it follows that K,(z, {) is ESR on 4 and ETP on all
diameters of 4.

An interesting special case occurs when a = 1. In this case 57
is the Dirichlet space consisting of all analytic functions in the unit
dis¢ 4 normed by

a2 Sl =2 r@rdedy + = f@rlde)

T 4 o Josa
where f in the second integral stands for the nontangential boundary
values of the analytic function f(2) in 4. 2#7 has the logarithmic
reproducing kernel

(11.3) Ki(z,0) = —(:0)'log (1 —20), 2,(ed.

The same applies when a = 2. In this case
Kz, T) = ;‘%[(1 — D)+ (D) log (L — 2D)], 2 Ced.

As stated before both kernels are ETP on all diameters of 4.
We should remark however that actually not only ,F\(a, a; a + 1; 20),
a >0, is ETP on the diameters of 4 but also ,Fi(a, 8;a + 1; 20),
a, B > 0. This will be shown as a special case of Theorem 7.

12, Tchebycheff kernels. We now treat three different Hilbert
spaces, arising from the Tchebycheff polynomials, all of which have
ESR reproducing kernels.
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Designate by H, the Hilbert space of analytic functions in the
unit disec 4 with the scalar product

(F, 9. = | |, F@a@ dz| + 2/0)g® |, S, g€ H.,
T a4

where, as usual, the integral is carried over the nontangential
boundary values of f and g. Here, of course,

H, ={feHU):|IFIl = (f, ) < e},
and
n m 1
(z » (4 )1 = '—[5n,m + 60,7150,7#] ’
2
where 9,,, stands for the Delta of Kronecker for n and m. Con-

sequently, Ve, 2", n =0,1, ---, with ¢, =7 and ¢, = 27 for n =1,
is an orthonormal basis for H,. The reproducing kernel is

(12.1) Kl(x,Z)=7Z+2ﬂ:§‘,(zZ)”:7r]1“+Zg, 2,(ed.

We will now show that K,(z, ) is ESR on 4.

The Tchebycheff polynomials (of the first kind) 7,.(t) are
orthogonal with respect to the measure w(t) = (1 — t*)™"% on [—1, 1]
and are normalized by

| [L@Fu®dt = b, = 2@+ 0,0,  n=01, .

We assume also the standardization T,(1) = 1. T: H,— L,(w) given
by T(Ve, 2") = T, (t)/V'h,, n=0,1, .-+, is an isometry of H, onto
L,(w). The generating function (cf. [7, p. 186]) is

a(t, ) = TK,(2, D) = 3,2 = 0,0 T,()T" = (1 = Dau(t, D
where g,(t, z) is as in (4.2)
gt 2) =1 — 2zt + 25", (¢, 2)e[—1,1] x 4.
Consequently,
KD =0 —)01 -0\ 0, 2o Dudt, zCed.

It follows, using Corollary 7, that K,(z, ) is ESR on 4 and ETP on
all diameters 4.
Let H, = {f € H(4): || fll; < >}, where
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£l = ||, 7@ P1dz] = =1 AOP] -

8n?

This is clearly a norm for, | f(0)|* £ 27| f(0)|* = Sa' [f(z)F|dz]. (The
integral as usual is carried over the nontangential boundary values
of f). H,is a Hilbert space with the scalar product

1
8

(o =2 |, (F@a® — A0 dz|

and
g gt = L (1L
Il = et = =11 = S0 -
The reproducing kernel is
2 — 2C

K2, 0) = 81 + 47 3 (20)* = An2 =25 | 2 Ced.
n=1 1— 2

This kernel is also ESR on 4. For this we introduce (cf. [1, p. 774])
the modified Tchebycheff polynomials (of the first kind) S,(¢). These
polynomials are orthogonal with respect to p(t) = (1 — ¢*/4)™* on
[—2, 2] and normalized by

Sz [Sn(t)]zﬂ(t)dt = hn = 477'-(1 + B'n,o) ’ n = O’ 17 ttt .

In addition S,(t) assumes the standardization S,(2) = » 4 1. In this
case the generating function is given by [1, p. 784]

(12.2) G(t, 2) = 2 Stz = (1 — 2t + 25" = g,(t/2, 2) ,

where (¢, 2)e[—2, 2] x 4. Here h, = ¢, and T: H,— L,(¢t) given by
T(V'e, 2") = S,(t)/V ¢, is an isometry of H, onto L,(z). Therefore

TK(z, D) = 38,00 = 0.0/20, (¢, 0el-2,2] x 4.

