THE GENERALIZED TRANSLATIONAL HULL OF A SEMIGROUP

JOHN K. LUEDEMAN

For a pair $(\mathcal{R}, \mathcal{L})$ consisting of a right quotient filter \mathcal{R} and left quotient filter \mathcal{L} on the semigroup S, a translational hull $\Omega(S: \mathcal{R}, \mathcal{L})$ is constructed. The results of Grillet and Petrich hold for $\Omega(S: \mathcal{R}, \mathcal{L})$.

Specializing \mathscr{R} and \mathscr{L} one obtains the usual translational hull $\Omega(S)$ of S and the semigroup of quotients Q(S) of S due to Hinkle and McMorris. These results are applied to a weakly reductive semigroup S to show that $\Omega(S) = \Omega(S^n)$ for any positive integer n.

In recent years two seemingly unconnected developments have occurred in the theory of semigroups. Grillet and Petrich [4] have studied ideal extensions of a semigroup S by means of a universal extension $\Omega(S)$ of S, the translational hull of S. On the other hand, McMorris [7] and Hinkle [5] have developed a theory of one-sided semigroups of quotients of S using a maximal semigroup Q(S) of quotients. Under certain conditions Q(S) is essential over S while under similar conditions $\Omega(S)$ is a congruence dense extension of S. Berthiaume [1] showed that congruence dense extension and essential extension are the same concept. This similarity, along with many others, between Q(S) and Q(S) leads one to suspect the existence of a theory of semigroup extensions more general than the above mentioned theories. In this paper we offer a candidate for a general theory. In section three we show that our concept might reasonably be called a two-sided semigroup of quotients, having given our constructions in sections one and two. In section five we show that our construction yields an essential extension of S maximal in a certain category. In section four, we follow the lead of Grillet and Petrich [4] and examine extensions of S which are somewhat weaker than essential extensions. Along the way we obtain as corollaries some results of Hinkle [5] and Grillet and Petrich [4].

1. Basic definitions. In this paper, S will be a semigroup with zero, denoted by 0.

A left S-set ${}_{s}K$ is a set K, with a distinguished element \mathcal{O} , having a scalar multiplication $S \times K \to K$ satisfying for all $s, t \in S$ and $k \in K$, (st)k = s(tk), and $0s = \mathcal{O}$ and $k\mathcal{O} = \mathcal{O}$.

Similarly one can define a right S-set K_s (with \mathcal{O}).

In this paper we will not distinguish between \mathcal{O} , the zero of K

and 0, the zero of S. The meaning of the symbol 0 will be clear from the context.

An (S, S)-set ${}_{s}K_{s}$ is a set K with scalar multiplications $S \times K \to K$ and $K \times S \to K$ such that ${}_{s}K$ is a left S-set, K_{s} is a right S-set, and for s, $t \in S$ and $k \in K$, s(kt) = (sk)t.

A homomorphism $\rho: {}_{s}K \to {}_{s}M$ of left S-sets is a mapping $\rho: K \to M$ satisfying $(sk)\rho = s(k\rho)$ for all $s \in S$ and $k \in K$.

Similarly one defines "homomorphism of right S-sets" and "homomorphism of (S, S)-sets". We write left S-homomorphisms on the right of their argument and right S-homomorphisms on the left.

 ${}_{s}K$ is a sub S-set of ${}_{s}M$ if $K \subseteq M$ and K is an S-set under the operation $S \times M \to M$.

DEFINITION (Hinkle [5]). A collection \mathscr{R} of right ideals of S is a right quotient filter on S if

(1) if A, B are right ideals of S, $A \subseteq B$ and $A \in \mathscr{R}$, then $B \in \mathscr{R}$

(2) if $A, B \in \mathscr{R}$ and $\lambda: A \to S$ is a right S-set homomorphism, then $\lambda^{-1}(B) = \{a \in A \mid \lambda a \in B\} \in \mathscr{R}$.

Hinkle has shown that a right quotient filter is closed under finite intersections and if $A \in \mathscr{R}$ and $s \in S$, then

$$s^{-1}A=\{t\in S\,|\,st\in A\}\in\mathscr{R}$$

An extension M_s of K_s is an \mathscr{R} -extension if for $m \in M$,

$$m^{-1}K=\{s\in S\,|\,ms\in K\}\in\mathscr{R}$$
 .

Dually one can define a left quotient filter $\mathscr L$ on S and " $\mathscr L$ -extension."

An (S, S)-set ${}_{s}V_{s}$ is an $(\mathscr{R}, \mathscr{L})$ -extension of ${}_{s}K_{s}$ if V_{s} is an \mathscr{R} extension of K_{s} and ${}_{s}V$ is an \mathscr{L} -extension of ${}_{s}K$.

A right quotient filter \mathscr{R} is *idempotent* if whenever $A \in \mathscr{R}$, I is a right ideal of S and $a^{-1}I \in \mathscr{R}$ for all $a \in A$, then $I \in \mathscr{R}$.

This condition is equivalent to the condition: if $A \in \mathscr{R}$ and for each $a \in A$ there is $R_a \in \mathscr{R}$, then

$$\bigcup_{a \in A} aR_a \in \mathscr{R}.$$

2. The construction. Let \mathscr{L} be a left quotient filter on S, \mathscr{R} be a right quotient filter on S, and K be an (S, S)-set. Consider all pairs (λ, ρ) where $\lambda: D_{\lambda} \to K$ is a right S-homomorphism with domain $D_{\lambda} \in \mathscr{R}$ and $\rho: D_{\rho} \to K$ is a left S-homomorphism with domain $D_{\rho} \in \mathscr{L}$.

DEFINITION 2.1. The pair (λ, ρ) is $(\mathscr{R}, \mathscr{L})$ -linked if for all

 $y \in D_{\lambda}$ and $x \in D_{\rho}$, $x(\lambda y) = (x\rho)y$.

Let $B(K: \mathscr{R}, \mathscr{L})$ be the collection of all such $(\mathscr{R}, \mathscr{L})$ -linked pairs. Notice that for $k \in K$, the maps $\lambda_k: S \to K$ defined by $\lambda_k(s) = ks$ and $\rho_k: S \to K$ defined by $(s)\rho_k = sk$ given an $(\mathscr{R}, \mathscr{L})$ -linked pair $(\lambda_k, \rho_k) \in B(K: \mathscr{R}, \mathscr{L})$. Moreover, $B(K: \mathscr{R}, \mathscr{L})$ is an (S, S)-set under the operation $s(\lambda, \rho) = (s\lambda, s\rho)$ where $s\lambda: D_{\lambda} \to K$ is given by $s\lambda(t) =$ $s[\lambda(t)]$ and $s\rho: D_{s\rho} \to K$ is given by $(t)s\rho = (ts)\rho$ where $D_{s\rho} = (D_{\rho})s^{-1} \in \mathscr{L}$. $(s\lambda, s\rho)$ is linked since for $y \in D_{\lambda}$ and $x \in D_{s\rho}$,

$$\begin{aligned} x((s\lambda)y) &= x[s(\lambda y)] = (xs)(\lambda y) = [(xs)\rho]y\\ &= [x(s\rho)]y \end{aligned}$$

since $xs \in D_{\rho}$ and (λ, ρ) is linked. The definition of ρs and λs and the multiplication $(\lambda, \rho)s = (\lambda s, \rho s)$ is similar.

Where K = S, then $B(K: \mathscr{R}, \mathscr{L})$ is a partial transformation semigroup.

Define a relation Θ on $B(K: \mathscr{R}, \mathscr{L})$ by $(\lambda, \rho)\Theta(\lambda', \rho')$ iff

(1) there is $R\in\mathscr{R}$ with $R\subseteq D_\lambda\cap D_{\lambda'}$ and $\lambda r=\lambda'r$ for all $r\in R$, and

(2) there is $L \in \mathscr{L}$ with $L \subseteq D_{\rho} \cap D_{\rho'}$ and $t\rho = t\rho'$ for all $t \in L$.

