E-UNITARY COVERS FOR INVERSE SEMIGROUPS

D. B. MCALISTER AND N. R. REILLY

An inverse semigroup is called E-unitary if the equations $ea = e = e^2$ together imply $a^2 = a$. In a previous paper, the first author showed that every inverse semigroup has an E·unitary cover. That is, if S is an inverse semigroup, there is an E·unitary inverse semigroup P and an idempotent separating homomorphism of P onto S. The purpose of this paper is to consider the problem of constructing E·unitary covers for S.

Let S be an inverse semigroup and let F be an inverse semigroup, with group of units G, containing S as an inverse subsemigroup and suppose that, for each $s \in S$, there exists $g \in G$ such that $s \leq g$. Then $\{(s,g) \in S \times G : s \leq g\}$ is an E unitary cover of S. The main result of §1 shows that every E unitary cover of S can be obtained in this way. It follows from this that the problem of finding E unitary covers for S can be reduced to an embedding problem. A further corollary to this result is the fact that, if P is an E unitary cover of S and P has maximal group homomorphic image G, then P is a subdirect product of S and G and so can be described in terms of S and G alone. The remainder of this paper is concerned with giving such a description.

1. E-unitary covers. An inverse semigroup is called Eunitary if the equations $ea = e = e^2$ together imply $a^2 = a$. It was shown in [4] that every inverse semigroup S has an E-unitary cover in the sense that there is an E-unitary inverse semigroup P together with an idempotent separating homomorphism θ of P onto S. It was further shown in [5] that every E-unitary inverse semigroup is isomorphic to a $P(G, \mathcal{X}, \mathcal{Y})$ where \mathcal{X} is a down directed partially ordered set with \mathcal{Y} an ideal and subsemilattice of \mathcal{X} and where G acts on \mathcal{X} by order automorphisms in such a way that $\mathcal{X} = G\mathcal{Y}$; see [5] for details. The group G in $P = P(G, \mathcal{X}, \mathcal{Y})$ is isomorphic to the maximum group homomorphic image P/σ of P where

$$\sigma = \{(a, b) \in P \times P : ea = eb \text{ for some } e^2 = e \in P\}.$$

DEFINITION 1.1. Let S be an inverse semigroup and let G be a group. Then an E-unitary inverse semigroup P is an E-unitary cover of S through G if

(i) $P/\sigma \approx G$

(ii) there is an idempotent separating homomorphism θ of P onto S.

Thus, if $P = P(G, \mathcal{X}, \mathcal{Y})$ is an *E*-unitary cover of *S* then *P* is an *E*-unitary cover of *S* through *G*. As stated, the problem of finding *E*-unitary covers of an inverse semigroup *S* consists of finding homomorphisms onto *S*. The main result of this section shows that this problem can be replaced by an embedding problem.

DEFINITION 1.2. [2] Let $S = S^1$ be an inverse semigroup, with group of units G. Then S is a *factorizable* inverse semigroup if and only if, for each $a \in S$ there exists $g \in G$ such that $a \leq g$.

Chen and Hsieh showed in [1] that every inverse semigroup S can be embedded in a factorizable inverse semigroup. Indeed, let θ be a homomorphism of S into the symmetric inverse semigroup \mathscr{I}_X on a set X. Let Y = X if X is finite and $Y = X \cup X'$, with $X \cap X' = \Box$, |X| = |X'|, otherwise. Then $F = \{\alpha \in \mathscr{I}_Y : \alpha \leq \gamma \text{ for some permutation} \gamma \text{ of } Y\}$ is a factorizable inverse semigroup which contains $S\theta$.

PROPOSITION 1.3. Let F be a factorizable inverse semigroup with group of units G and let θ be a one-to-one homomorphism of an inverse semigroup S into F. Suppose that for each $g \in G$ there exists $s \in S$ such that $s\theta \leq g$. Then

 $P = \{(s, g) \in S \times G \colon s\theta \leq g\}$

is an E-unitary cover of S through G.

