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NΎR ORDER OSCILLATIONS WITH MIDDLE
TERMS OF ORDER N - 2

ATHANASSIOS G. KARTSATOS

Equations of the form

(*) xM + p(t)xin~Ό + H(t, x) = 0 , n ^ 3

are studied here, where p(ί) ̂  0 and wiί(ί, u) ^ 0.
It is shown, among other things, that for n even all

solutions of (*) oscillate if H is superlinear, satisfying the
usual integral conditions, and u" + p(t)u — 0 is nonoscillatory
with p(t) "small" and decreasing. The case of n odd is also
covered and some of the recent results of Waltman, Heidel
are taken as special cases.

As far as the author knows, the only references concerning the
nonlinear (*) for p(t) Ξ£ 0 are those of Liossatos [9] and the author
[8]. In [9] Liossatos extended several of the results of Heidel [2]
to the nth order case. Liossatos however, considered mainly the
case p(t) ^ 0, uH(t, u) ^ 0 (actually a special case of H(t, u)) and
established one theorem concerning the case p(t) ^ 0, uH(t, u) ^ 0.
One of the results of Liossatos was improved by the author in [8],
where a result is also given for a forced equation.

In Theorem 1 below we establish a result for n = 3 which im-
proves a result of Waltman [13, Th. 1], The proof of this theorem
contains a simpler proof of Theorem 3.8 in HeideΓs paper [2]. In
Theorem 2 we provide conditions ensuring the oscillation or con-
vergence to zero of all bounded solutions of (*). Theorem 3 ensures
that every solution of (*) with a zero is oscillatory if n is odd. In
Theorem 4 the middle term is treated as a small perturbation, and
Theorem 5 ensures oscillation or convergence to zero for functions
H which are "large" compared to the middle term. For several
results concerning wth order nonlinear equations the reader is re-
ferred to the survey paper [8].

2* Preliminaries* In what follows, T will denote a fixed non-
negative number, Rτ — [T, oo), R+ — [o, co), R = (— oo, oo). For the
equation

( * ) x{n) + p(t)x{n~2) + H(t, x) = 0 , n ^ 3

we shall assume that the functions p:Rτ—>R+, H: Rτ x R—+R are
continuous on their domains and such that uH(t, u) ^ 0 for every
(ί, u)eRτ x R. A "solution" of (*) will be any function x(t) which
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is defined, n times continuously differentiate, and satisfies (*) on
some infinite subinterval of Rτ. Only nontrivial solutions will be
considered here, i.e., solutions which do not become identically equal
to zero for all large t. A function /: [a, °o)-+j?, a ^ T, is said to
be "oscillatory" if it has an unbounded set of zeros in [a, oo). The
equation (*) is said to be "D-oscillatory", if, for n even, every solu-
tion of (*) is oscillatory, and, for n odd, every solution of (*) is
oscillatory, or tends monotonically to zero as t —• °o. The equation
(*) is said to be "i?D-oscillatory" if the above definition holds true,
but for the bounded solutions of (*). A stronger result than the
following auxiliary theorem was proven by the author in [6] but
for n even.

THEOREM A. Consider the equation

(2.1) x{n) + H(t, x) = 0, t^T

and the inequality

(2.2) u{n) + H(t, u)^0 , t^T ,

where H(t, u) is nonnegative and increasing in u for every ueR.
Then the existence of a positive (bounded and positive) solution of
(2.2) implies the existence of a positive (bounded and positive) solu-
tion of (2.1). Furthermore, if all positive (bounded and positive)
solutions of (2.1) tend monotonically to zero, then the same is true
for all positive (bounded and positive) solutions of (2.2).

Proof. For n even the theorem is a particular case of Lemma
2.1 in [6], where H(t, u) > 0 was considered but its proof carries
over to the present case without modifications. For n odd, assume
that all positive solutions of (2.1) tend monotonically to zero, and
let u(t) be a positive solution of (2.2) such that u(t) > 0, u\t) > 0
for t ^ t ^ T . Then, from the proof of Lemma 2.1 in [6], it fol-
lows immediately, that (2.1) has also a solution x(t) with x{t^j — u{t^j
and x\t) > 0y t ^ ίlβ This is however a contradiction to the assump-
tion lim^oo x(t) — 0.