LEMMA 2.2. Θ is an (S, S)-congruence on $B(K: \mathcal{R}, \mathcal{L})$.

COROLLARY 2.3. Θ is also a semigroup congruence on $B(S: \mathscr{R}, \mathscr{L})$.

The straightforward proof of the above lemma and its corollary will be omitted.

The quotient (S, S)-set $B(K: \mathscr{R}, \mathscr{L})/\Theta$ will be denoted by $\Omega(K: \mathscr{R}, \mathscr{L})$ and is called the $(\mathscr{R}, \mathscr{L})$ -translational hull of K.

We usually denote the class of (λ, ρ) in $\Omega(K: \mathscr{R}, \mathscr{L})$ by (λ, ρ) , but when clarification is needed, we denote it by $[\lambda, \rho]$.

There is a canonical (S, S) homomorphism π of K into $\Omega(K: \mathscr{R}, \mathscr{L})$ given by $\pi(k) = (\lambda_k, \rho_k)$. When K = S, π is a semigroup homomorphism.

DEFINITION 2.4. If the homomorphism $\pi: K \to \Omega(K; \mathcal{R}, \mathcal{L})$ is injective, K is said to be $(\mathcal{R}, \mathcal{L})$ -reductive.

REMARKS. (1) When \mathscr{L} is the collection of all left ideals of S, then $\Omega(S: \mathscr{R}, \mathscr{L})$ is semigroup isomorphic to $Q_{\mathscr{R}}(S)$, the semigroup of right quotients of S developed by Hinkle [5].

Proof. The map $\sigma: \Omega(S: \mathscr{R}, \mathscr{L}) \to Q_{\mathscr{R}}(S)$ given by $\sigma[\lambda, \rho] = [\lambda]$ is the desired isomorphism. Since $\sigma[\lambda, \rho] = \sigma[\lambda', \rho']$ implies $[\lambda] = [\lambda']$, λ and λ' agree on some $R \in \mathscr{R}$ and so $[\lambda, \rho] = [\lambda', \rho']$ since ρ and ρ' agree on $(0) \in \mathscr{L}$ and so σ is injective. Moreover for $[\lambda] \in Q_{\mathscr{R}}(S)$, $\sigma[\lambda, 1_s] = [\lambda]$ where $1_s: S \to S$ is the identity map on S and σ is surjective.

To see that σ is a homomorphism, let $[\lambda, \rho], [\lambda', \rho'] \in \Omega(S; \mathscr{R}, \mathscr{L})$. Then $\sigma([\lambda, \rho][\lambda', \rho']) = \sigma([\lambda\lambda', \rho\rho']) = [\lambda\lambda'] = [\lambda][\lambda'] = \sigma([\lambda, \rho])\sigma([\lambda', \rho'])$ where $\lambda\lambda': D'_{\lambda} \cap \lambda'^{-1}D_{\lambda} \to S$ and $\rho'\rho: D_{\rho'} \cap (\rho')^{-1}D_{\rho} \to S$. Thus σ is a semigroup isomorphism.

(2) Similarly, if \mathscr{R} is the collection of all right ideals of S, the mapping $\beta: \Omega(S: \mathscr{R}, \mathscr{L}) \to Q_{\mathscr{L}}(S)$ given by $\beta([\lambda, \rho]) = [\rho]$ is a semigroup isomorphism from $\Omega(S: \mathscr{R}, \mathscr{L})$ onto the semigroup $Q_{\mathscr{L}}(S)$ of left quotients of S developed by Hinkle [5].

(3) If $\mathscr{R} = \mathscr{L} = \{S\}$, then $\Omega(S: \mathscr{R}, \mathscr{L}) = \Omega(S)$, the translational hull of S.

(4) Where \mathscr{R} is the collection of all right ideals of S and \mathscr{L} is the collection of all left ideals of S, then $\Omega(K: \mathscr{R}, \mathscr{L})$ is trivial since $(\lambda, \rho)\Theta(\lambda', \rho')$ for all (λ', ρ') , $(\lambda, \rho) \in B(K: \mathscr{R}, \mathscr{L})$ since λ and λ' agree on $(0) \in \mathscr{R}$ and ρ and ρ' agree on $(0) \in \mathscr{L}$.

(5) $\Omega(S: \mathcal{R}, \mathcal{L})$ always has an identity.

PROPOSITION 2.5. $\Omega(K; \mathcal{R}, \mathcal{L})$ is an $(\mathcal{R}, \mathcal{L})$ -extension of $\pi(K)$.

Proof. We will show that $\Omega(K: \mathscr{R}, \mathscr{L})$ is an \mathscr{L} -extension of $\pi(K)$. Since the \mathscr{R} -extension part is similar, it will be left to the reader.

Let $[\lambda, \rho] \in \Omega(K; \mathscr{P}, \mathscr{L})$ with $D_{\rho} \in \mathscr{L}$. For $s \in D_{\rho}$, $s[\lambda, \rho] = [s\lambda, s\rho]$. Now $D_{s\rho} = D_{\rho}s^{-1} \in \mathscr{L}$ and for $t \in D_{s\rho}$, $t(s\rho) = (ts)\rho$ and since $s\rho \in K$, $s\rho = \rho_{s\rho}$. On the other hand, for $t \in D_{s\lambda} = D_{\lambda}$, $s\lambda(t) = s(\lambda t) = (s\rho)t = \lambda_{s\rho}(t)$. Since $s\rho \in K$, $s[\lambda, \rho] = [\lambda_{s\rho}, \rho_{s\rho}] \in \pi(K)$.

COROLLARY 2.6. When K is $(\mathcal{R}, \mathcal{L})$ -reductive, $\Omega(K; \mathcal{R}, \mathcal{L})$ is an $(\mathcal{R}, \mathcal{L})$ -extension of K.

When S is a semigroup, we are interested in the idealizer of $\pi(S)$ in $\Omega(S: \mathcal{R}, \mathcal{L})$.

PROPOSITION 2.6. If S is $(\mathcal{R}, \mathcal{L})$ -reductive, then the idealizer of $\pi(S)$ in $\Omega(S; \mathcal{R}, \mathcal{L})$ is

$$T = \{ [\lambda, \rho] : D_{\lambda} = D_{\rho} = S \}$$
.

Proof. Note first that if $s \in D_{\lambda}$, and (λ, ρ) are linked, then for

 $t \in s^{-1}D_{\lambda}$,

$$\lambda s(t) = \lambda(st) = (\lambda s)(t) = \lambda_{\lambda s}(t)$$

and for $t \in D_{\rho}$ we have

$$(t)(
ho s) = (t
ho)s = t(\lambda s) = (t)
ho_{\lambda s}$$
 .

Thus if $(\lambda, \rho) \in T$, $s \in D_{\lambda}$ we have

$$(\lambda, \rho)\pi(s) = (\lambda, \rho)(\lambda_s, \rho_s) = (\lambda s, \rho s) = (\lambda_{\lambda s}, \rho_{\lambda s}) = \pi(\lambda s)$$
.

Similarly if (λ, ρ) are linked and $s \in D_{\rho}$, then $(t)s\rho = (t)\rho_{s\rho}$ and $s\lambda(t) = \lambda_{s\rho}(t)$.

Thus

$$\pi(s)(\lambda, \rho) = \pi(s\rho) \text{ for } (\lambda, \rho) \in T$$
.

Therefore, T is contained in the idealizer of $\pi(S)$.

