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AN UPPER BOUND FOR THE PERIOD OF THE
SIMPLE CONTINUED FRACTION FOR VD

R. G. STANTON, C. SUDLER, J R . and H. C. WILLIAMS

Let p(D) denote the length of the period of the simple
continued-fraction expansion of VD, where D is a positive
non-square integer. In this paper, it is shown that

p(D) < O.Ί2D1/2 log D

for all squarefree D>Ί, and an estimate for p(D) is given
when D is not squarefree.

1* Introduction* The problem of finding a good upper bound
for the length p(D) of the period of the simple continued fraction
for Ί/D, where D is a positive nonsquare integer, has received rela-
tively little attention. Recently, Hickerson [6] and Hirst [7] have
given estimates for p(D); Hickerson's estimate implies that

(1.1) log p(D) < log D(l/2 + log 2(log logD)"1 + o(log log D)~ι) ,

where D is nonsquare, and Hirst's implies that

(1.2) p(D) < 2D1'2 log D + 0(D1/2) ,

'where D is squarefree. Both authors give more precise error terms,
but these are not relevant here. For general nonsquare D > 0, Hirst
shows that

(1.3) p(D) = O(D1/2s log D)

uniformly in s, where s2 is the largest square factor of D. For
sufficiently large squarefree D, (1.2) is clearly better than (1.1). On
the other hand, (1.3) is better than (1.1) only when s, regarded as
a function of D, is sufficiently small. Pen and Skubenko [14] have
given an upper bound for p(D) which we will discuss later; it depends
on the size of the least positive solution of x2 — Dy2 = 1.

The authors [17] have used combinatorial methods to show that

p{D) < 0.82D1'2 log D

for all squarefree D > 7. In this paper, we use a different approach
which refines this result to

(1.4) p(D) < 0.72D1/2 log D

for all squarefree D > 7. It is also shown that

(1.5) p(D) < 3.76D1/2 log (D/s2)
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for all nonsquare D > 0, where s is defined in (1.3). The data in
[1] suggest that p(D) = o(D\ogD)1/2.

It is clear that (1.5) is better than (1.1) for all large D.
Moreover, (1.5) is an improvement on (1.3) in that it decreases, rather
than increases, with s. When D is squarefree, we also obtain a
more precise theorem which implies that

(1.6) p(D) < AD1/2 log D. 2~v

for D > 1, where v is the number of prime factors of D and A is
a computable constant. We conclude the paper by discussing the
question of finding functions g such that p{D) > Cg(D) for an infinity
of D, where g(D) —•» co with D and where C is a positive constant.

We use the elementary theory of continued fractions and the
theory of the units and class number of a real quadratic field as
found, for example, in [2] or [11]. All small Roman letters denote
positive integers unless otherwise stated; the phrase "continued
fraction" always means "simple continued fraction".

2* A bound for p(D) in terms of L(l, %)• We first prove a
preliminary estimate. Suppose that D is a squarefree integer > 1.
Then

(2.1) p(D) < μ log ε0/log a

where

(2.2) a = (1 + l/ΊΓ)/2 ,

(2.3) ε0 - (u0 + v0l/D)/2

is the fundamental unit of Q{VD), and

(2.4) μ = 3 if 2 \ u0 , μ = 1 if 2 | uQ .

We note that, since u2

0 — Dvl = ± 4 , 2 | u 0 implies B Ξ 5 (mod 8); it
follows from (2.4) that

(2.5) ju = l i f ΰ ΐ δ (mod8) , μ\Z if D = 5 (mod8) .

Now let [g0, qlf , qp] be the continued-fraction expansion of
VΊF, where p = p(D); we have q0 = [\/D]. Further, if we formally
define

A_2 - 0 , B_2 = 1 , A_, = 1 , B^ = 09

and use the recursions

An = qΛn-x + A%_2 , Bn = g A - ι + J5W_2 ,
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for n ^ 0, then AJBn is the nth convergent of the continued fraction
for VD.