But according to Corollary 7, ¢.(¢/2, z) is ESR on [—2, 2] X 4 whence
KJ(z,0) is ESR on 4 and ETP on all diameters of 4.
We now introduce a third Hilbert space H, of analytic functions
in the unit disc 4. H, is normed via the moments
1

2"} = cit = —((n + 1)7° + 0,,0) .
4

The reproducing kernel of H, is therefore



TOTAL POSITIVITY OF CERTAIN REPRODUCING KERNELS 123

Ky2,0) = 8r + 47t§‘,1(n + 120" = 475[1 + (Tl——t_z%%] , 2,Ced.

In order to prove that K,(z, £) is ESR on 4 we differentiate 2G(¢, z)
with respect to 2z, where G(¢, z) is given by (12.2). We obtain

(2G(¢, 2)) = é (n + 1)S,(¢)z" = (1 — 2 )L — 2t + 2°) 7 = (1 — 2")g:(¢/2, 2) ,
where (¢, 2)€[—2, 2] X 4 and g,(t/2, ) is as in (4.2). According to
Corollary 7, (1 — 29g,(t/2,2) is ESR on [—2,2] x 4 and ETP on
[—2,2] x (—1,1). The natural isometry T:H,— L)) given by
(TV'e, 2" = S,(t)V'h,, yields

_ o 1/2 _ o — — —

TK(z D) = 35 (£) "S.00 = 35 (0 + DS,0T = (- o0/, D)

and

KD = -0 - D) a2 o2 Duwit .
Consequently Ki(z, {) is ESR on 4 and ETP on the diameters of 4.

13. Gegenbauer kernels. Let H,, 0 ## a > —1/2, be the Hilbert
space of analytic functions in the unit disc 4 which is normed via

Hani:h;l:[r(a)]z n!(n+a) ’ %:0, 1, Tt .
727 ['(n + 2a)

The reproducing kernel of H, is

Kz, 0) = 3, b0
= B(1/2, & + 1/2),F (2, a; & + 1;20), 2,(e4.

(13.1)

Here B(p, q¢) is the Beta function and in obtaining (13.1) we made
use of the duplication formula

Vn I'(2a) = 2 ') (a + 1/2) .

The Gegenbauer polynomials C*(t) are orthogonal with respect
to the measure w(t) = (1 — t)*%, 0+a > —1/2, on [—1,1] and
normalized by

Sl [C’(na)(t)]zw(t)dt = h,,,, ’ n = 0, 17 e

They assume the standardization C*(1) = (12_“)”/"!° We again set an
isometry T: H,— L,(w) by the rule T(V'k, z") = C(t)/V'h, so that
the generating function is
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TK(z, §) = 3 OO0 = (L — 28t + T = 0., D)
and so
(13.2) K50 = | 0.t 29.t, Dutydt .

Since « = 0, —1, —2, .-+, it follows from Corollary 7 that K,(z, )
is ESR on 4 and ETP on the diameters of 4.

For @ >0, K.z, 0) admits various integral representations
namely,

K@IknwW&a+UmYﬂ%Ldﬁﬂﬂh a>0.
0
If in addition @ < 1 then
m%@:%mmmmﬁvwa—nwy4£wm,0<a<L
0

The special case when a =1 is well known. In this case
CP(t) = U,t) are the Tchebycheff polynomials (of the second kind)
and ||2"]| = 2/x. Then norm of H, is realized via

Il === 1/@PIdel, FeH,.
H, is therefore the Szego space with the Szego kernel
K0 =20-20", zled.

Another special case is when @ = 1/2. In this case C\/*(t) = P,(t)
are the Legendre polynomials and |[2"]|}, = » + 1/2. The norm of
H,,, is realized via

1F s = = |, |70 Py, f e Hep .

The space H,,, is essentially the Dirichlet space 577 introduced
in (11.2). In fact, it is easily verified that 27| f|2 < || fI[2. < || fI?
where || f]|? is as in (11.2). Moreover,

1+V%2C 2

- VT
V—logl—VzC 1/ tanh* V28, z,(e4,

1/2(25 C) =

and it should be compared to the other ESR reproducing kernel in
(11.3). Note that K,,(z,2) = 2040, 2)/|2| where . 04(0,2) is the
hyperbolic distance of 0 to z in the unit disc 4. Therefore
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|w| K, (w, #) < |2|K,,(z, Z) for any analytic mapping w = @(z) of 4
into itself and ®(0) = 0. Equality holds if and only if @(z) = e'z.
Using the reproducing property of K,,(z, ) one obtains

K0, T) = %“411 — T2 dady -

We now consider another family of Hilbert spaces 272,. 7,
0 #a> —1/2, is the space of analytic functions in the unit disc 4
normed by

_ @+ Dp nl

IIz “a = C, o120 (,n + a)[‘(n + 2&) ’

n=201---

The reproducing kernel of 57 is
(13.3) (2, 0) = BQ/2, & + 1/2),F.(2a, ¢ + 1; ;20), 2,(ed.

