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ABSOLUTELY DIVERGENT SERIES AND
ISOMORPHISM OF SUBSPACES 11

WiLLiaMm H. RUCKLE

The following relations between a Banach space E and a
Banach space X are, roughly speaking, generalizations of the
relation “E is a closed subspace of X.”

(LIX) The finite dimensional subspaces of E are uni-
formly isomorphic to subspaces of X under tsomorphisms which
extend to all of E without increase of norm.

(SpX) Finite rank mappings from any Banach space into
E can be uniformly factored through subspaces of X.

(ASX) The continuous linear mappings from E into X
distinguish the absolutely summing mappings from any Banach
space into E.

(SIX) For each absolutely divergent series =, x, in E there
is a continuous linear mapping T from E into X such that =, Tx,
diverges absolutely.

Our main result is that these four conditions are equivalent
if X contains a subspace isomorphic to A[X] where A is a
normal BK-space. A related result of some interest is that the
class of continuous linear mappings which factor through spaces
which contain a complemented copy of A[X] forms a Banach
operator ideal.

The consideration of the above relations continues the theme begun
in [2] and [7]. A similar result to our main result is proven in [7] under a
different assumption on the space X — an isometric assumption. We do
not know whether the hypothesis on X in the present paper is strictly
weaker than that in the previous paper. But in this case it is an
isomorphic assumption and easier to verify. For example, it is satisfied
by any space with a symmetric basis.

1. Some prerequisites. A. Sequence spaces. The space
of all sequences of scalars (s;) (real or complex) with the product topology
is denoted by w. The subspace of w which contains all sequences which
are eventually 0 is denoted by ¢. A Banach space A of sequences is
called a BK-space if the inclusion from A into w is continuous. A space
of sequences A is called normal if whenever (s,) is in and (%) is in m, the
BK-space of bounded sequences it follows that (#s,) is also in A. It is
known that if A is a BK space there is an equivalent norm | | on A for
which
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Its)ll = sup. | ][ (s)ll

for () in m.

If A is any set of sequences A * consists of all sequences (#,) such that
(ts,) is in 1 for each (s)) in A. Here 1 denotes the BK-space of all
sequences (u,) such that =, [u, | <. If A is a normal BK-space in which
¢ is dense then A“ is isomorphic to the topological dual space of A by
means of the correspondence of f in A’ to (f(e,))in A*. Here e, denotes
the sequence with 1 in the nth place and 0’s elsewhere. The closed unit
ball U,~ of A* for A a normal BK space is equal to the set of all (#) in @
such that | Z,1s,| =1 for each (s,) in ¢ with ||(s,)|l =1. Therefore, U,- is
compact in @. For A a normal BK space and X any Banach space A [X]
denotes the space of all sequences (x,) in X such that (|x,[x) is in
A.  With the norm

Gl = 1l xa

A[X] is known to be a Banach space. The closed linear span of ¢ in m
consists of all sequences which converge to 0 and is denoted by
¢,. References: [5], [6], [7].

B. Operatorideals. Let L denote the class of all continuous linear
mappings between Banach spaces. For two Banach spaces E and F let
L(E, F) denote the space of all continuous linear mappings between E
and F. A subclass & of L is called an operator ideal if it is closed under
sums and by multiplication on the left and right by members of L where
multiplication and addition is restricted to pairs of operators for which
these operations are meaningful. An operator ideal & is called a
Banach operator ideal if there is a nonnegative correspondence « defined
on & such that

(1) Forevery pair E, F, #(E, F) = (f N L(E, F))is a Banach space
with norm a.

(2) a(ST)=a(S)||T| if SE A(F,G), TE L(E,F).

(3) a(ST)=|S||a(T)if SEL(F,G), T € afE,F).

Here | || denotes the uniform operator. With the uniform operator
topology, L is a Banach operator ideal. Let U(E, F) denote the unit
ball of L(E, F) with the uniform norm.