Proof. It is clear that P is an inverse subsemigroup of $S \times G$ and, because F is factorizable, that the first projection $\pi_1: P \to S$ is an idempotent separating homomorphism of P onto S. Likewise, because of the condition on the homomorphism $\theta: S \to F$, the second projection $\pi_2: P \to G$ is a homomorphism of P onto G.

Now (s, g), $(t, h) \in P$ with $(s, g)\pi_2 = (t, h)\pi_2$ implies g = h thus $(st^{-1})\theta = s\theta(t\theta)^{-1} \leq gh^{-1} = 1$. It follows from this that st^{-1} is idempotent so that es = et, for some idempotent e in S. But then $(e, 1) \in P$ and (e, 1)(s, g) = (e, 1)(t, h) so that $(s, g)\sigma(t, h)$. This shows that $\pi_2 \circ \pi_2^{-1} \subseteq \sigma$. On the other hand, since π_2 is a homomorphism onto a group, $\sigma \subseteq \pi_2 \circ \pi_2^{-1}$. Hence P has maximum group homomorphic image G.

Finally, since $(s, 1) \in P$ implies $s\theta \le 1$, and so $s^2 = s$, if $(s, g)\pi_2 = 1$ then (s, g) is idempotent. Hence P is E-unitary.

It follows from the remarks before Proposition 1.3 that every inverse semigroup has an E-unitary cover. The main result of this section shows that every E-unitary cover of S through G is constructed as in Proposition 1.3 for some factorizable inverse semigroup F, with group of units G, containing S as an inverse subsemigroup. In order to prove this, we need some lemmas.

LEMMA 1.4. Let $\theta: P(G, \mathcal{X}, \mathcal{Y}) \to S$ be an idempotent separating homomorphism of an *E*-unitary inverse semigroup $P(G, \mathcal{X}, \mathcal{Y})$ onto *S*. For each $A \in \mathcal{Y}$ set $N_A = \{g \in G: g^{-1}A \in \mathcal{Y} \text{ and } (A, g)\theta = (A, 1)\theta\};$ if X = gA with $g \in G$, $A \in \mathcal{Y}$, set $N_X = gN_Ag^{-1}$. Then N_X is well defined. Further, the relation π on $\mathcal{X} \times G$ defined by

$$(A, g)\pi(B, h)$$
 if and only if $A = B$ and $gh^{-1} \in N_A$

is an equivalence on $\mathscr{X} \times G$ inducing $\theta \circ \theta^{-1}$ on $P(G, \mathscr{X}, \mathscr{Y})$.

Proof. It was shown in [5] that the subgroups N_A , $A \in \mathcal{Y}$ satisfy the following three conditions

- (i) $N_A \lhd C_A = \{g \in G : gB = B \text{ for all } B \leq A\}$ for $A \in \mathcal{Y}$;
- (ii) $A, gA \in \mathcal{Y}$ implies $N_{gA} = gN_A g^{-1}$;
- (iii) $A \leq B \in \mathcal{Y}$ implies $N_B \subseteq N_A$.

We use (ii), to show that N_x is well defined. Suppose gA = hB, A, $B \in \mathcal{Y}$. Then $B = h^{-1}gA$ so that, $N_B = (h^{-1}g)N_A(h^{-1}g)^{-1}$ by (ii). Thus $hN_Bh^{-1} = gN_Ag^{-1}$. When the N_x , $X \in \mathcal{X}$ are defined in this way, it is easy to see that they obey the analogs of (i), (ii), (iii) and the remainder of the lemma follows easily.

For each $C \in \mathscr{X}$, $g \in G$, we shall denote by [C, g] the π -class containing (C, g). Further, we shall denote by \mathscr{X} the set $(\mathscr{X} \times G)/\pi \cup G$.

LEMMA 1.5. For each $s \in S$ such that $s = (A, g)\theta$, set

$$\Delta \rho_s = \{ [C, h] : h^{-1}C \leq A \}$$

and $[C, h]\rho_s = [C, hg]$ for each $[C, h] \in \Delta \rho_s$.

Then $\rho: s \to \rho_s$ is a faithful representation of S by one-to-one partial transformations of \mathscr{Z} .