Conversely, let (λ, ρ) belong the idealizer of $\pi(S)$ in $\Omega(S: \mathscr{R}, \mathscr{L})$. Then for all $s \in S$, $(\lambda, \rho)\pi(s)$ and $\pi(s)(\lambda, \rho)$ belong to $\pi(S)$. We consider $(\lambda, \rho)\pi(s)$ since the other case is similar. Now $(\lambda, \rho)\pi(s) = \pi(t)$ for some $t \in S$. Define $\lambda': S \to S$ by $\lambda'(s) = t$ if $(\lambda, \rho)\pi(s) = \pi(t)$. Note that λ' is well defined since π is injective. Moreover λ' agrees with λ on D_{λ} since if $s \in D_{\lambda}$, $(\lambda, \rho)\pi(s) = \pi(\lambda s)$. It remains to show that λ' is a right S-homomorphism for then $(\lambda, \rho)\Theta(\lambda', \rho)$. Similarly define $\rho': S \to S$ by $(s)\rho' = t$ iff $\pi(s)(\lambda', \rho) = \pi(s)(\lambda, \rho) = \pi(t)$. Then $(\lambda, \rho)\Theta(\lambda', \rho')$ and $(\lambda', \rho') \in T$.

Suppose $\lambda'(s) = t$ and $\lambda'(sx) = a$. We consider two cases. First, if $s \in D_{\lambda}$, then $\lambda'(s) = \lambda s = t$ and $a = \lambda'(sx) = \lambda(sx) = (\lambda s)x = tx$ and so $\lambda'(s)x = \lambda'(sx)$. Next, if $s \notin D_{\lambda}$, then for $z \in x^{-1}s^{-1}D_{\lambda} = (sx)^{-1}D_{\lambda}$,

$$az = (\lambda sx)[z] = \lambda[s(xz)] = \lambda s[xz] = t[xz] = (tx)z.$$

Moreover, for $y \in D_{\rho}$

$$ya = y(\rho sx) = [(y\rho)s]x = [y\rho s]x = (yt)x = y(tx)$$

thus $\pi(a) = \pi(tx)$ or a = tx or $\lambda'(sx) = \lambda'(s)x$.

COROLLARY 2.8. When $\mathcal{L} = \mathcal{R} = \{S\}$, and S is $(\mathcal{R}, \mathcal{L})$ reductive then $\pi(S)$ is an ideal of $\Omega(S: \mathcal{R}, \mathcal{L})$.

3. Two sided semigroup of quotients. In the last section we show that $\Omega(S: \mathcal{R}, \mathcal{L})$ can be the translational hull or a semigroup of quotients of S. In this section we show that $\Omega(S: \mathcal{R}, \mathcal{L})$ can naturally be considered as a two-sided semigroup of quotients of S.

DEFINITION 3.1. Let V be an $(\mathcal{R}, \mathcal{L})$ extension of K. For each

 $a \in V$, define λ^a , ρ^a , $\tau^a = [\lambda^a, \rho^a]$ where $\lambda^a : a^{-1}K \to K$ is given by $\lambda^a(d) = ad$ and $\rho^a : Ka^{-1} \to K$ is given by $(d)\rho^a = da$.

THEOREM 3.2. If V is an $(\mathscr{R}, \mathscr{L})$ extension of K, the mapping $\tau: a \to \tau^{\alpha}$ is a canonical (S, S)-homomorphism of V into $\Omega(K: \mathscr{R}, \mathscr{L})$ which extends the canonical homomorphism π of K into $\Omega(K: \mathscr{R}, \mathscr{L})$.

The proof of the above theorem is straight forward and will be omitted. When there is any danger of confusion, we will denote $\tau: V \to \Omega(K: \mathcal{R}, \mathcal{L})$ by $\tau(V: K)$.

DEFINITION 3.3. The $(\mathcal{R}, \mathcal{L})$ -congruence on an (S, S)-set M is denoted by η_M and defined by

 $\eta_{\scriptscriptstyle M} = \{(m, n) | tm = tn \text{ for all } t \text{ in some } L \in \mathscr{L} \text{ and } mr = nr \text{ for}$ all $r \text{ in some } R \in \mathscr{R}\}.$

When the filters \mathscr{R} and \mathscr{L} are to be stressed, we write

$$\eta_{\scriptscriptstyle M} = \eta(M\!\!:\mathscr{R}\!\!,\mathscr{L})$$
 .

LEMMA 3.4. The $(\mathcal{R}, \mathcal{L})$ congruence on K is $\pi \circ \pi^{-1}$ where π is the canonical homomorphism of K into $\Omega(K; \mathcal{R}, \mathcal{L})$.

COROLLARY 3.5. K is $(\mathcal{R}, \mathcal{L})$ -reductive iff η_{κ} is identity congruence.

In order to determine when τ is the unique homomorphism, extending π we use the following item.

LEMMA 3.6. If K is $(\mathcal{R}, \mathcal{L})$ -reductive or both \mathcal{R} and \mathcal{L} are idempotent, then the $(\mathcal{R}, \mathcal{L})$ -congruence on K is the identity.

Proof. Suppose $\omega, \omega' \in \Omega(K; \mathscr{R}, \mathscr{L})$ and $(\omega, \omega') \in \eta_{\mathscr{Q}(K; \mathscr{R}, \mathscr{L})}$ where $\omega = [\lambda, \rho]$ and $\omega' = [\lambda', \rho']$. Then for all $x \in D_{\lambda} \cap D_{\lambda'} \cap D$ and $s \in S$, (where $\omega x = \omega' x$ for all $x \in D \in \mathscr{R}$),

$$\lambda(xs) = \lambda \lambda_x(s) = \lambda' \lambda_x(s) = \lambda'(xs)$$

and for all $y \in D_{\rho} \cap D_{\rho'} \cap D'$ and $s \in S$, (where $d\omega = d\omega'$ for $d \in D' \in \mathscr{L}$)

$$(sy)\rho = (s)\rho_{y}\rho = (s)\rho_{y}\rho' = (sy)\rho'$$
.

If \mathscr{L} and \mathscr{R} are idempotent, there is $B^2 \in \mathscr{L}$, $A^2 \in \mathscr{R}$ with $A^2 \subseteq D_{\lambda} \cap D_{\lambda'} \cap D$ and $B^2 \subseteq D_{\rho} \cap D_{\rho'} \cap D'$ and so λ and λ' agree on A^2 while ρ and ρ' agree on B^2 , thus $(\lambda, \rho) \Theta(\lambda', \rho')$ and $\omega = \omega'$ in $\Omega(K: \mathscr{R}, \mathscr{L})$.

On the other hand if $x \in D_{\lambda} \cap D_{\lambda'} \cap D$ and $y \in D_{\rho} \cap D_{\rho'} \cap D'$, then

$$y(\lambda x) = (y\rho)x = (y)\rho\rho_x = (y)\rho'\rho_x = (y\rho')x = y(\lambda'x)$$

and similarly $(y\rho)x = (y\rho')x$. Consequently if K is $(\mathscr{R}, \mathscr{L})$ -reductive, $y\rho = y\rho'$ and $\lambda x = \lambda'x$ for all $y \in D_{\rho} \cap D_{\rho'}$ and $x \in D_{\lambda} \cap D_{\lambda'}$ and so $(\lambda, \rho)\Theta(\lambda', \rho')$ and $\omega = \omega'$.

PROPOSITION 3.7. If K is $(\mathcal{R}, \mathcal{L})$ reductive or both \mathcal{R} and \mathcal{L} are idempotent, then $\tau(V:K)$ is the unique (S, S)-homomorphism of V into $\Omega(K:\mathcal{R},\mathcal{L})$ extending π .

The proof of this proposition is a simple modification of the proof of Proposition 1.3 of [4] and so will be omitted.

PROPOSITION 3.8. If V and V' are $(\mathscr{R}, \mathscr{L})$ -extensions of K and ϕ is an (S, S)-homomorphism of V into V' which is the identity on K, then

$$\tau(V:K) = \tau(V':K) \circ \phi .$$

Proof. Let $v \in V$, $x \in v^{-1}K$ and $y \in Kv^{-1}$, then $\phi(v)x = \phi(vx) = vx$ and $y\phi(v) = \phi(yv) = yv$. Thus $\rho_{\phi(v)}$ and ρ_v agree on $Kv^{-1} \in \mathscr{L}$ and $\lambda_{\rho(v)}$ and λ_v agree on $v^{-1}K \in \mathscr{R}$ and so the conclusion follows.