The class & of finite rank mappings between Banach spaces is an
operator ideal. Every finite rank mapping T from E to F has a
nonunique representation

n

Tx = E xi(x)y,

=1
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with each x)in E’ the topological dual space of E and each y; in F. If
E = F the number

tr(T) = 2, *i(y)

does not depend on the representation of T'; it is called the trace of T.

In this paper we shall refer to the following three operator ideals:

(1) The class int of all integral mappings between Banach
spaces. A mapping T in L(E, F)is integral if there is K > 0 such that

[tr(ST)|=K|S|| SE€ F(FE).
The norm on L(E, F) is given by
IT|l=sup{tr(ST): S € F(F,E), [S[=1}.
(2) The class N of nuclear mappings. A mapping T in L(E, F)is

nuclear if 7=37,T, has rank one and 2£7,[|T,| <®. The norm on
N(E,F) is given by

[T|~= inf{ i | T|I: i T,=T, each T, has rank one}.
=1 1=1

(3) The class AS of absolutely summing mappings. A mapping T
in L(E, F) is absolutely summing if

S 1T
whenever

z [x'(x,)] <o for all x’ in E'.
The norm on AS(E, F) is given by

“T“AS=Sup{Z 175 3 |x' ()| =1 Va'e U}

Here Ug denotes the unit ball in E’.
References: (11, [4], [8].

2. Mappings which factor through X. For X a Banach
space let (X) denote the class of all continuous linear mappings which
factor through X. That is, a mapping T in L(E, F)isin (X)if T = T\T,
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where Tyisin L(X, F)and T,isin L(E, X). One canshow that (X)isan
operator ideal if and only if X X X is isomorphic to a complemented
subspace of X.

For X a Banach space and (¢,) a sequence of scalars the sequence
(t.x,) is in I[X] for all (x,) in m[X] if and only if (¢,)isin . We denote
by diag(X) the collection of all such scalar diagonal mappings from
m[X] to I[X].

2.1. ProOPOSITION. The smallest Banach operator ideal which con-
tains (X) is equal to the class of all T in L which have as a factor a

mapping from diag(X). In other words, T in L(E, F) is in this ideal if
and only if

T=TAT;
where T, is in L(E, m[X]), A is in diag(X) and T, is in L({[X], F).

Proof. Let {X} denote the smallest Banach operator ideal which
contains (X). We first show that T in L (E, F)isin {X}if and only if

e T-3sv. SIsivi<e

where each S, isin L(X, F) and each V,is in L(E, X). Itis a routine
task to verify that the class [ X] of all such mappings does form a Banach
operator ideal with the norm

IT)=int{ S 18,01 V.l S 8., =7],

and it is clear that [X] contains (X) and hence {X}.
On the other hand, for each S in L(X, F) the correspondence V to
SV is a continuous linear mapping from L (E, X) into {X}(E, F) so that
sup{[[ SV [x: V € U(E, X)} <o

by the Uniform Boundedness Principle. A second application of this
principle shows that the set

{SV: VE U(E, X), S€ U(X,F)}

is bounded in {X}. Thus if

DS M Vil <=, S.€L(X,F), V.EL(E X)
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it follows that

iy < 0.

DFEAZ

Therefore, every T of the form (2.1) is in {X}.
If T has the form (3.1) let t, =||S, ||| V.| for each n. Define T; in
L(E, m[X]) by

Tx = (V(x)/| V.

),
A from m[X] into [(X) by
A(u,) = (tu)

and T, from [[X] into F by

Ti(u,) = > Sau/|| S,

Then T = TAT, where A is in diag(X). On the other hand we can
verify that every mapping T of the form T = T,AT, has the form (2.1) by
a routine inversion of the above argument.

The following theorem is proven in [3].

2.2. THEOREM. Let A be a normal BK-space containing ¢. For
each sequence (r,) in l' we can find sequences (s,) in A° (the closure of ¢
in §) and (t,) in A*° such that s,t, = r, for all n.