Proof. This follows straightforwardly, using the fact that $\{N_X : X \in \mathcal{X}\}$ obeys (i), (ii), (iii) of Lemma 1.4.

For each $g \in G$, define $\alpha_g \colon \mathscr{X} \to \mathscr{X}$ by

$$h\alpha_{g} = hg$$
 and $[C, h]\alpha_{g} = [C, hg]$

for each $h \in G$, $[C, h] \in (\mathscr{X} \times G)/\pi$. Then, as in Lemma 1.5, it follows that $\alpha \colon h \to \alpha_h$ is a faithful representation of G by permutations of \mathscr{X} . Let $F = \{\gamma \in \mathscr{I}_{\mathscr{X}} \colon \gamma \leq \alpha_g \text{ for some } g \in G\}.$

PROPOSITION 1.6. *F* is a factorizable inverse semigroup which contains Sp. Further, *F* has group of units $\{\alpha_g : g \in G\}$ and for each α_g there exists $\rho_s \leq \alpha_g$; also

$$P(G, \mathscr{X}, \mathscr{Y}) \approx \{(s, g) \in S \times G : s\rho \leq \alpha_{g}\}.$$

Proof. The only part requiring verification is that $P(G, \mathcal{X}, \mathcal{Y}) \approx P$ where $P = \{(s, g) \in S \times G : s\rho \leq \alpha_s\}$.

Define $\phi: P(G, \mathcal{X}, \mathcal{Y}) \to P$ by $(A, g)\phi = ((A, g)\theta, \alpha_g)$. Then, since θ is idempotent separating and α is faithful, ϕ is one-to-one. Further

$$(A, g)\phi(B, h)\phi = ((A, g)\theta, \alpha_g)((B, h)\theta, \alpha_h)$$
$$= ((A \land gB, gh)\theta, \alpha_g\alpha_h)$$
$$= ((A, g)(B, h))\phi$$

so ϕ is a homomorphism.

Finally, if $(s, \alpha_g) \in P$, where $s = (B, h)\theta$, then $\rho_s \leq \alpha_g$ implies $[C, 1]\rho_s = [C, 1]\alpha_g$ for each $C \leq B$; that is, [C, h] = [C, g] for each $C \leq B$. In particular, [B, h] = [B, g] so that $s = (B, h)\theta = (B, g)\theta$. Hence $(s, \alpha_g) = (B, g)\phi$ so that ϕ is onto.

Summing up, we have the following theorem.

THEOREM 1.7. Let G be a group and let S be an inverse semigroup. Let F be a factorizable inverse semigroup with group of units G which contains S as an inverse subsemigroup. Suppose that, for each $g \in G$, there exists $s \in S$ such that $s \leq g$. Then

$$\{(s,g) \in S \times G \colon s \leq g\}$$

is an E-unitary cover of S through G. Conversely, each E-unitary cover is isomorphic to a cover obtained in this way.

COROLLARY 1.8. Let P be an E-unitary cover of S through G. Then P is a subdirect product of S and G.

Theorem 1.7 shows that the problem of finding E-unitary covers of S through G is equivalent to finding an embedding of S into a factorizable inverse semigroup. Such embeddings are hard to classify as they may be much larger than S and G. On the other hand, Corollary 1.8 shows that every E-unitary cover of S through G is a subdirect product of S and G and therefore depends only on S and G. In the next section, we turn to the problem of constructing those subdirect products of S and G which are E-unitary covers of S through G.

2. Subdirect products of inverse semigroups.

DEFINITION 2.1. Let S and T be inverse semigroups. Then a mapping $\phi: S \rightarrow 2^T$ is a subhomomorphism of S into T if

(i) $\phi(s) \neq \Box$ for each $s \in S$;

(ii) $\phi(s)\phi(t) \subseteq \phi(st)$ for all $s, t \in S$;

(iii) $\phi(s^{-1}) = \phi(s)^{-1}$ for each $s \in S$,

where, for any $A \subseteq T$, $A^{-1} = \{a^{-1}: a \in A\}$.