Here, again, we have used the duplication formula. According to
[6, p. 101]

r=y “\ — . 1 + Zz
1.4 D =Bz e+ DT, s e

Though (13.3) is not defined for & = 0 we can actually incorporate
this value in (13.4). In fact .9%(z, {) is exactly K.z, {) defined in
(12.1). %4z, Q) is therefore ESR on 4. For a +0 we set the
isometry T: 5%, — L,(w) by the rule T(V ¢, 2") = C(t)/V'h, so that
the generating function is

T 0 = 3 (2) o = 5 (2o ot

This generating function admits a closed form expression. Indeed,
by differentiating the identity

23, Cot)e = [a(l — 2a8 + 297, 0> —1/2,

with respect to z, we obtain

> <n - a)@f”(t)z“ =1 =21 — 22t + 257 = (1 — 2))gur(t, 2) -
a

=0

Therefore T.27(z, ) = (1 — {)¢ari(t, {) and

5 . i 1+ 2C
Tz, C) = B(1/2, @ + 1/2)(————-—1 oy

(13.5) .
=== D) | ety et Du®)i
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is in fact true for all @ > —1/2 (including a = 0). Consequently,
using Corollary 7, %%u(z, ) is ESR on 4 and ETP on all diameters
of 4.

Since S w(t)dt = S (1 — t)dt = B(1/2, & + 1/2) by reasons of

—1 -1
continuity Corollary 7 coupled with (13.5) actually yields a stronger
result, namely, that

(13.6) LF(2x,a+ 1;a;20) = (1 + 201 — 20)"%*, 2, {ed,

is ESR on 4 and ETP on the diameters of 4 for all a, a +# —n/2,
n=12 ---.

We again take two special cases @ = 1/2 and @ = 1 (corresponding
to Legendre and Tchebycheff (second kind) polynomials respectively).
For o = 1/2 the moments are [[2"[}, = 27'(2n + 1)7*. The norm of
7., is realized through

1£1t = @y |] 12 2f@) Pdady | F e 5,

and %72, 0) = 2(1 + 20)(1 — 20)2. For a =1 the moments are
[|z*|]? = 2z (n + 1)* and the norm of 2# is

Il ==+ 1F@PIdel, feoz,

where F"(z) = zf(z) and the integral is carried over the nontangential
boundary values of F(z). Here .57(z, {) = 27'n(1 + 20)(1 — z0)%.

14. Generalized hypergeometric kernels. The previous results
can be generalized to include kernels formed from the generalized
hypergeometric functions. The genscralized hypergeometric function
[13, pp. 73-85] is defined by

a”l’ M .9 ap; i n n
(14.1) ,,F{B o zJ 14 5Bz

where
A4m=T@)., B@=106)., n=12"

Here 8;¢{0, —1, —2, ---},7=1,2, ---, q. We exclude the polynomial
case, that is, when a; = 0 for some 7, 1 < j < p. In this case the
series in (14.1) diverges for z#0 if »p > ¢ + 1 and we therefore
only consider the case in which p < q + 1. If p < ¢ the series in
(14.1) represents an entire function while if p = ¢ 4+ 1 it is an analytic
function in the unit disc 4. In the notation of (14.1) we have

OFO(_; = z) =e, 1F0(a:; - Z) = (1 - z)“"‘ .
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If An(p)/Bn(q) > 07 n = 17 29 Sty then

K( Z) F lia:u sy Gy -C—:I
z2,0) = z
"By, e, By
is the reproducing kernel of the Hilbert space of analytic functions
(in Cif p<qandin 4if p=q+ 1) f(z) = 22, a,2" normed by

A = Bn(Q) 2
(14.2) 171 = 5o 28D a

The generalized hypergeometric functions admit the following
[13, p. 85] integral representation;
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where Re B8, > Rea, > 0. For p < ¢ (14.3) holds for all zeC and
for »p = ¢ + 1 (14.3) holds for all ze 4.

We now prove a generalization of Corollary 4.

- o R 4 I ) .
THEOREM 6. Fq(ZC) = qu[a:i + 1: . .: 2:,: +1; ZC]’ a; >0, j=1,

<+, q, ts the reproducing kernel of the Hilbert space of entire func-

tions normed by (14.2) and is ETP on all reys passing through the

0rTgIn.