2.3. THeOREM. If X contains a complemented subspace isomorphic
to A[X] for A a normal BK-space containing ¢ then (X) is a Banach
operator ideal. ((X)={X})

Proof. Given T in {X}(E, F) we show that T factors through
X. Since A[X] is complemented in X it suffices to show that T factors
through A[X]. By Proposition 2.1 there are T, in L(I'[X],F), T, in
L(E,m[X]) and (r,) in [ such that

Tx => r,T\,T.x x€E.

n

We may assume that r, =0 for all n. By Theorem 2.2 there is (s,) in A
and (¢,) in A* such that s,t, = r, for all n. Define R, from m[X] into
A[X] by
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Ry(u,) = (sutty)

and R, from A[X] into /[X] by

R(v,) = (t0.).
Then T = T\R,R,T; so T factors through A[X].

2.4. CoroOLLARY. If A is a symmetric BK space then (A[X]) is an
ideal for every Banach space X.

Proof. If A is a symmetric BK space it is not hard to show that
A[A[X]] is isomorphic to A[X].

The following fact is needed later.

2.5. ProrosiTiON. If A is a normal BK-space then there is K >0
such that for each (t,) in | we can find (u,) in A, (v,) in A® with
(uv,) = (t,) such that '

2.2) 1)l @) = KE 2.1

Proof. Let U, denote the closed unit ball in A** and U, the closed
unit ball in A*. Then both U,; and U, are compact in w so U,U, is
compact in w and thus closed in . Since A**A* D AA* = [ it follows that
U, nU,U,= 1 Using the Baire Category Theorem we can find r >0
such that rU CU,U, where U denotes the unit ball of L

Given (¢,) in I and € >0 let (r,) in ¢, and (s,) in [ be such that
(r.s.) = (t,) foreach n and |r,|=1foralln and X, |s,|=Z,|t, | + € Let
(ur) in A** and (v,) in A® be such that

() =(s.) @)= 1/r.

For each (w,)in ¢, (w,u,) isin ¢. Since ¢, is the closure of ¢ in m, (r,u,)
is in the closure of ¢ in A** so (r,u,) is in A. Since A* is normal

A = C“(u )”A""

where C depends only on the norm on A. Thus we have

(rauv,) = (rus.) = (&)

and
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|

(rau )W () ae = C |l (un) RCH] e
=C/rd |s.|

éC/r(Z lt,,|+e).

Since this inequality holds for all € >0, (2.2) holds with K = C/r.

3. Local immersion and series immersion.

3.1. DeriNITION. A normed space E is said to be locally immersed
in a normed space X if the following condition holds:

(LIX) There is a number K >0 such that for each finite dimen-
sional subspace G of E there is a continuous linear mapping T in
U(E, X) such that

ITx|z K|x|] x€G.

3.2. PropoOSITION. The following property (‘‘splits through X’) is
equivalent to (LIX).

(SpX) There is K =1 such that each finite rank mapping from a
normed space D to E can be factored

V=VviuVi Vil vl Vil = K] V]

with Vyin L(D, E), V,in L(E, Y) where Y is a closed subspace of X and
Vi, in L(Y, E).

Proof. (SpX) = (LIX). Let V denote the inclusion map from G
into E, and let V,, V,, V, satisfy (SpX). If T = V,Vi/|V,V4|| then

[ T]|=1, and for each x in G we have

Ixl=lvivaVix [=[[ Vil V2 Vix |

= Vil Valll Vallll Tx || = K || T |
(LIX) => (SpX). Let G=V(D), V;=V and V,=T where T is
given by (LIX). Let Y= T(G) and define V; on Y by Viy =x if
Tx =y. Then

V=VV,V; and [V V][ Vi[=K[V].
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3.3. DerINITION. A normed space E is said to be series immersed
in a normed space X if the following statement holds:

(SIX) For each absolutely divergent series 2,x, in E there is T in
L(E, F) such that X, Tx, diverges absolutely.
We omit the proof of the following statement which is known [8].

3.4. LemMA. For T a continuous linear mapping from c, into a
normed space E the following statements are equivalent:

(a, T is nuclear,

(b) T is integral,

(c) T is absolutely summing;

d) =, || Te.|<c.