The relations fQ = 0, f1 = 1, fm — fm_x + /m_2 for m ̂  2, define
the mth Fibonacci number fm. Hence we immediately obtain, by
induction, the inequalities

(2.7) An ^ fn+2 , Bn ^ fn+ι ,

for n^-1. Since a2 = (1 + i/Tγ/4 = a + 1, we find that /,+ ϊ ̂  α
for ^ ^ - 1 ; from (2.7), it follows that

(2.8) η = A,_, + B^yU > A,-x + Bp_x > a* ,

where p =
A similar induction yields the better estimate

An ^ go/n+1 + Λ (^ ̂  0)

using the standard formula for fn in terms of a, this produces

(2.9) η > (qo/V~5)a* ,

as used in [17]. We later show that this sharper inequality (2.9)
only improves Theorem 1 by an amount that is negligible when D
is large.

Now the least positive solution (x19 yt) of x2 — Dy2 = ± 1 is
(Ap_1, jBp̂ i): here we take the minus sign if x2 — Dy2 = — 1 is solva-
ble; otherwise, we take the plus sign. Then the number rj in (2.8)
is a unit in Q(i/D); indeed,

(2.10) V = eζ,

where ε0 is the fundamental unit of Q(VD) and μ is either 1 or 3.
Then (2.8) and (2.10) give

p(D) log a < μ log ε0 ,

as stated in (2.1).
We now apply a standard class-number formula to get the

desired inequality for p(D) in terms of L(l, χ). For squarefree
D > 1, the discriminant Δ of Q(λ/D) is given by

(2.11) Δ = 4D if D 3Ξ 1 (mod 4), A = D if D = 1 (mod 4) .

It is known (see, for example, [2]) that

(2.12) logε0 = VTL(l,χ)/2h,

where h is the class number of Q(V/D)f
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(2.13) L(l, χ) = Σ i,Δ \ n)nrι ,

and {A \ n) is the Kronecker symbol (for a concise discussion of this
symbol, see [4]). From (2.1) and (2.12), we obtain the

LEMMA. Let D be positive and squarefree; then

(2.14) p(D) < μV~AL{l, χ)/(2Λ log a) ,

where μ and a are given by (2.4) and (2.2) respectively.

We should here make some remarks about (2.14). It is easily
proved by partial summation that L(l, χ) < A log D; so, by (2.14),
we have p(D) < BD1/2 log D (here A and B are constants). In the
next section, we will use an inequality due to Hua [8] to obtain an
estimate for _L(1, χ) of the above form with a better constant (for
large D) than that given by the partial summation method alone.

The Riemann hypothesis for L(s, χ) implies that L(l, χ) =
O(loglogZ)) [12, p. 367]; this result would give the estimate

p(D) = 0CD1/2 log log D) .

On the other hand, it is known that L(l, χ) > C log log D for an
infinity of squarefree D, where C is a positive constant (see, for
example, [9]). However, we do not know whether there is a positive
constant E such that p(D) > ED1'2 log log D for an infinity of D;
more generally, we do not know if (2.14) is sharp since we can not
prove if there is a constant F > 0 such that

(2.15) p(D) > FD"2L(1, χ)/h(D)

for an infinite sequence of squarefree D. (We shall return to the
question of lower bounds for p(D) in § 6.)

It is easily seen that (2.15) can not hold for all nonsquare D.
Since the right members of (2.1) and (2.14) are equal, (2.15) is
equivalent to p(D) > Gμloge0 = Glog^; so (2.9) implies that p(D) >
Hlog D. Here G and H are positive constants. But p(D) = 1 when
D - α2 + 1.

If we were to use (2.9) instead of (2.8), (2.14) would be replaced
by

(2 16)
(2.16)
we later show that (2.16) yields no significant improvement in (4.1)
for large D.

We conclude this section by noting the estimate, due to Pen
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and Skubenko [14],

(2.17) p(D) < log (T + UVΈψog a ,

where (Γ, U) is the least positive solution of x2 — Dy2 = 1 and D is
squarefree. Now, T + UVΊJ = η oτ η2 according as x2 — Dy2 = — 1
is not or is solvable (see, for example, [11]). Hence, by (2.10),
T + ΪJVD — εξ or εf according as the first or second alternative
holds. So (2.17) is equivalent to

p(D) < μ log ε0/log a or p(D) < 2μ log ε0/log a ,

respectively. Thus (2.1) is always at least as good at (2.17), and is
sometimes better than it by a factor of 2. Furthermore, our method
is considerably simpler and more straightforward than that of [14].