Proof. It suffices, according to Theorem 2, to show that F,(xy)
is ETP on R. This is shown by induction on ¢. For ¢ =0 the
theorem trivially holds true for F(ay) = F(-; -; xy) = ¢"*. Assume
now that F,(zy) is ETP on R. According to (14.3) for a > 0
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where x > 0, du(t) = (1/a)t*'dt, « > 0 and

Y 0<ts

K(t, ) =
0, o©=>t>z>0.
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K(t, ) is TP on (0, ) x (0, ) [9, p. 102]. Since F(yt) is ETP on
(— o0, ) X (0, o) it follows easily from the composition formula that
wiFom(xy) is STP on (0, ) X (—o, ). The analyticity of this
kernel implies [9, p. 50] that it is in fact ETP on (0, ) X (—co0, o).
For x < 0 we have

eiFous@w) = | F(—ut)K(t, —)dut) .

Here K(t, —x) is RR on (0, ) X (—,0). Therefore, as before,
i1 Fom(zy) is ETP on (—o0, 0) X (—c0, ). By continuity , . F,.(xy)
is ETP on (—c0, o0) X (— oo, o) as required.

A more general theorem holds for the case p = ¢ + 1, however
the proof is virtually the same.

THEOREM 7. The following hold

(1) Let D) = F 7 0 an fiat] a>0,5=1, - g
and ¢, any real number # 0, —1, —2, ---. Then F (20) is ESR on
4. For &, > 0, F(20) is the reproducing kernel of the Hilbert space
of analytic functions in A normed by (14.2) and is ETP on aoll
diameters of 4. For a, <0 (a, not an integer) F,(2€) is ESR on
the above diameters with the mth order signature

sm(Fq) — (__1)(["ao]+1)(m*1*[‘do]/2) .

11 7z () gty By, 2’y oy o7 ,
(ii) Let G (z0) = qHFq[Zl $1 e Z,ZA I 1?&0 +ftf; zCJ, a; >0,
j=1 -, ¢q—1and a,+ 0, —1, —2, ---. Then G,(20) is ESR on 4

and ETP on all diameters of 4. Moreover, for 0 # «, > —1/2, G,(z0)
18 the producing kernel of the Hilbert space of analytic functions
i 4 normed by (14.2).

(iii) Let Hy(20) = “+1FQ[ZI + 1:: : :: 32:1 E?O a0+a£; zZ:I, a>0, j=1,
v, q—1 and ay#+ —n/2, n=1,2,---. Then H/ (2{) is ESR on 4
and ETP on all diameters of 4. Moreover, for o, > —1/2, H,(z0)
18 the reproducing kermel of the Hilbert space of analytic functions

wn 4 normed by (14.2).

Proof. Again it suffices to prove that the kernels in question
are ESR on the real diameter of 4, (—1,1). The proof is carried
by induction on gq.

(i) For q =0, Fyry) = Fya; —; 2y) = (1 — 2y)™* and so by
Corollary 5 (or Theorem 5) the statement holds true for ¢ = 0. As-
sume the statement is true for ¢. According to (14.3) for a@ > 0
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where z > 0, dp(t) = (1/a)t**dt, a > 0 and

7Y 0<t=Zx

K(t, o) =
¢, @) {0, 1>t>ae>0.

K(t,x) is TP on (0,1) x (0,1). Assume first that «, > 0. Since
F,(yt) is ETP on (—1,1) x (0,1) it follows from the composition
formula that ... F,,  (xy) is STP on (0,1) x (—1,1). The analyticity
of ,..F,. (xy) implies that it is in fact ETP on (0, 1) x (—1,1). For
x < 0 we have

vaFoniow) = || FA(—t)K(, —a)dg®)

But K(t, —x) is RR on (0,1) x (—1,0) and F,(—yt) is ERR on
(=1, 1) x (0,1). Hence as before ,..F,. (xy) is ETP on (—1, 0) x (1, 1).
By continuity .. ,F,..(2y) is ETP on (—1,1) x (—1,1) as required.
The same applies when @, < 0 (@, not an integer).

(ii) The case ¢ = 1 holds true, for then,

G,(20) = F (2, ay; @, + 1; 20)

and the statement was verified in (13.1), (13.2) and Corollary 7. The
induction now carries exactly as in (i).

(iii) The case ¢ = 1 was shown in (13.5) and (13.6). Indeed, in
this case H,(z0) = ,F\(2a,, &, + 1; ay; 20) = (1 + 20)(1 — 20)"***™ and
again the induction carries as before. This completes the proof of
the theorem.
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