3.5. ProrosiTION. For E and X arbitrary Banach spaces the fol-
lowing conditions are equivalent to (SIX) and thus [7] implied by (LIX).

(ASX) For every Banach space D a mapping T in L(D,E) is
absolutely summing if ST is absolutely summing for all S in L(E, X).
(ASX), The same statement as (a) with D = c,.

Proof. (SIX) = (ASX). Suppose T in L(D, E) is not absolutely
summing. Then there is a weakly absolutely summable series £,x, in D
such that =, || Tx,||=«. By (SIX) there is S in L(E, X) such that
2, [|STx, || = so that ST is not absolutely summing.

(ASX) > (ASX),. Clear.

(ASX), > (SIX). Suppose =,x, is a series in E with Z, | x,|=
©. If Z,x, is not weakly absolutely summable it is easy to find T in
L(E, X) such that Z,| Tx,|| = where T has rank one. If Z,x, is
weakly absolutely summable define T from ¢, into E by

T((t.)) = Z.t.x,.

By 3.4, T is not absolutely summing because 2, || Te, || = Z, || x, | = «© so by
(ASX), there is S in L(E,X) such that ST is not absolutely
summing. Consequently by 3.4,

2 8Te.[|= 2 [18x. [ = =.

3.6. ProposITION. For Banach spaces E and X the following
condition is implied by (LI1X) and implies (SIX):
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(intX) A mapping T from a Banach space D into E is integral if
ST is integral for all S in L(E, Y) as Y ranges over the closed subspaces
of X.

Proof. (LIX) = (intX). Suppose ST is integral for all S in
L(E,Y). We first show there is M >0 such that

(3.1) sup{|| ST||: S € U(E, Y), Y isa closed subspace of X} = M.

Let % denote the set of all closed subspaces Y of X. Let Z,(%) denote
the Banach space of all indexed families (Sy)yecs Where Sy isin L(E, Y)
and supy || Sy || = [|(Sy)]| <. Let Z,(%) denote the Banach space of all
indexed families (Vy)yes where Vy is in int(D, Y) and supy || Vi ||| =
ll(V¥) |l <. The correspondence (Sy)yeca — (SyT)ycs determines a
linear mapping from Z (%) into Z,(% ) which is continuous by the Closed
Graph Theorem. There is thus M >0 such that

NS =MISHI (S € Z(¥)

which proves (3.1).

If S is a finite rank mapping in L(E, D) let V denote the inclusion
from TS(E) into E. By (SpX), V= ViV, Vi with Viin L(TS(E),E), T,
in L(E,Y) where Y is a subspace of X, V, is in L(Y,E) and
VAl Vallll V5| = K. Thus we have

[tr TS| = |tr(V,V, VL TS)|
=[ Vil v2VAT IS |
=[VilM[I VIl Vil ST= MK S]]

which shows T is integral.
(int X) = (SIX) by Lemma 3.4 and Proposition 3.5.

Notice the connection of the following statement with the results of
§2.

3.7. PRoOPOSITION. The normed space E is series immersed in the
Banach space X if and only if the following condition holds:

(diag X) There is M >0 such that for each finite dimensional
subspace F of E one can find a mapping R from E into m[X] and a
mapping A in diag(X) such that

|ARx | =||x| forxinE
M||ARx ||z | x| forx inF.
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Proof. (diagX) = (SIX). If Z,[Tx,[|<e for all T in L(E,X)
then there is K >0 such that 2, || Tx, || = K| T|| for each T in L(E, X) by
the Uniform Boundedness Principle. For k a fixed positive integer let R
and A satisfy (diag X) for the finite dimensional subspace spanned by
{xi, x5, -+, x.}. There is a bounded sequence (T) in L(E, X),such that
Rx = (Tx) and a sequence ¢, (20) in [ such that A(y,)=(ty,). Since
|[ARx|=| x| for x in E it follows that 2,4 | T|=1. Thus we have

S In =M 18R | = M3 3 4] T

=MS, S 4] Tl = MKS, 4| T)|

i n=1 i
= MK.
Since M and K are independent of k, =[x, <.