For a right S-set M and $rqf \mathcal{R}$, Hinkle [5] defined the \mathcal{R} -singular congruence $\eta(\mathcal{R})$ on M by

$$\eta(\mathscr{R}) = \{(m, n) | mr = nr \text{ for all } r \text{ in some } R \in \mathscr{R}\} = \eta(M; R)$$

Similarly for a left S-set N and lqf \mathcal{L} , there is an \mathcal{L} -singular congruence $\eta(\mathcal{L})$ on N. $\eta(\mathcal{R})$ is a right S-congruence and $\eta(\mathcal{L})$ is a left S-congruence.

LEMMA 3.9. For an (S, S) set M, $rqf \mathscr{R}$ and $lqf \mathscr{L}$,

$$\eta(M:\mathscr{R},\mathscr{L})=\eta(\mathscr{R})\cap\eta(\mathscr{L})$$
 .

The proof is straightforward as is the proof of the next lemma and hence both proofs are omitted.

LEMMA 3.10. If one of $\eta(\mathscr{R})$ or $\eta(\mathscr{L})$ is the identity congruence, then M is $(\mathscr{R}, \mathscr{L})$ -reductive.

Given a right S-set K and a $rqf \mathcal{R}$, Hinkle [5] constructed a maximal right S-set of quotients $Q(K:\mathcal{R})$ of K as the S-set of all right S-homomorphisms with domain a member of \mathcal{R} and codomain

K factored by the congruence $\lambda \Theta \lambda'$ iff $\lambda s = \lambda' s$ for all s in some $R \subseteq D_{\lambda} \cap D_{\lambda'}$ where $R \in \mathscr{R}$. An S-homomorphism $\lambda \colon K \to Q(K \colon \mathscr{R})$ can be defined by $\lambda(k) = [\lambda_k]$ where $\lambda_k \colon S \to K$ is given by $s \to ks$. Then $\lambda \circ \lambda^{-1} = \eta(K \colon \mathscr{R})$ and λ is an injection of K into $Q(K \colon \mathscr{R})$ when $\eta(K \colon \mathscr{R})$ is the identity. Analogous results hold for a left S-set M and lqf \mathscr{L} . The maximal left S-set of quotients of M is denoted by $Q(M \colon \mathscr{L})$.

Now let S be a semigroup with zero, \mathscr{L} be a lqf on S, \mathscr{R} be a rqf on S and both $\eta(S:\mathscr{L})$ and $\eta(S:\mathscr{R})$ be the identity. Note that S is a right S-set, left S-set and (S, S)-set with respect to the semigroup multiplication. Since both $\eta(S:\mathscr{L})$ and $\eta(S:\mathscr{R})$ are the identity, S is $(\mathscr{R}, \mathscr{L})$ reductive, and so we identify S with $\pi(S) \subseteq$ $\Omega(S:\mathscr{R}, \mathscr{L}), \lambda(S) \subseteq Q(S:\mathscr{R})$ and $\rho(S) \subseteq Q(S:\mathscr{L})$.

Now $Q(S: \mathscr{R})$ is a semigroup under the multiplication $[\lambda_1][\lambda_2] = [\lambda_1 \circ \lambda_2]$ where $\lambda_1 \circ \lambda_2 \colon \lambda_2^{-1}(D_{\lambda_1}) \to S$ is the composition map. Moreover the canonical map $\lambda \colon S \to Q(S: \mathscr{R})$ is a semigroup monomorphism. Let $V = \{q \in Q(S: \mathscr{R}) \mid Sq^{-1} \in \mathscr{L}\}$. Then V is the maximal subsemigroup of $Q(S: \mathscr{R})$ which is an $(\mathscr{R}, \mathscr{L})$ extension of S. Define $\phi \colon V \to Q(S: \mathscr{L})$ by $\phi(q) = q' = [\rho^q]$. Thus ϕ is a semigroup homomorphism which is the identity on S since $\rho^{q_1q_2}$ agrees with $\rho^{q_1} \circ \rho^{q_2}$ on $Sq_2^{-1}q_1^{-1} \in \mathscr{L}$. Since ϕ is the identity on $S, \phi(sq) = s\phi(q) = sq'$ and so $\phi(V) = \{q' \in Q(S: \mathscr{L}) \colon (q')^{-1}S \in \mathscr{R}\}$. Since ϕ is a monomorphism, we identify V with $\phi(V)$ and so $V = Q(S: \mathscr{R}) \cap Q(S: \mathscr{L})$.

Now $\tau(V: S) = \tau(V': S) \circ \phi$ by Proposition 3.8. Moreover, $\tau(V: S)$ is injective for if $\tau^{q_1} = \tau^{q_2}$, then $(\lambda^{q_1}, \rho^{q_1})\Theta(\lambda^{q_2}, \rho^{q_2})$ so there is $R \in \mathscr{R}$ with $q_1r = q_2r$ for all $r \in R$, thus $q_1 = q_2$. Recall $\tau(V: S)$ is the identity on S.

Finally we show that $\tau(V:S)$ is surjective. Let $[\lambda, \rho] \in \Omega(S: \mathscr{R}, \mathscr{L})$, then $q = [\lambda] \in Q(S: \mathscr{R})$ and $q' = [\rho] \in Q(S: \mathscr{L})$. It suffices to show that $q \in V$. To this end let $t \in D_{\rho}$, and $s \in D_{\lambda}$, then

$$(t\rho)s = t(\lambda s) = t(qs) = (tq)s \in S$$
.

Thus $\lambda^{(tq)} = \lambda_{(t\rho)}$ on $D_{\lambda} \in \mathscr{R}$, and since $t\rho \in S$ for $t \in D_{\rho}$, $[\lambda_{t\rho}] = [\lambda^{(tq)}] = tq \in S$ for all $t \in D_{\rho}$. Thus $q \in V$. Clearly $\tau^{q} = [\lambda^{q}, \rho^{q}] = [\lambda, \rho]$ and so $\tau(V; S)$ is surjective.

We have proven the following result.

THEOREM 3.11. When both $\eta(S:\mathscr{A})$ and $\eta(S:\mathscr{L})$ are the identity congruence, $\Omega(S:\mathscr{A},\mathscr{L})$ is a semigroup isomorphic over S to $V' = \{q \in Q(S:\mathscr{L}) | q^{-1}S \in \mathscr{R}\}$ and $\{q \in Q(S:\mathscr{R}) | Sq^{-1} \in \mathscr{L}\} = V.$

If we identify V with V' and $\Omega(S: \mathscr{R}, \mathscr{L})$, the above result shows that $\Omega(S: \mathscr{R}, \mathscr{L}) = Q(S: \mathscr{R}) \cap Q(S: \mathscr{L})$.

4. Strict and pure extensions. In the remaining sections essential extensions will play a large role. However, we would like information on $(\mathcal{R}, \mathcal{L})$ -extensions V of K which fail to be essential. We can classify such extensions by their image under $\tau(V: K)$.

DEFINITION 4.1. The type of an $(\mathcal{R}, \mathcal{L})$ -extension V of K is the image T(V: K) of V under $\tau(V: K)$.

When K is $(\mathscr{R}, \mathscr{L})$ -reductive, it is easily seen that the types of extensions correspond to the subsets T of $\Omega(K: \mathscr{R}, \mathscr{L})$ which are (S, S)-sets containing K. We first discuss the $(\mathscr{R}, \mathscr{L})$ -extensions V of K which are, in some sense, as bad as possible—that is, for $v \in V$, there is $k \in K$ for which xk = xv for all x in some member L of \mathscr{L} and ky = vy for all y in some $R \in \mathscr{R}$.

DEFINITION 4.2. An $(\mathcal{R}, \mathcal{L})$ -extension V of K is strict if it has type $\pi(K)$.

When K is $(\mathcal{R}, \mathcal{L})$ -reductive, we will characterize the strict $(\mathcal{R}, \mathcal{L})$ -extensions of K by means of (partial) homomorphisms.