The set $\phi(S) = \{t \in T : t \in \phi(s) \text{ for some } s \in S\}$ is, from (ii) and (iii), an inverse subsemigroup of T. We say that ϕ is *surjective* if $T = \phi(S)$.

PROPOSITION 2.2. Let S and T be inverse semigroups and let ϕ be a surjective subhomomorphism of S into T. Then

$$\Pi(S, T, \phi) = \{(s, t) \in S \times T \colon t \in \phi(s)\}$$

is an inverse semigroup which is a subdirect product of S and T.

Conversely, suppose that V is an inverse semigroup which is a subdirect product of S and T and let ψ be the induced homomorphism of V into $S \times T$. Then ϕ defined by

$$\phi(s) = \{t \in T : (s, t) \in V\psi\}$$

is a surjective subhomomorphism of S into T. Further

$$V\psi = \Pi(S, T, \phi).$$

Proof. This is straightforward.

Proposition 2.2 shows that every E-unitary cover of S through G is determined by a subhomomorphism of S into G; and, dually, by a subhomomorphism of G into S. We shall consider these two approaches and the relationships between them in the later sections of the paper.

3. Subhomomorphisms into a group. In this section we shall describe the subhomomorphisms of an inverse semigroup S into a group G. Note, however, that not every subhomomorphism ϕ of S into G gives an E-unitary cover of S through G.

DEFINITION 3.1. Let S be an inverse semigroup and let G be a group. Then a subhomomorphism $\phi: S \to G$ is unitary if

$$1 \in \phi(s)$$
 implies $s^2 = s$.

Note that, if s is an idempotent then

$$\phi(s)\phi(s)^{-1} = \phi(s)\phi(s^{-1}) \subseteq \phi(ss^{-1}) = \phi(s)$$

so that $1 \in \phi(s)$.

PROPOSITION 3.2. Let S be an inverse semigroup and let G be a group. Suppose that ϕ is a surjective unitary subhomomorphism of S into G. Then $\Pi(S, G, \phi)$ is an E-unitary cover of S through G. Conversely, let P be an E-unitary cover of S through G with ψ the induced homomorphism $P \rightarrow S \times G$. Then ϕ defined by

$$\phi(s) = \{g \in G \colon (s,g) \in P\psi\}$$

is a surjective unitary subhomomorphism of S into G.

Proof. Suppose that ϕ is unitary. Then, since the idempotents of $P = \Pi(S, G, \phi)$ are the elements (e, 1) with $e^2 = e$ in S, the projection π_s of P onto S is idempotent separating.

The projection $\pi_G: P \to G$ is onto, so, to prove that $G \approx P/\sigma$, we need only show that $\pi_G \circ \pi_G^{-1} = \sigma$. In fact, since π_G is a homomorphism onto a group, so that $\sigma \subseteq \pi_G \circ \pi_G^{-1}$, we need only show that $\pi_G \circ \pi_G^{-1} \subseteq \sigma$.

Suppose that $(s, g)\pi_G = (t, h)\pi_G$ so that g = h. Then (s, g), $(t, g) \in P$ implies $(st^{-1}, 1) \in P$. That is, $1 \in \phi(st^{-1})$. Since ϕ is unitary, this implies st^{-1} is idempotent so that es = et for some idempotent e in S. But then (e, 1)(s, g) = (e, 1)(t, g) = (e, 1)(t, h) so that $(s, g)\sigma(t, h)$. Thus $\pi_G \circ \pi_G^{-1} \subseteq \sigma$.

Finally, if $(s, g) \in P$ and (e, 1)(s, g) = (e, 1) then g = 1 so that $1 \in \phi(s)$. Since ϕ is unitary, this requires $s^2 = s$; whence (s, g) is idempotent. Hence P is an E-unitary cover of S through G.

Conversely, suppose that P is an E-unitary cover of S through G and let $1 \in \phi(s)$. Then $(s, 1) = p\psi$ for some $p \in P$. But $1 = p\psi\pi_G = p\sigma^{4}$ implies $p^2 = p$, since P is E-unitary, so that $s = p\psi\pi_s = p\theta$, where θ is the idempotent separating homomorphism $P \to S$, is also idempotent. Hence ϕ is unitary.