For a functional version of the above theorem, the reader is
referred to Onose [11].

THEOREM B. In the eqution (*) assume that x(t) is a non-
oscillatory solution and that u" + p(t)u is nonoscillatory. Then
x(t)x{n~2)(t) ^ 0 or x(t)x{n"2)(t) ^ 0 for all large t. If, moreover,
uH(t, u) > 0 for every (t, u)eRτ x R with u Φ 0, then these inequali-
ties are strict.



iVTH ORDER OSCILLATIONS WITH MIDDLE TERMS OF ORDER N-2 479

REMARK. The second assertion of this theorem is slightly stronger
than the corresponding result of Heidel [2, Th. 3.6].

Proof. We partly follow the steps of HeideΓs Theorem 3.6 in
[2]. Let x(t) be a nonoscillatory solution of (*) and assume that
x{t) > 0, t ^ tx ^ T. A similar proof covers the case x(t) < 0. Now
let x{n~2)(t) be oscillatory, let x{n~2)(t2) = 0 for some t2 > ίlf and assume
that x{n~2){t,) < 0 for some ίs > ί2. Now let

L = sup {t 6 [t2t ts); α^- ^ί) = 0} ,

Af - inf {t e (ί,, oo); χ<-"2>(ί) = 0} .

Then, by continuity, x{n~2)(L) = 0, α;(w"-2)(ikΓ) = 0, L < t3 < M and
a.(»-i)(i) < o, te(L,M). Now multiply (*) by x{n~2)(t) and integrate
between L, M to obtain

(2.3) (%(s)[^(^-2)(s)]2ώs + \MH(s, x(s))x<n-2)(s)ds

An application of Nehari's lemma [10, p. 431] now yields:

(2.4) ^p(s)Wn-2)(s)]2ds < f V * " 1 ^ ) ] 2 ^ ,

which implies

(2.5) !*ff(s, x(s))x{n-2)(s)ds > 0 ,

a contradiction to the negativeness of x{n~2)(t) on (L, M). Conse-
quently, if x{n~2)(t) is oscillatory, we must have x{n~2)(t) ^ 0 for all
large t. This proves our assertion. To show the second conclusion,
it suffices to observe that if B(t, x(t)) > 0 for t ^ tlf then xw(t) < 0
at each zero of x{n~2)(t). This concavity property of x{n~2)(t) implies
that either x{n~2)(t) crosses the axis—impossible by the above argu-
ment—or x[n~2)(t) has a cusp at each one of its zeros—impossible,
because it is differentiable there. Consequently, x{n~2)(t) cannot be
oscillatory in this case. This completes the proof.

3. Main results* The following theorem improves Theorem 1
in Waltman's paper [13].

THEOREM 1. Let n = 3. Moreover, let p(t) be decreasing and
H be increasing in u. Then if

\°°H{t, ±k)dt = ±00
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for every k > 0, every solution of (*) with a zero is oscillatory.

Proof. Let x(t) be a solution of (*) which has a zero at t^ T
and is such that x{t) > 0, ί e ^ , °°). Assume further that #(£) ^
L > 0, £ ̂  t2 > t19 where L is a fixed constant. Then integration of
(*) from t2 to t ^ ί2 gives

- Γ
— oo a s

Thus, x"{t) —• — co as t—> co, a contradiction to the positivity
of x(t). It follows that l i m ^ inf x(t) — 0. The proof now follows
exactly as in Waltman's theorem in [13], because we have just ob-
tained that since x(t^) = 0 and l i m ^ inf x(t) = 0, there is a number
t2 > tλ such that x\t2) = 0. We omit the rest of the proof.

Waltman assumed in [13] that p\t) exists and is nonpositive and

(3.1) A + Bt-[ [ q(u)duds < 0

eventually, for any constants A, B and any number ίt ^ Γ, where
JJ(ί, w) = q(t)ur with Q(ί) ^ 0 and r = the quotient of two odd posi-
tive integers. Obviously, (3.1) implies the integral condition

1 q(s)ds = + co ,
J*l

which is actually equivalent to the integral assumption in Theorem
1 if H is of the above type. For another improvement of Waltman's
theorem see HeidePs Corollary 3.4 in [2].