REMARK. In this and the following actions we pretty much follow the approach of Grillet and Petrich [4]. The proofs of many of the results are easy modifications of the proofs in [4] and so will be omitted.

DEFINITION 4.3. An (S, S)-set T is $(\mathcal{R}, \mathcal{L})$ -trivial if for each $t \in T$, $0t^{-1} \in \mathcal{L}$ and $t^{-1}0 \in \mathcal{R}$.

An $(\mathscr{R}, \mathscr{L})$ -extension V of K is called an $(\mathscr{R}, \mathscr{L})$ -extension of K by T if T is (S, S) isomorphic to the factor (S, S)-set V/K. Notice that in this case T is $(\mathscr{R}, \mathscr{L})$ -trivial.

Strict $(\mathcal{R}, \mathcal{L})$ -extensions of $(\mathcal{R}, \mathcal{L})$ -reductive S-sets by T may be characterized in terms of partial homomorphisms of T in the following sense:

DEFINITION 4.3. Let V be an $(\mathscr{R}, \mathscr{L})$ -extension of K by T. The extension V is said to be determined by a partial homomorphism $\pi: T \setminus \{0\} V$ if for nonzero $a \in T$ and all $s \in S$,

$$a\circ s=egin{cases} as & ext{if} \quad as
eq 0\ \pi(a)s & ext{if} \quad as=0 \end{cases}$$

while

$$s\circ a=egin{cases} sa & ext{if} \quad sa
eq 0\ s\pi(a) & ext{if} \quad sa=0 \end{cases}$$

where \circ is the scalar multiplication in V.

PROPOSITION 4.4. An $(\mathcal{R}, \mathcal{L})$ -extension V of K by T is determined by a partial homomorphism iff K is an (S, S)-retract of V.

The proof of Petrich ([9], Proposition 2, p. 51) carries over verbati to this case.

PROPOSITION 4.5. Each $(\mathcal{R}, \mathcal{L})$ -extension determined by a partial homomorphism is strict.

There is a converse to this proposition when K is $(\mathcal{R}, \mathcal{L})$ -reductive.

THEOREM 4.6. Let K be $(\mathcal{R}, \mathcal{L})$ -reductive. Then each strict $(\mathcal{R}, \mathcal{L})$ -extension of K is determined by a partial homomorphism.

Proof. Let $\tau = \tau(V:K)$ where V is a strict extension of K. Then $\tau: V \to \pi(K)$ and since π is an isomorphism, $\pi^{-1} \circ \tau: V \to K$ is an (S, S)-homomorphism whose restriction to K is the identity.

COROLLARY 4.7. Let S be an $(\mathscr{R}, \mathscr{L})$ -reductive semigroup and Q be an $(\mathscr{R}, \mathscr{L})$ -trivial semigroup. Then there is a strict $(\mathscr{R}, \mathscr{L})$ -extension of S by Q iff there is a partial homomorphism of $Q \setminus \{0\}$ into S.

Strict $(\mathcal{R}, \mathcal{L})$ -extensions of K can be characterized as follows

PROPOSITION 4.8. Let V be an $(\mathscr{R}, \mathscr{L})$ -extension of K. If any (S, S)-homomorphism of K into another (S, S)-set can be extended to V, then V is a strict extension of K. The converse holds if K is $(\mathscr{R}, \mathscr{L})$ -reductive.

Proof. The identity map id: $K \to K$ is an (S, S)-homomorphism and so has an extension $f: V \to K$. Thus K is a retract of V and so V is a strict extension of K.

Conversely, let K be $(\mathscr{R}, \mathscr{L})$ -reductive and K be a retract of V. Let $\alpha: K \to T$ be an (S, S)-homomorphism. Then if $r: V \to K$ is the retraction, $r \circ \alpha: V \to T$ is the desired extension.

Finally, strict extensions shed some light on the structure of S.

PROPOSITION 4.9. If every $(\mathcal{R}, \mathcal{L})$ -extension of S is strict, then S has an identity.

Proof. The extension S^1 obtained by adjoining an identity to S is an $(\mathscr{R}, \mathscr{L})$ -extension since $S \in \mathscr{R} \cap \mathscr{L}$ and so is strict. Thus for some $c \in S$, $\tau^1 = \pi c$. Thus for $x \in S$,

$$1x = cx = x = xc = xe$$

since $D_{\lambda} 1 = D_{\rho} 1 = S$. Thus c is an identity for S.

At the opposite end of the spectrum from the strict extensions, we have the pure extensions.

DEFINITION 4.10. An $(\mathscr{R}, \mathscr{L})$ -extension V of K is pure if the canonical homomorphism $v: V/K \to T(V:K)/\pi(K)$ satisfies $v^{-1}(0) = \{0\}$ where v is induced by $\tau(V:K)$.

LEMMA 4.11. An $(\mathscr{R}, \mathscr{L})$ -extension V of K is pure iff for any $a \in V$, $\tau^a \in \pi(K)$ implies $a \in K$.

Lemma 4.11 says that pure extensions are "best" in the sense that no element of V agrees with some element of K on a member of \mathscr{L} and on a member of \mathscr{R} .

We have the following result which determines all pure $(\mathcal{R}, \mathcal{L})$ -extensions of S.

DEFINITION 4.12. An (S, S) homomorphism between (S, S)-sets with zero $f: K \to Q$ is pure if $f^{-1}(0) = \{0\}$.

THEOREM 4.13. Let K be $(\mathscr{R}, \mathscr{L})$ -reductive and Q be an $(\mathscr{R}, \mathscr{L})$ trivial (S, S)-set with zero. Every pure homomorphism of Q onto the (S, S)-set $T/\pi(K)$, where T is a type of $(\mathscr{R}, \mathscr{L})$ -extension of K, determines a pure $(\mathscr{R}, \mathscr{L})$ -extension of K by Q of type T, whose scalar multiplication * is given by the following formula (where $Q^* = Q \setminus \{0\}$ and $\Theta(a) = \Theta^a = [\lambda^a, \rho^a] \in T \setminus \pi(K)$ for $a \in Q^*$):

$$a^*b=egin{cases} ab & a\in K,\ b\in S\ or\ b\in K,\ a\in S\ \Theta(ab)=\Theta^ab & a\in Q^*,\ b\in S\ \Theta(ab)=a\Theta^b & a\in S,\ b\in Q^* \ . \end{cases}$$

Conversely, every pure extension of K can be constructed in this fashion.

COROLLARY 4.14. When Q^* is a semigroup, Θ is a semigroup homomorphism and K = S, then the above result shows that each pure $(\mathscr{R}, \mathscr{L})$ -extension can be given a semigroup multiplication by defining for $a, b \in Q^*$, $a^*b = ab$ if $ab \neq 0$ and $a^*b = s \in S$ if ab = 0and $\Theta^a \Theta^b = \pi s \in \pi(S)$.

The proof of the above results is an easy modification of the proof of Theorem 2.11 of [4].

The reason for considering strict and pure extensions is evident by the next theorem.

THEOREM 4.15. Let V be an $(\mathscr{R}, \mathscr{L})$ -extension of K. The complete inverse image U of $\pi(K)$ under $\tau(V:K)$ is the greatest strict $(\mathscr{R}, \mathscr{L})$ -extension of K in V and V is a pure $(\mathscr{R}, \mathscr{L})$ -extension of U.

Proof. Since $\tau(V: K)$ is a homomorphism and T(V: K) contains $\pi(K)$, U is an (S, S)-subset of V and so is an $(\mathscr{R}, \mathscr{L})$ -subset of V. Since $\tau(V: K)$ maps K into $\pi(K)$, we must have $K \subseteq U$. And since $U \subseteq V$, U is an $(\mathscr{R}, \mathscr{L})$ -extension of K. Clearly U is a strict extension of K. Moreover if U' is an $(\mathscr{R}, \mathscr{L})$ -extension of K in V, then $\tau(U': K)$ is the restriction of $\tau(V: K)$ to U'. Hence if U' is strict, then $U' \subseteq U$ and so U is the greatest strict $(\mathscr{R}, \mathscr{L})$ -extension of K in V.