The proof of Proposition 3.2 is strikingly reminiscent of that of Proposition 1.3. This is because Proposition 1.3 is a special case of Proposition 3.2. For, let θ be a homomorphism of S into a factorizable inverse semigroup F, with group of units G, and set

$$\phi(s) = \{g \in G \colon s\theta \leq g\}.$$

Then $g \in \phi(s)$, $h \in \phi(t)$ implies $s\theta \leq g$, $t\theta \leq h$ so that $s\theta t\theta \leq gh$. Thus

 $(st)\theta \leq gh$; that is, $gh \in \phi(st)$. Hence $\phi(s)\phi(t) \subseteq \phi(st)$. Further $s\theta \leq g$ if and only if $s\theta^{-1} \leq g^{-1}$; that is $s^{-1}\theta \leq g^{-1}$. Hence $\phi(s^{-1}) = \phi(s)^{-1}$ so that ϕ is a subhomomorphism. If θ is one-to-one, then clearly ϕ is unitary so that Proposition 1.3 follows.

In order to obtain a subhomomorphism ϕ , as above, from a mapping $\theta: S \to F$ one need not assume that θ is a homomorphism. Only that θ is a *v*-prehomomorphism in the sense of the following definition.

DEFINITION 3.4. Let S, T be inverse semigroups then a mapping $\theta: S \rightarrow T$ is a *v*-prehomomorphism if it obeys the following two conditions.

(i) $(st)\theta \leq s\theta t\theta$ for each $s, t \in S$;

(ii) $(s^{-1})\theta = (s\theta)^{-1}$ for each $s \in S$.

If S and T are semilattices then a v-prehomomorphism is just an isotone mapping of S into T.

The results in the next lemma follow straightforwardly from the definitions.

LEMMA 3.5. Let S be an inverse semigroup and let F be a factorizable inverse semigroup with group of units G. Suppose that θ is a v-prehomomorphism of S into F. Then ϕ defined by

$$\phi(s) = \{g \in G \colon s\theta \leq g\}$$

is a subhomomorphism of S into G. It is surjective if and only if, for each $g \in G$, there exists $s \in S$ such that $s\theta \leq g$; it is unitary if and only if θ is idempotent determined in the sense that $a\theta$ idempotent implies a idempotent.

Lemma 3.5 shows that v-prehomomorphisms of S into F give rise to subhomomorphisms from S into G. On the other hand, Proposition 1.6 shows that surjective unitary subhomomorphisms of S into G can be obtained from embeddings of S into factorizable inverse semigroups with groups of units G. To end this section, we show that every subhomomorphism of S into G is determined by a v-prehomomorphism θ of S into a factorizable inverse semigroup $\mathcal{H}(G)$ which depends only on G.

It follows from this that every subdirect product of S and G, in particular every E-unitary cover of S through G, is determined by a v-prehomomorphism of S into $\mathcal{K}(G)$. The problem of constructing v-prehomomorphisms between inverse semigroups is considered, in detail, in [6].

Let G be a group. Then we shall denote by $\mathscr{K}(G)$ the set of all cosets X = Ha of G modulo subgroups of G. The following simple

lemma characterizes the members of $\mathcal{K}(G)$ among the nonempty subsets of G.

LEMMA 3.6 [3]. Let G be a group and let X be a nonempty subset of G. Then $X \in \mathcal{K}(G)$ if and only if $X = XX^{-1}X$.

It follows from Lemma 3.6 that any nonempty intersection of cosets is again a coset. We may thus define a binary operation * on $\mathcal{K}(G)$ as follows: for $X, Y \in \mathcal{K}(G)$,

X * Y = smallest coset that contains XY.

PROPOSITION 3.7 [8]. Let G be a group. Then $\mathcal{H}(G)$ is a factorizable inverse semigroup with group of units isomorphic to G. The idempotents are the subgroups of G. Further, for $X, Y \in \mathcal{H}(G), X \leq Y$ if and only if $X \supseteq Y$.