(SIX) = (int X). We proceed as in [2]. Let o(E) consist of all
sequences (x,) in E such that 2, || Tx, || < for all T in L(E, X). Then
o(E) is a Banach space with the norm

Il =sup{ S 1T 1 TY=1).
If (SIX) holds o(E)=I[E] so there is M'>0 such that

S Il = A2M Gl

for all (x,) in /[E]. From this one concludes that for (x,) in /[E]
G2 S| Hé(M/Z)sup{Z on(Tx,): @ € U, TE U(E, X)}.

The topological dual space of /[ E] can be represented by m [ E'] with
duality given by the bilinear form

((x)), (%)) = Z x(x)  (x)Em[E]; (x)EIE]
From (3.2) it follows that the unit ball of m[E’] is contained in the
w*-closed convex cover of sequences having the form (M'/2)(T'¢,)
where || T'|=1 and ||¢,||=1 for each j.

For any finite subset A = {x;, x,, - -, x,} of E not containing 0, let
n=(x1, x5+, xi, 0, 0,-) be such that x,(x,)=]x.|| and x,=1 for
n=12,--- k. By the preceding paragraph we can find T}, -+, T, in
U(E, X), ¢y, -+, ¢, Z0withZ/_,c, =1 and (¢,)~, i = 1,2, - -, r with each
@; in the unit ball of X’ such that
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=3 e (M2)(Tig,). x|

<@/2)min{]x,|: n=1,2,- -, k}

for each n=1,2,---, k. Here x,e, is the sequence with x, in the nth
place and 0’s elsewhere. From (4.2) we see that for each n

(3.3)

%= (M) 3 e Tigu(x) | < 12|
from which it follows that

MYl Tl = M3, 6| Tig(x)

(3-4) >|lx, | for n=1,2,-- k.

If F is a finite dimensional subspace of E let A be a (2M')'-net for
the unit sphere of F. If T}, To,- - -, T,and ¢, ¢c5, - - -, ¢, satisfy (3.4) define
R from E into m[X] by

Rx = (ﬂx’ TZX’ T, 'T‘rxv 070’ o ')
and A from m[X] into /[ X] by

A()’/) = (Cl)’h Y Cryr’ 07 Oa t ')-

Then |ARx||=| x| for x in E since || T|=1 for each i and =%, |c¢/|=
1. For x in F with || x| = 1 thereisy in A with|/x —y | <(2M’)"'so that

lARx = (|ARy |- [[AR(y = x)|
= (MY yll=lly — x|z @M)™

Therefore, the second inequality of (diag X) holds with M = (2M')™".

3.8. THEOREM. Let X be a Banach space which contains a sub-
space isomorphic to A[X] where X is a normal BK-space. For E any
Banach space the following statements are equivalent:

(SIX), (LIX), (ASX), (intX).

Proof. (SIX) = (LIX). It suffices to prove that E is locally im-
mersed in A[X]. Given F a finite dimensional subspace of E let R and
A be determined by (diag X) of Proposition 3.7.

If A(y,) = (t.y.) for (y,) in m[X] let t, = u,v, where (u,) is in A, (v,)
i1s in A® and
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”(un)”A = 1’ ”(vn)”/\“ = K

where K depends only on A (Proposition 2.5). If Rx = (R,x) for x in E
define T from E into A[X] by

Tx = (4,R.x).
Since [[ (), =1
1T flaxg = Il waRox [ = supa || Rox [} ()l = 1.
For x in F

ITx lla = |l Rex Dl = K™ 20,

u,R,x ||
since the function defined by f((s,)) = £,0,s, isin A’ and||f||= K. Thus

[ Tx i = K20, | uR.x ||
= K| (|| Rux [
= MK x|

Therefore, E is locally immersed in X.
(LIX) & (ASX) by Proposition 3.5.
(LIX) = (int X) = (SIX) by Proposition 3.6.
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