Pen and Skubenko also give an inequality corresponding to (2.14)
but they do not obtain any explicit numerical upper bound for p(D).

3. Bounds for L(l, χ). Let L(l, χ) be given by (2.13), where
Δ is now any nonsquare positive integer = 0 or 1 (mod 4). Hua has
shown [8] that

(3.1)
«=i n(n + l)(w + 2) »

where

(3.2) S(») = Σ Σ, (Λ I m)

and

(3.3) i - [/J] .

We note that j ί> 2, since z/ ̂  5.

We first estimate S(n) and consider three cases.
( i ) Δ = 0 (mod 4). Then (z/12r) = 0 so that \(Δ\m)\^

(1 - (~l)m)/2. It follows at once from (3.2) that

(3.4) I S(n) \<(n + l) 2 /4 .

(ii) Δ = 1 (mod 8). Then we have trivially

(3.5) I S(n)

(iii) / 1 Ξ 5 (mod 8). We estimate L(l, χ) for such A without
using a bound for S(n).

The sequence Dn — 1 + 1/2 + + 1/w — log n is easily proved
to be monotone decreasing to Euler's constant 7; see, for example,
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[16], where it is proved that

>Dn- Dn
+ι2n(n + 1) n n + 1 (w + l)(2w + 1)

Then

- 1 + Σ (A* - Dn+ι) = - l + Σ (A. - i? +i) - Σ. (Dn - Dn+1).

Since Dn — JDn+1 = —l/(n + 1) + log(^ + 1) — logw, we at once obtain

k -t

log k — Σ — = Hi

Thus

< log k + 7 + Σ -TΓΓTT1—7T >
n=k 2k(k + 1)

that is,

(3.6) ^ l ^ l o g f c + Y +

We now apply (3.6) and our estimates for S(n) to (3.1). Write L
for L(l, χ), and consider three cases.

Case 1. J = 4D = 0 (mod 4).
Substitute (3.4) into (3.1) to give

r ^ 1 ^ 1 , i l/i , 1 1 _L_\

^ 2 ί 4 n 8

Apply (3.6)Jand (3.3) to give

Thus

(3.7) L < — log D + 1.28 for Δ = 4D, D > 1500 .
4

(Note that, in this section, zf is any nonsquare positive integer = 0
or 1, mod 4, and so need not satisfy (2.11).)
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Case 2. Δ = D == 1 (mod 8).
By (3.1) and (3.5), we have

L < l + Σ - 4 τ < Σ - - \ + 4-

so we obtain, as before,

~2 °g ~2 ~2j' '

Thus

(3.8) L < — log D + 0.09

for J = D Ξ 1 (mod 8) and Z> > 64,000 .

Case 3. A = D ^ 5 (mod 8). Here (Δ \ 2) = ~ 1 ; hence

(3.9) Z, = Σ (D I 2i - l)(2i - I)"1 Σ (-2)-* ,

since the first series is convergent, and the second is absolutely
convergent. Thus

(3.10) L - — Σ {d\n)n~l .
3 »=i

where d = AD. Now use Case 1 and apply (3.7) to (3.10); this gives

(3.11) L < *-(L log D + 1.28) < A log D + 0.86
3 ^ 4 / 6

for A = i) Ξ 5 (mod 8), Z> > 1500.

4* Upper bounds for p(J5) when D is squarefree* We use
the preceding estimates for L(l, χ) to prove

THEOREM 1. Suppose that D is squarefree and > 1, and let μ
and a be given by (2.4) and (2.2), respectively. Let r be the number
of distinct prime factors of A, and set

t = r — 1 if D is a sum of two squares ,

t = r — 2, otherwise .