Now let $v \in V$, and suppose that $\tau^v(V: U) \in \pi(U)$. Then for some $u \in U$, vs = us for all $s \in R' \in \mathscr{R}$ and tv = tu for all $t \in L' \in \mathscr{L}$. But $u \in U$ implies that for some $k \in K$, kx = ux for all x in some $R'' \in \mathscr{R}$ and yk = yu for $y \in$ some $L'' \in \mathscr{L}$. Let $R = R' \cap R'' \in \mathscr{R}$ and $L = L' \cap L'' \in \mathscr{L}$, then for all $x \in L$ and all $y \in R$, xv = xk and vy = ky and so $v \in U$.

5. Congruence dense extensions. In this section we will show for $(\mathcal{R}, \mathcal{L})$ -reductive K, that $\Omega(K: \mathcal{R}, \mathcal{L})$ is the maximal essential $(\mathcal{R}, \mathcal{L})$ -extension of K and so is unique up to isomorphism.

In the remainder of this section, V will be an $(\mathcal{R}, \mathcal{L})$ -extension of K.

An (S, S)-congruence on V whose restriction to K is the identity is called a K-congruence.

V is a congruence dense extension of K if the identity is the only K-congruence on V.

V is an essential extension of K if each (S, S)-homomorphism $f: V \to T$, T any (S, S)-set, whose restriction to K is injective is an injection.

Berthiaume [1] has shown that congruence dense extensions coincide with essential extensions.

LEMMA 5.1. $\eta(V: \mathscr{R}, \mathscr{L}) = \tau \circ \tau^{-1}$ where $\tau = \tau(V: K)$.

Proof. $(x, y) \in \eta(V: \mathscr{R}, \mathscr{L})$ iff there is $R \in \mathscr{R}$, $L \in \mathscr{L}$ with xr = yr for $r \in \mathscr{R}$ and tx = ty for $t \in L$. Let $L' = Kx^{-1} \cap Kv^{-1} \cap$

 $L \in \mathscr{L}$ and $R' = x^{-1}K \cap y^{-1}K \cap R \in \mathscr{R}$. Then tx = ty for $t \in L'$ and xr = yr for $r \in R'$, thus $\tau^x = [\lambda x, \rho x] = [\lambda y, \rho y] = \tau^y$.

Conversely if $\tau^x = \tau^y$, then $[\lambda^x, \rho^x] = [\lambda^y, \rho^y]$ so there is $L \in \mathscr{L}$ and $R \in \mathscr{R}$ with xr = yr for $r \in \mathscr{R}$ and tx = ty for $t \in L$. Thus $(x, y) \in \eta(V: \mathscr{R}, \mathscr{L}).$

THEOREM 5.2. Every K-congruence on V is contained in $\eta(V: \mathscr{R}, \mathscr{L})$. Moreover if K is $(\mathscr{R}, \mathscr{L})$ -reductive, $\eta(V: \mathscr{R}, \mathscr{L})$ is the largest K-congruence on V. In any case, $\eta(K) = \{v \in V | v\eta k \text{ for some } k \in K\}$ is the largest strict subextension of V.

Proof. Let \mathscr{C} be a K-congruence on V. Then $a\mathscr{C}b$ implies as = bs for all $s \in a^{-1}K \cap b^{-1}K \in \mathscr{R}$. Likewise ta = tb for all $t \in Ka^{-1} \cap Kb^{-1} \in \mathscr{L}$. Thus $(a, b) \in \eta(V; \mathscr{R}, \mathscr{L})$.

If K is $(\mathscr{R}, \mathscr{L})$ -reductive, then $\eta(V: \mathscr{R}, \mathscr{L})|_{\kappa} = \eta(K: \mathscr{R}, \mathscr{L})$ which is the identity thus $\eta(V: \mathscr{R}, \mathscr{L})$ is a K-congruence.

If $a \in \eta(K)$, then $\tau^a = \tau^b$ for some $k \in K$ and so $\eta(K)$ is the largest strict subextension of V.

COROLLARY 5.3. If K is $(\mathcal{R}, \mathcal{L})$ -reductive, then V is a pure extension iff $\mathcal{C}(K) = K$ for every K-congruence on V.

When K is $(\mathcal{R}, \mathcal{L})$ -reductive, the following theorem characterizes strict $(\mathcal{R}, \mathcal{L})$ -extensions by means of extensions of (S, S)congruences on K. The proof is modelled after that of [4, Proposition 3.3].

THEOREM 5.4. Let V be an $(\mathscr{R}, \mathscr{L})$ -extension of K. If each (S, S)-congruence on K is the restriction of some (S, S)-congruence $\overline{\mathscr{C}}$ on V such that $\overline{\mathscr{C}}(K) = V$, then V is a strict extension of K. The converse holds if K is $(\mathscr{R}, \mathscr{L})$ -reductive.

Proof. Let \mathscr{C} be the identity congruence on K, then $\overline{\mathscr{C}}(K) = V$ and so for $v \in V$, there is a unique $k \in K$ with $v\overline{\mathscr{C}}k$. Now if $s \in Kv^{-1}$, $sv\overline{\mathscr{C}}sk$ and so sv = sk on Kv^{-1} and similarly, if $t \in v^{-1}K$, $vt\overline{\mathscr{C}}kt$ and so vt = kt on $v^{-1}K$. These equations imply that $\tau^v = \tau^k$ and thus the extension is strict.

If K is $(\mathscr{R}, \mathscr{L})$ -reductive, then K is a retract of V iff V is a strict extension of K. Then given an (S, S)-congruence \mathscr{C} on K, extend \mathscr{C} to $\overline{\mathscr{C}}$ on V by $\omega \overline{\mathscr{C}} v$ iff $r(\omega) \mathscr{C} r(v)$ where $r: V \to K$ is the retraction. Then since $\omega \overline{\mathscr{C}} r(\omega)$, $\overline{\mathscr{C}}(K) = V$.

REMARK. This result may be used to give a different proof of Proposition 4.8.

Theorem 5.2 characterizes congruence dense extensions of $(\mathcal{R}, \mathcal{L})$ -reductive (S, S)-sets as follows:

THEOREM 5.5. Let K be $(\mathcal{R}, \mathcal{L})$ -reductive, then V is congruence dense (essential) over K iff V is $(\mathcal{R}, \mathcal{L})$ -reductive. Thus congruence dense extensions are pure.

When \mathscr{L} is the lattice of left ideals of S, we have the following corollary due to Hinkle [5, Corollary 4.13].

COROLLARY 5.6. When S is \mathscr{R} -torsion free, then an \mathscr{R} -extension V of S is essential iff V is \mathscr{R} -torsion free.

When $\mathscr{R} = \mathscr{L} = \{S\}$, we have the following corollary due to Petrich and Grillet [4, Theorem 3.7].

COROLLARY 5.7. Let S be weakly reductive. Then V is a congruence dense extension of S iff $\tau(V:S)$ is injective.

Returning to the general case we have the

COROLLARY 5.8. When K is $(\mathcal{R}, \mathcal{L})$ -reductive, V is a congruence dense (essential) extension of K iff there is a monomorphism of V over K into $\Omega(K; \mathcal{R}, \mathcal{L})$.

Since $\tau(\Omega: K)$ is the identity on $\Omega(K: \mathscr{R}, \mathscr{L})$ where K is $(\mathscr{R}, \mathscr{L})$ reductive, then $\Omega(K: \mathscr{R}, \mathscr{L})$ is congruence dense over K. Hence
when \mathscr{L} is the lattice of left ideals of S and S is \mathscr{R} -torsion free,
then [5, Corollary 5.6] $Q_{\mathscr{R}}(S)$ is essential over S.