THEOREM 2. Let uH(t, u) > 0 for all (t, u)eRτ x R with UΦQ,

and let H be increasing in u. Let the equation u" + p(t)u = 0 be
nonoscillatory with [tap(t)] decreasing in Rτ, where 0 <; a <; n — 1.
Then if

ί, ±k)dt = ±oo

for every k > 0, Equation (*) is BD-oscϊllatory.

Proof. Let #(£) be a bounded nonoscillatory solution of (*).
Assume without loss of generality that x(t) > 0, ί *£ ίx 2> 21. Then
Theorem B implies that x(t)x{n'2)(t) ^ 0 or x{t)x{n~2){t) ^ 0 for all large
t. Assume that x{n~2)(t) ^ 0 , ΐ ^ ίa ^ ίlβ Then from (*) we obtain

(3.2) x{n)(t) + H(t, x(t)) ^ 0 , t ^ ίa .
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Since

( V - 1 ^ , ±k)dt= ±co ,

it follows from Theorem 2.9 of the author in [8], and the analogous
theorem for n odd, that the equation (2.1) is JSD-oscillatory. Theorem
A implies now that x(t) cannot be eventually positive for n even,
and that l i m ^ x(t) = 0 for n odd. However, this last conclusion is
also impossible. In fact, since x{n~2)(t) ^ 0, t ^ t2 and n — 2 is an
odd integer, we must have x'{t) ^ 0 eventually. This contradicts
lim^oo x(t) = 0. Consequently, x(n~2)(t) <̂  0 for all large t, say for
every t ^ t2 ^ max {1, £j. Now we multiply (*) by ta and integrate
from ί2 to t to obtain

(3.3) tV-^it) - ta

2x
{n-l){t2) - a [* sa-1x'n~1)(s)ds

Now if x{n~S)(t5) < 0 for some ί8 ^ ί2, then £(ίl~3)(£) ^ #{w-3)(£3) < 0 for
every t ^ t3. This implies l i m ^ cc(ί) = — oo 9 a contradiction. Thus,
a?ίΛ~8)(ί) ^ 0 for t ^ ί2. Now since x(t) is bounded, it follows that
( - iyxU)(t) ^ 0 for n even and ( - l)3'xU)(t) ^ 0 for n odd, and for
j = 1, 2, , n — 2, £ e [£2, oo). Assume that for some constant L > 0,
#(£) ^ £> ί β f e °°) Then from (3.3) we obtain

(3.4) ίβα?( - l ϊ(ί) - a Γ sa-1x{n~1)(s)ds ^ C - Γ ίαiϊ(ί
Jί2 Jί2

Taking limits as ί —> oo in (3.4) we obtain

(3.5) lim Γ tax{n~ι){t) - a Γ s«-1x{n-1)(s)ds~\ = -
t-*oo |_ Jt2 J

Now let

(3.6) φtf) — \ sflr~1ίcίΛ"~1)(s)(Zs , t ^ tz ,

Then we have

(3.7) tφ\t) - «9>(t) = q(t) , ί ^ ίa

where lim^ooq(t) = — oo. Now we apply Lemma 1 of Staikos and
Sficas [12] to obtain

(3.8)
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The above integral cannot be — oo because then (3.5) would
imply x[n~ι){t) ^ 0 for all large tx which combined with x[n~2)(t) £ 0
gives lim^oo #(£) = — oo, a contradiction. Consequently, since ί2 ^ 1,
we get

(3.9) [° sa-1x{n~1)(s)ds S [θsn-2x{n-1)(s)ds = + oo .

Now the argument follows the steps of Theorem 1 in [4] and
we omit the rest of it, which leads to the contradictions

S oo f + oo n even

x'(t)dt=Γ
H (-co ^ odd .

Consequently, no positive x{t) exists for n even and x(t) —> 0
monotonically as t —• co for n odd. Dual arguments cover the as-
sumption x(t) < 0. This completes the proof.

The following theorem characterizes further the solutions of (*)
under slightly stronger assumptions than those of Theorem 2 and
for n odd.