27ms ί ^ 0, and

(4.1) p(D) < μΌυ\A log D + £)(2* log a)~x for D > 64000 ,

where the constants A and B are given by the following table.
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A B

fls2,3 (mod 4)

(4.2)

D

D

D

= 2,

= 1

= 5

3 (mod

(mod

(mod

4)

8)

8)

1/4

1/4

1/12

1

0

0

.28

.045

.43

Proof. On combining (2.14) with (3.7), (3.8), and (3.11), respec-
tively, we find that

p(D) < μDυ\A log D + B)/(h log a) for D > 64000 ,

where A and B are given by (4.2). By a standard theorem on the
class number h of a quadratic field [2, p. 225], we have 2* | h; hence
2* ^ h, which gives (4.1).

We now derive some corollaries; in the remainder of this section,
D denotes a squarefree integer > 1.

COROLLARY 1. For any fixed e > 0, and all sufficiently large
D we have

where Aλ = 1/(4 log a) < 0.52. In particular, we have

p(D) < 0.52Dm log D for D > A ,

where Ώγ is a computable constant.

Proof. We have μA £ 1/4 by (4.2) and (2.5), and 2* ̂  1. The
corollary follows at once.

COROLLARY 2. We have

(4.3) p(D) < μ2~tC(D)Dι/2 log D for D > 1.27 X 106 ,

where

C(D) = 0.71 for D = 2 or 3 (mod 4) ,

- 0.53 for D = 1 (mod 8) ,

C(D) - 0.24 for D = 5 (mod 8) ,

and we have (1.4) for D > 7.

Proof. W obtain (4.3) from (4.1) by routine computation. This
gives (1.4) for D > 1.27 x 106 since μC(D) £ 0.72 by (2.5). For 7 <
D ^ 1.27 x 106, (1.4) can be verified by use of Table 1 in [1].

COROLLARY 3. The estimate (1.6) holds.
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Proof. Immediate by (4.1) or (4.3) and the definition of t.
We remark that it can be verified, in the same way, that

p(D) < 0.3Z>1/2 log D for 800 < D ^ 1.27 x 10β

this result is better than the bounds given by Corollary 1.
We conclude this section by discussing the consequences of using

(2.16) instead of (2.14) in deriving Theorem 1. We use A2 to Aδ to
denote positive constants and E(D) to denote the right member of
(4.1). It is clear that the use of (2.16) replaces E(D) by E(D) -
A2logq0 >E{D)-Az\ogD since q0 = [VD]. NOW E(D)>AiD

1/2\ogD2-u

where v is the number of prime factors of D. By a standard ine-
quality [5, p. 262], we have v < Aδ log D/log log D. Hence E{D)>
D1/2~ε for any ε > 0 and sufficiently large D. Thus the use of (2.16)
produces only a negligible improvement in Theorem 1 for large D.

5* A bound for p(D) when D contains a square factor* We
shall employ the preceding sections and elementary congruence argu-
ments to prove the upper bound (1.5) for p(D), which holds for all
nonsquare integers D > 0. Let D be such an integer and set

(5.1) D = As2 ,

where Do is a fixed squarefree integer > 1. Let (as, bs) be the least
positive solution of x2 - Dy2 = x2 - D0s

2y2 = ± 1 . Put

(5.2) Ύ]s = as + hsVT) = as + s

and for convenience write

(5.3) η = η1 = a + bVΊJ, .

Now (2.7), with η replaced by τj8f holds for all nonsquare D > 0.
Hence we have

(5.4) p(D) < log rjs/log a .

Since ηs > 1, it follows from the theory of PelPs equation that, for
fixed Do, there is a function e(s) > 0 such that

(5.5) ψ* = ηs .

Moreover, e(s) is the minimum positive k such that ηk is congruent
to a rational integer (mod s). Hence, by (5.4) and (2.10), we have

(5.6) p(D) < μe(s) log ε0/log a .

In §§ 2-4, we showed that

p(DQ) < μ log ε0/log a < 0.72DJ'2 log DQ
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for Do > 7. By calculation, we find that

μ log £o/log a < 1.88D112 log DQ

for all Do ^ 7. I t follows from (5.1) and (5.6) that

(5.7) p{D) < 1.9&rιe{8)Duι log (D/s2)

for all nonsquare D > 1.

Thus, to prove (1.5), we only need to prove e(s) ^ 2s, where η
is a unit of Z[VT\]. Actually, we prove that

(5.8) e(s) ^ s if Nη = l

and

(5.9) φ ) ^ 2s if Nη= -1.