Finally, we characterize pure $(\mathscr{R}, \mathscr{L})$ -extensions of $(\mathscr{R}, \mathscr{L})$ reductive (S, S)-sets by means of congruence dense extensions as
follows:

COROLLARY 5.9. Let K be $(\mathscr{R}, \mathscr{L})$ -reductive. Then V is a pure extension iff there is an (S, S)-homomorphism ϕ over K of V into a congruence dense extension D of K with $\phi^{-1}(K) = K$.

Proof. Let T = T(V; K). Then by Corollaries 5.7 and 5.8, there is a dense extension D of K of type T. Then $\phi = \tau(D; K)^{-1} \circ \tau(V; K)$ is an (S, S)-homomorphism over K of V into D. Since V is pure over K, $\phi^{-1}(K) = \tau(V; K)^{-1}(\pi(K)) = K$.

Conversely, let ϕ be the given homomorphism, then $\tau(V:K) = \tau(D:K) \circ \phi$ by 3.8 and $\tau(V:K)^{-1}(\pi(K)) = \phi^{-1}(K) = K$ since $\tau(D:K)$ is injective. Thus V is pure.

We now prove the main result of this section.

THEOREM 5.10. When K is $(\mathcal{R}, \mathcal{L})$ -reductive, $\Omega(K: \mathcal{R}, \mathcal{L})$ is the maximal essential $(\mathcal{R}, \mathcal{L})$ -extension of K.

Proof. By the remark after Corollary 5.8, $\Omega = \Omega(K; \mathscr{R}, \mathscr{L})$ is essential over K. Now suppose $V \supseteq \Omega$ is an essential $(\mathscr{R}, \mathscr{L})$ extension of K. Thus $\tau(V; K)$ is injective and $\tau(V; K)|_{2} = \tau(\Omega; K)$ is the identity. Moreover if $v \notin \Omega$, then $\tau(V; K)(v) = x \in \Omega$, and $\tau(V; K)$ is injective. For $s \in \Omega v^{-1} \in \mathscr{L}$ and $t \in v^{-1}\Omega \in \mathscr{R}$, we have xs = $\tau(V; K)(vs) = vs$ and $tx = \tau(V; K)(tv) = tv$. Thus $(x, v) \in \eta(V; \mathscr{R}, \mathscr{L})$ which is the identity. Thus x = v and $V = \Omega(K; \mathscr{R}, \mathscr{L})$.

THEOREM 5.11. $\Omega(K: \mathscr{R}, \mathscr{L})$ is unique up to isomorphism over K, when K is $(\mathscr{R}, \mathscr{L})$ -reductive.

Proof. Let V be any other maximal essential $(\mathscr{R}, \mathscr{L})$ -extension of K. Then $\tau(V:K)$ is injective by Theorem 5.5. If $T(V:K) = T \subseteq \Omega(K:\mathscr{R}, \mathscr{L})$, then $\tau(V:K)$ can be extended to an (S, S)-isomorphism of an $(\mathscr{R}, \mathscr{L})$ -extension $V' \supseteq V$ onto $\Omega(K:\mathscr{R}, \mathscr{L})$. Consequently, V' is congruence dense over K by Theorem 5.5. Thus V' = V and so $\tau(V:K)$ is an isomorphism.

When $\mathscr{R} = \mathscr{L} = \{S\}$, then we have as a corollary the following theorem of Gluskin [3]:

THEOREM 5.12. Let S be weakly reductive, then S is a densely embedded ideal of V iff there is an isomorphism over S of V onto $\Omega(S)$.

Notice also that Theorem 5.10 says that $\Omega(S: \mathscr{R}, \mathscr{L})$ is not only the maximal congruence dense $(\mathscr{R}, \mathscr{L})$ -semigroup extension but is also maximal among congruence dense $(\mathscr{R}, \mathscr{L})$ -extensions as an (S, S)-set.

6. The injectivity of $\Omega(K: \mathscr{R}, \mathscr{L})$. In this section we show that $\Omega(K: \mathscr{R}, \mathscr{L})$ is the $(\mathscr{R}, \mathscr{L})$ -injective hull of K. First we prove that an $(\mathscr{R}, \mathscr{L})$ -injective hull of K exists.

DEFINITION 6.1. A bi-S-set ${}_{s}K_{s}$ is $(\mathscr{R}, \mathscr{L})$ -injective iff each (S, S)-homomorphism $f: {}_{s}T_{s} \rightarrow {}_{s}K_{s}$ has for any $(\mathscr{R}, \mathscr{L})$ -extension ${}_{s}N_{s}$ of T an (S, S)-extension $\overline{f}: N \rightarrow K$. In particular, ${}_{s}K_{s}$ is injective when \mathscr{R} consists of all right ideals of S and \mathscr{L} consists of all left ideals.

Let K be any bi-S-set and let K^{s^1} denote the set of all mappings

from S^1 to K. K^{S^1} is a bi-S-set under the mutiplication (sf)(x) = s(f(x)) and (ft)(x) = f(tx) for all $x \in S^1$. Consider K as a subset of K^{S^1} by $k: S^1 \to K$ by k(x) = kx for all $x \in S^1$. That K^{S^1} is an injective (S, S)-set follows by noting in Theorem 6 of [1] that the constructed extension is an (S, S)-homomorphism.

PROPOSITION 6.2. For each (S, S)-set K, there is an injective (S, S)-set I_s containing K.

We require the following lemma from [1].

LEMMA 6.3. Let A, B and C be (S, S)-sets with $A \subseteq B \subseteq C$. Then A is essential in C iff A is essential in B and B is essential in C.

Now let ${}_{s}K_{s}$ be given. Following Berthiaume, we see that K has a maximal essential extension \hat{K} which is also the minimal injective extension of K. Moreover \hat{K} is unique up to isomorphism over K. For any injective extension I of K, \hat{K} is the maximal essential extension of K in I. Let E be a maximal (\mathscr{R}, \mathscr{L})-extension of K in \hat{K} which exists by Zorn's lemma.

LEMMA 6.4. E is $(\mathcal{R}, \mathcal{L})$ -injective when both \mathcal{R} and \mathcal{L} are idempotent.

Proof. Let ${}_{s}M_{s}$ be an $(\mathscr{R}, \mathscr{L})$ -extension of ${}_{s}N_{s}$ and $\phi: N \to E$ be an (S, S)-homomorphism. Let $\overline{\phi}: M \to \widehat{K}$ be an extension of ϕ to M. Consider $W = \overline{\phi}(M) \cup E \subseteq \widehat{K}$. It suffice to show that W is an $(\mathscr{R}, \mathscr{L})$ -extension of E, for then W is an $(\mathscr{R}, \mathscr{L})$ -extension of K since \mathscr{R} and \mathscr{L} are idempotent; thus W = E and we are done.

Therefore, let $\bar{\phi}(t) \notin E$. Then there is $R \in \mathscr{R}$ and $L \in \mathscr{L}$ with $tR \subseteq N$ and $Lt \subseteq N$. Thus $\bar{\phi}(t)R = \bar{\phi}(tR) \subseteq E$ and likewise $L\bar{\phi}(t) \subseteq E$. Hence W is an $(\mathscr{R}, \mathscr{L})$ -extension of E and we are done.

THEOREM 6.5. E(K) = E is the maximal $(\mathcal{R}, \mathcal{L})$ -essential extension of K.

Proof. Let $T \supseteq E$ be an $(\mathscr{R}, \mathscr{L})$ -essential extension of K. Then without loss of generality, $T \subseteq K$, the maximal essential extension of K. Thus T = E.

THEOREM 6.6. E(K) = E is the minimal $(\mathcal{R}, \mathcal{L})$ -injective extension of K, when both \mathcal{R} and \mathcal{L} are idempotent.

Proof. Let $K \subseteq T \subseteq E$ and T be an $(\mathscr{R}, \mathscr{L})$ -injective extension of K. Then there is an extension $\phi: E \to T$ of the identity map 1: $T \to T$. By Lemma 6.3, T is essential in E and so ϕ is one-to-one. Hence T = E.