THEOREM 3. Let the assumptions of Theorem 2 be satisfied with
p(t) decreasing in Rτ and uH{t, u) > 0 for u Φ 0. Then, for n odd,
every bounded solution of (*) with a zero is oscillatory.

Proof. Let x{t) be a bounded solution of (*) such that x(tx) — 0
for t^T and x(t) > 0, t e (t19 oo). Theorem B implies that x(t)x{n'2)(t) >
0 or x(t)x{n~2)(t) < 0 for all large t, and from the proof of Theorem
2 it follows that the second of these inequalities holds. Now since
x{n-2)(t) < 0 for all large ί, say ί ^ ί2 ^ t19 we must have x{%-3)(t) > 0
for all t ^ ί2. In fact, if x{%-3)(t) ^ 0 for some t ^ ί2, then x{n'Z){t) <
x{n~Z)(t) for all t ^ t , which implies the contradiction x(t) --> — oo as
t—»oo. Now x{n~d)(t) must have a zero to the right of tx. If this
was not true then x{n-Z)(t) > 0 for t ^ ί,. This, along with (-l)% ( i )(ί) ^
0, j = 1, 2, , w — 2 (cf. proof of Theorem 2), shows that none of
the derivatives x{j)(t), j = 1, 2, •••, -n — 3 can have a zero after tx.
Thus, #'(£) < 0 for t e (t19 oo), a contradiction to the fact that cc(̂ ) = 0
and x(t) > 0, te(tlf oo). Consequently, x{n~Z){Q = 0 for some ί8 > ίlβ

We are planning to show that x{n~3)(t) is oscillatory. Suppose this
is not true. Then let £4 ^ ί3 be the last zero of α;(π~3)(έ). We must
now have x{n~3)(t) > 0, t > t4. Now integrate (*) from t4 to ί ^ ί4,
after multiplication by ^(w~3)(ί), to obtain

(3.11) ^^-"(Oίc^-^ίί) + - ^ ^ L _ i? \ίlL
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H(s, x(s))x^~3)(s)ds = 0 .

Now we either have ^""""(ί) > 0 for all large t, or α?**""1 *̂) is oscil-
latory. The first of these possibilities combined with (3.11) implies
that lim ôo xin~2)(t) = L < 0, which is impossible because it implies

xin-3)(t) < o for all large t. Now if ^"-"(ί) is oscillatory, then for
some sequence of maxima x{n~2)(tm) (with tm—> °o as m —+ °o) we
have l i m ^ α ^ - ^ t j = 0 and a?( " 1 } ( t j = 0. Letting ί = tm in (3.11)
we obviously get a contradiction because the limit on the left exists
and is finite positive or + co (p(t) is bounded and l i m ^ x{n~S)(t) = 0).
Consequently, x{n~3)(t) has to be oscillatory. However, we have
already established that x{n~2)(t) < 0 for all large t. This obviously
implies a contradiction. Consequently, x(t) cannot be positive after
it has a zero. A similar argument holds true if we assume that
x(t) is negative for all large t. This completes the proof.

Results are expected of course to hold for all solutions of (*)
under stronger assumptions on the function H(t, u). It turns out
however that the method developed by the author in [4] does not
apply in the present case due to the fact that we do not have enough
information concerning the sign of x^'^it) for a positive or negative
solution of (*). Nevertheless, if the function p(t) is sufficiently small,
we can treat the term p(t)x{n~2)(t) as a small perturbation because
we can show that, under the conditions of Theorem B with uH(t, u) >
0 for u Φ 0, the decrease of p(t) for all large t suffices to ensure
that lim ôo aj(Λ"υ(ί) = 0 for any nonoscillatory solution x(t) of (*).
This is the content of the following

THEOREM 4. Let the equation u" + p(t)u — 0 by nonoscillatory.
Moreover, let p(t) be decreasing in Rτ and such that

\°°tnp(t)dt
JT

< +OO.

Then (*) is D-oscillatory (UD-oscillatory) if the same is true
for (2.1).