We first show that (5.8) implies (5.9). Suppose that Nη = — 1.
Then IV)f = 1; so, by (5.5) and (5.8), there is an integer

k ^ s 9 (η2)k = )?2Jk = )?s .

Hence β(s) ^ 2s, which is (5.9).
Now assume that Nη = 1; we prove (5.8) by induction, as fol-

lows. First suppose that s = s ^ with (s1? s2) = 1. Then, by the
remark after (5.5), it follows that e(s) <* e{s^)e{s^. Next, suppose
that βeZll/Do] and β = g(mod p*) for a fixed i >0, where p is
prime and r̂ is an integer. Then we have βp = gp (mod pi+1). Hence
it only remains to prove (5.8) when s is a prime p. We use the
fact that ψ1 e Z{VΊ),\.

Case 1. p = 2. Then rf = α2 + A&2 (mod 2) by (5.3).

Case 2. p > 2. We have ap = a and D{

0

p~ι)l2 = ( A | p), where
(Do I p) is the Legendre symbol (all congruences modulo p). Hence
ψ = a + (Do\ p)bVDl\ thus (Do \ p) = 0 implies ψ Ξ α and e(p) ^ p.
Next we have ηp = η or ^ == T^"1 according as (Do \ p) — 1 or — 1 .
Hence ^ 2 i = 1, where 2j = p - (Do \ p). Set rf = Λ + ftl/A Then
we have /ι2 + A/b2 Ξ 1. But h2 - A&2 = Nrf = 1; hence p | fc and
^' Ξ h. Thus we have e(p) ^ p, (p - l)/2, (p + l)/2 for (A | p) =
0,1, — 1 , respectively. This completes the proof of (5.8).

Actually, Mathews [13, p. 94] gives a formula which yields an
explicit multiple of e(s) which is ^ s; a proof is given for the case
s = p only, and we have used his argument.

6* A conjectural lower bound for p(D) when D is squaref ree*
By (1.5), we have p(D) = 0(D1/2 log D) for nonsquare D. It is natural
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to ask for results in the opposite direction, namely, to ask for func-
tions g such that

(6.1) p(D) > Ag(D)

for an infinity of D, where A is a positive constant.
The tables in [1] suggest we can take g(D) = D1/2; however, the

best known result appears to be

(6.2) p(D) > AlogD ,

which is obtainable from the fact that

(6.3) p(D) = m for D = A (/. + I)2 + fm_x + 1 ,

where m ί O (mod 3), and fm is the mth Fibonacci number; in this
case, the period of VD contains m — 1 Γs followed by fm + 1. Now
(6.3) is easily verified by means of (2.6), and (6.2) follows on apply-
ing the inequality fn < an for n ^ 0.

We now use an estimate due to Perron [15, p. 72] and a theorem
of Siegel on L(l, χ) to prove

THEOREM 2. Suppose there exists an infinite sequence S of
squarefree numbers D such that h(D) — o(Dε/2) for D in S and all
ε > 0. Then (6.1) holds with g(D) = Dυ2~ε for any ε > 0 .

REMARK. There is abundant numerical support for the truth of
above hypothesis, in fact for the stronger conjecture that h(D) — 1
infinitely often [10].

Proof. We use the following cruder form of Perron's estimate.
Let β be a nonsquare > 1, and let (xlf y^) be the least positive solu-
t ion of x2 - By2 = 1. Then we have xx < {VΊ~D)2Ί>{D) = (AD)p{D),

where A is a constant. Suppose now that D is squarefree. Then
εQ^xι

Jr y^/D < 2a?!, where ε0 is the fundamental unit of Q(λ/D).
Hence there is a constant B such that

p(D) > B log ε0/log D = Bh log εjh log D .

Now fix ε > 0; by SiegeΓs theorem on the size of Z#(l, χ) and (2.12),
there exists D^ε) such that, for D > A(ε)> we have

h log ε0 > D{2~ε)/i

(see [3, p. 130]). Hence
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for D > A( ε) Theorem 2 follows by taking D so large that
log D < Dε/\
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