By Theorem 5.10 when K is $(\mathcal{R}, \mathcal{L})$ -reductive, $\Omega(K: \mathcal{R}, \mathcal{L})$ is the maximal essential $(\mathcal{R}, \mathcal{L})$ -extension of K. By Theorem 6.5 and Theorem 5.11, $\Omega(K: \mathcal{R}, \mathcal{L})$ is isomorphic over K to E. Consequently, when \mathcal{R} and \mathcal{L} are idempotent, $\Omega(K: \mathcal{R}, \mathcal{L})$ is the injective hull of K by Theorem 6.6. Thus we have proved the following theorem.

THEOREM 6.7. When K is $(\mathscr{R}, \mathscr{L})$ -reductive and both \mathscr{R} and \mathscr{L} are idempotent, the $\Omega(K: \mathscr{R}, \mathscr{L})$ is the $(\mathscr{R}, \mathscr{L})$ -injective hull of K.

COROLLARY 6.8. When S is idempotent and weakly reductive, $\Omega(S)$ is ({S}, {S})-injective.

Proof. Since $\mathscr{R} = \mathscr{L} = \{S\}$ and $S^2 = S$, \mathscr{R} and \mathscr{L} are idempotent. The weak reductivity of S implies that $\eta_{\mathscr{Q}(S:\{S\},\{S\})}$ is the identity and so S is $(\mathscr{R}, \mathscr{L})$ -reductive. The result now follows from Theorem 6.7.

7. An application. In this section, we apply our theory to show that when S is weakly reductive, then $\Omega(S) = \Omega(S^n)$ for all n positive.

Let $\mathscr{R} = \mathscr{L} = \{S\}$, and write $\mathscr{Q}(K: \mathscr{R}, \mathscr{L}) = \mathscr{Q}(K: S, S)$.

LEMMA 7.1. If $\eta(S; S, S) = id$, then $\eta(S^n; S^n, S^n) = i$ for all n.

Proof. Let $x \neq y$ in S^n . Then $x \neq y$ in S so there is $s_1, t_1 \in S$ with $s_1x \neq s_1y$ and $xt_1 \neq yt_1$. Now suppose we have s_1, \dots, s_{n-1} , $t_1, \dots, t_{n-1} \in S$ with $s_{n-1} \dots s_1x \neq s_{n-1} \dots s_1y$ and $xt_1 \dots t_{n-1} \neq yt_1 \dots t_{m-1}$. Then there is $s_n, t_n \in S$ with $s_ns_{n-1} \dots s_1x \neq s_ns_{n-1} \dots s_1y$ and $xt_1 \dots t_{n-1} \neq yt_1 \dots t_{n-1}t_n$. Since $t_1 \dots t_n, s_n \dots s_1 \in S^n$, the result follows.

COROLLARY 7.2. If $\eta(S; S, S) = id$, then $\eta(S^n; S, S) = id$.

DEFINITION 7.3. ${}_{s}K_{s}$ is strictly essential in ${}_{s}N_{s}$ if for all $m \neq n$ in N, there are $s \in m^{-1}K \cap n^{-1}K$ and $t \in Km^{-1} \cap Kn^{-1}$ with $ms \neq ns$ and $tm \neq tn$.

LEMMA 7.4. [1]. If $_{s}K_{s}$ is strictly essential in $_{s}N_{s}$, then K is essential in N.

LEMMA 7.5. For all positive n, ${}_{s}S_{s}^{n}$ is strictly essential in ${}_{s}S_{s}$ when $\eta(S; S, S) = id$.

The proof of this lemma is contained in the proof of Lemma 7.1. Now if $\eta(S; S, S) = id$, i.e., if S is weakly reductive, then ${}_{S}S_{s}$ is essential over ${}_{S}S_{s}^{n}$ and so $\tau(S, S^{n})$ is injective. Thus without loss of generality $S^{n} \subseteq S \subseteq \Omega(S^{n}; S, S)$. Since $\Omega(S^{n}; S, S)$ is congruence dense over $S, S \subseteq \Omega(S^{n}; S, S) \subseteq \Omega(S; S, S)$ without loss of generality. By Lemma 6.3, S^{n} is congruence dense in $\Omega(S; S, S)$ but since $\Omega(S^{n}; S, S)$ is the maximal congruence dense extension of S^{n} , $\Omega(S^{n}; S, S) =$ $\Omega(S; S, S)$.

THEOREM 7.6. Let S be weakly reductive, then for n > 0, $\Omega(S^n: S, S) = \Omega(S: S, S)$.

Next notice that $\Omega(S^n; S^n, S^n)$ is strictly (S^n, S^n) -essential over S^n since $\eta(S^n; S^n, S^n) = \text{id.}$ Thus $\Omega(S^n; S^n, S^n)$ is strictly (S, S)-essential over S^n since $S^n \subseteq S$. Thus we may suppose $S^n \subseteq \Omega(S^n; S^n, S^n) \subseteq$ $\Omega(S^n; S, S)$. However for $q_1 \neq q_2$ in $\Omega(S^n; S, S)$, there are $s, t \in S$ with $sq_1 \neq sq_2, q_1t \neq q_2t$ and $sq_1, sq_2, q_1t, q_2t \in S^n$. Since $\eta(S^n; S^n, S^n) = \text{id}$, there is $s^1, t^1 \in S^n$ with $s^1sq_1 \neq s^1sq_2$ and $q_1tt^1 \neq q_2tt^1$. Since $tt^1, s^1s \in S^{n+1} \subseteq S^n$, we see that $\Omega(S^n; S, S)$ is strictly (S^n, S^n) -essential over S^n . Hence it is (S^n, S^n) -essential and so (S^n, S^n) -congruence dense over S^n . Thus

$$\Omega(S^n: S^n, S^n) = \Omega(S^n: S, S)$$
.

THEOREM 7.7. Let S be weakly reductive. Then for all n > 0, $\Omega(S^n) = \Omega(S)$.

Proof. The result follows from the above discussion upon noting that $\Omega(S^n) = \Omega(S^n; S^n, S^n) = \Omega(S^n; S, S) = \Omega(S; S, S) = \Omega(S)$.

REMARK. When S is not weakly reductive, the above result is false. To see this let S be a semigroup with zero satisfying $S^n = 0$, $S^{n-1} \neq 0$. Then for $x \in S^{n-1}$, $\lambda_x : S \to S^{n-1}$ and $\rho_x : S \to S^{n-1}$ are the zero maps. Thus $\Omega(S^{n-1}: S, S) = 0$, but $\Omega(S) \neq 0$ for there is $x \in S^{n-2}$ with xS = 0.

References

^{1.} P. Berthiaume, The injective envelope of S-sets, Canad. Math. Bull., 10 (1967), 261-273.

^{2.} E. H. Feller and R. L. Gantos, Completely injective semigroups, Pacific J. Math., **31** (1969), 359-366.

^{3.} L. M. Gluskin, Ideals of semigroups, Math. Sbornik, 55 (1961), 421-448 (Russian).

4. P. Grillet and M. Petrich, *Ideal extensions of semigroups*, Pacific J. Math., **26** (1968), 493-508.

5. C. V. Hinkle, Generalized semigroups of quotients, Trans. Amer. Math. Soc., 183 (1973), 87-117.

6. John K. Luedeman, A generalization of the concept of a ring of quotients, Canad. Math. Bull., 14 (1971), 517-529.

7. F. R. McMorris, On quotient semigroups, J. of Math. Sci., 7 (1972), 48-56.

8. ____, The singular congruence and the maximal quotient semigroup, Canad. Math. Bull., 15 (1972), 301-303.

9. M. Petrich, On extensions of semigroups determined by partial homomorphisms, Indag. Math., 28 (1966), 49-51.

10. _____, Introduction to Semigroups, Merrill, Columbus, Ohio, 1973.

Received June 11, 1975 and in revised form April 15, 1976.

CLEMSON UNIVERSITY