Proof. Let us first remark that limt_oo p(t) — 0. In fact, if this
is not true, then

p(t)dt = +™ ,
T

which, by the classical Wintner's criterion [14], implies that all
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solutions of u" + p(t)u == 0 oscillate, a contradiction. Now let x(t)
be an eventually positive solution of (*). Then the conclusion of
Theorem B implies the existence of some t^T such that x{n~2)(t)x(t) >
0 or x{n~2)(t)x(t) < 0 for t ^ ίlβ Now let the first of these inequalities
hold, (2.1) be D-oscillatory and n even. Then it follows that x(t)
is an eventually positive solution of

(3.12) x{n) + H(t, x)^0

which, according to Theorem A, is a contradiction. Consequently,
x{n~2)(t) < 0 and x(t) > 0, t ^ t,. Thus, we must have x{n~Z)(t) > 0,
t ^ tv This happens because x{n~Z)(t) < 0 for all large t implies
x(t)—+—oo as t—>oo, and if x{n~Z){t) = 0 for some ? ^ ί x , then
α?^"8^?) < 0 for all t ^t, a contradiction again. Now integrate (*)
from *! to ί ^ t1 to obtain

Γ
hi

-2)(s)cZs + Γ £Γ(8, α(8))(i8 = 0 ,
i hi

or

(3.13) x^~l){t) - x^iti) =

\* x<n-3)(s)d[p(s)] - [* H(s, x(s))ds
hi hi

Now, as we noticed above, l i m ^ p(t) = 0, and x{n Z)(t) is bounded.
Consequently, the first term on the right of (3.13) tends to zero as
t —> oo 9 and the two last terms are nonpositive and decreasing to
finite limits, otherwise a^*""1^*) —• — oo as t—>oof a contradiction.
It follows that l i π w x{n~l)(t) = L exists. If L > 0, then α(*-2)(£)-> + oo
as ί—•oo, a contradiction. If L < 0, then ίc(9l~2)(ί) —> - co as t ^ o o ,
a contradiction again to the positiveness of x(t). Thus, L = 0.
Consequently,

(3.14) \x{n~2)(t)\ ^ \xin-2)(tι)\ + Γ

for all ί ^ ίL and some positive constant M. Now let
?(w~2)(ί). Then the integral

ί ^ \ I

and this follows easily from the integral assumption on p(t). If we

let

Pit) = -
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then P{n)(t) = q(t). Using the transformation W(t) = x(t) - P(ί),
t ^ tlf we obtain

Ww + fΓ(ί, W + P(t)) = 0 , t ^ ίx .

Now the rest of the proof follows as in [6, Th. 2.1] for n even
and we omit it. The case of odd n can be treated similarly and its
proof is omitted. Similar considerations cover the case of bounded
solutions under the assumption of J3J9-oscillation of (2.1), and we
omit these arguments as well. This completes the proof.

The above theorem is intimately related to but does not contain
any of the results of the third section of HeideΓs paper [2]. We
remark that Theorem 3 does not make use of all the hypotheses of
Theorem 3, and that the conclusions in Theorem 3 can be deduced
for any solution of (*) that has a zero if (2.1) is jD-oscillatory. The
proof of this last statement follows exactly as in Theorem 3 and
we omit it.

In the following result we actually take into consideration the
growth of the function H(t, u) with respect to the middle term.

THEOREM 5. Let (*) satisfy the following assumptions:
(i) u" + p(t)u = 0 is nonoscillatory and p(t) is decreasing in

(ii) For every λ > 0, μ ^ 0, there are no eventually positive
(negative) solutions u(t) of the equation

(3.15) uin) + H(t9 u) - μtp{t) = 0

(u{n) + H(t, u) + μtp(t) = 0)

such that u{t) ^ λ (u(t) ^ - λ) and H(t, u(t)) - μtp(t) ^ 0 (H(t, u(t)) -
μtp(t) ^ 0) for all large t. Moreover, if for a sequence {tm}, m —
1, 2, . . . we have l i m ^ tm = co and H(tm, um) < μtmp(tm)(H(tm, um) > -
μtmp(tm)) where um > 0 (um < 0) m = 1, 2, - , then l im,^ inf | un \ = 0.
Then (*) is D-oscillatory.

Proof. Assume that there exists a solution x(t) of (*) which is
eventually bounded below by a constant λ > 0. Then x{n~2)(t) ^ 0
for all large ί, and l i m ^ x{n~ι\t) = 0. Consequently, there exists
tL^T such that

x(t) ^ λ > 0 , x(n-2)(t) ^ 0 , -x{n-2)(t) ^ μt

for every t ^ tx. Consequently,

(3.16) 0 - xw(t) + H(t, x(t)) + p{t)x^~2){t)

^ xw + H(t, x(t)) - μtp(t) .
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It follows from our assumptions that we cannot have H(t, x(t)) ^
μtp(t) for all large t. If this was true, then Theorem A would
imply that (3.15) has a positive solution such that u\t) ^ 0 for all
large t (again, this last assertion follows from Lemma 2.1 in [6]
taking into consideration the class B(T, k) considered there). This
is a contradiction. Thus, for some sequence {tm}9 n = 1, 2, with

^oo tm = co, we must have

H(tm, x(tm)) ^ μtmp{tm) , m = 1, 2,

which, by our assumptions, implies

(3.17) lim inf x(tm) = lim inf x(t) = 0 .
t-*oo

Now, taking into consideration that x{n~2)(t) 5Ξ 0, it follows that
(3.17) is impossible for n even, and it implies l i m ^ x(t) = 0 for n
odd. Similar consideration cover the case of a negative x(t). This
completes the proof.

The conditions of the above theorem seem rather stringent at
first glance. They are not however, and they imply oscillation
criteria for all three important cases; sublinear, superlinear, linear,
as the following corollary indicates. The method of proof of the
above theorem was employed by the author in [7] where oscillations
with perturbations Q(t, x) have been studied. A similar argument
for a similar problem can be found in the paper [1] of Graef and
Spikes.

COROLLARY 1. Consider the differential equation

(3.18) x{n) + p(t)x{n~2) + q(t) I x \a sgn x = 0 , teRτ ,

where p(t) is decreasing and such that the equation u" + p(t)u = 0
is nonoscillatory. Moreover, q(t) > 0, t eRτ and

(3.19) lim [tp(t)/q(t)] = 0 .

Then if a is a positive constant (3.18) is D-oscillatory provided
one of the following conditions holds:

S oo

tn~ι~εq{t)dt = + oo for a = 1 and some ε > 0;

(ii) ( V ( -1}?(ί)dί = + co for a < 1;
JT

(iii) I t^qfydt = + oo for a > 1.

One can easily see now that the conditions of Theorem 5 are
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satisfied, in connection with the result of the author in [3]. Another
corollary of the proof of Theorem 5 provides an appraisal of the
nonoscillatory solutions of (*):

COROLLARY 2. Let the assumptions of Corollary 1 hold with
{3.19) replaced by

[tp(t)/q(t)] ̂  L (constant)

and the integral conditions replaced by the same conditions where
±q{t) — ktp{t) (for any k > 0) replaces q(t) and ±°o replaces the
second members. Then for every nonoscillatory solution x(t) of (*)
we have

lim I x(t) I = lim inf | x(t) \=K£ (kL)1/a

ί->oo ί_>oo

for some constant k > 0 such that \ x{n~2)(t) | ^ kt eventually.

In Theorems 2-5 we made the basic assumption that u" + p(t)u = 0
is nonoscillatory. Let us first notice that if this equation is oscil-
latory, then x{n~2)(t)x(t) :> 0 (x{n-2)(t)x(t) ^ 0) is impossible for a posi-
tive (negative) nonoscillatory solution of (*) and all large t. In fact,
assume that x(t) > 0 for all large t. Then from (*) it follows that

(3.20) u" + p(t)u rg 0

for all large t, where u(t) = xin~2)(t). If we assume the first of the
above inequalities, then (3.20) has a positive solution. By Theorem
A this is impossible. Similarly, the second of the above inequalities
is impossible for a negative x(t). Results can be now formulated
analogous to several third order results in the third section of
HeidePs paper [2]. We shall undertake this task in a future paper.

It would be very interesting to have some results ensuring the
fact that x{n~ί](t) is of fixed sign for any nonoscillatory solution x(t)
of (*). Such a result would definitely permit relaxation of the con-
ditions imposed in Theorem 5 and would make possible the extension
of Theorem 2 to all solutions of (*).
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