PROPOSITION 3.8. Let S be an inverse semigroup and let G be a group. Suppose that ϕ is a subhomomorphism of S into G. Then θ defined by

 $a\theta = \phi(a)$ considered as a member of $\mathcal{H}(G)$

is a v-prehomomorphism of S into $\mathcal{K}(G)$.

Proof. Let $X = \phi(a)$; then $X \subseteq XX^{-1}X$. On the other hand, if g_1 , g_2 , $g_3 \in X$ then

$$g_1g_2^{-1}g_3 \in \phi(a)\phi(a)^{-1}\phi(a) = \phi(a)\phi(a^{-1})\phi(a) \subseteq \phi(aa^{-1}a) = \phi(a),$$

since ϕ is a subhomomorphism. Hence $XX^{-1}X \subseteq X$ and so $X = XX^{-1}X$. This shows $X \in \mathcal{X}(G)$, so that θ is a mapping into $\mathcal{X}(G)$.

Next, since ϕ is a subhomomorphism, $a\theta b\theta \subseteq (ab)\theta$ for each a, $b \in S$. But $a\theta * b\theta$ is the smallest coset containing $a\theta b\theta$ so this implies $a\theta * b\theta \subseteq (ab)\theta$. That is, by Lemma 3.7, $a\theta * b\theta \ge (ab)\theta$. Finally, again since ϕ is a subhomomorphism, $(a^{-1})\theta = \phi(a^{-1}) = \phi(a)^{-1} = (a\theta)^{-1}$ for each $a \in S$. Hence θ is a v-prehomomorphism of S into $\mathcal{X}(G)$.

It follows from Proposition 3.8 that the subdirect products of S and G are determined by v-prehomomorphisms of S into $\mathcal{H}(G)$. More precisely, we have the following theorem, which sums up the results of this section. It should be pointed out however that it may be easier to find subhomomorphisms of S into G directly than to find v-prehomomorphisms of S into $\mathcal{H}(G)$.

THEOREM 3.9. Let S be an inverse semigroup and let G be a group.

(A). Let θ be a v-prehomomorphism of S into $\mathcal{X}(G)$ and suppose that, for each $g \in G$, there exists $s \in S$ such that $s\theta \leq \{g\}$; i.e. $g \in s\theta$. Then $\{(s, g): g \in s\theta\}$ is an inverse semigroup which is a subdirect product of S and G. Every subdirect product of S and G is of this form for some v-prehomomorphism of S into $\mathcal{X}(G)$.

(B). With θ as in (A), $\{(s, g): g \in s\theta\}$ is an *E*-unitary cover of *S* through *G* if and only if θ is idempotent determined. Every *E*-unitary cover of *S* through *G* is of this form for some idempotent determined *v*-prehomomorphism of *S* into $\mathcal{H}(G)$.

4. Subhomomorphisms from a group. In §3, we characterized the *E*-unitary covers of an inverse semigroup *S*, through a group *G*, as subdirect products $\Pi(S, G, \phi)$ with ϕ a subhomomorphism of *S* into *G*. They can also be described in the form $\Pi(G, S, \phi)$ with ϕ a subhomomorphism of *G* into *S*. In this section, we give such a description. As might be expected the results obtained are, in a sense, dual to those in §3.

DEFINITION 4.1. Let S and T be inverse semigroups. Then a mapping $\theta: S \to T$ is a \wedge -prehomomorphism of S into T if it obeys the following two conditions.

- (i) $a\theta b\theta \leq (ab)\theta$ for each $a, b \in S$;
- (ii) $(a^{-1})\theta = (a\theta)^{-1}$ for each $a \in S$.

PROPOSITION 4.2. Let S be an inverse semigroup and let G be a group. Suppose that T is an inverse semigroup containing S and let θ be a \wedge -prehomomorphism of G into T. Then ϕ defined by

$$\phi(g) = \{s \in S \colon s \leq g\theta\}$$

is a subhomomorphism of G into S; ϕ is surjective if and only if, for each $s \in S$ there exists $g \in G$ such that $s \leq g\theta$.

The semigroup $\Pi(G, S, \phi)$ is *E*-unitary. It is an *E*-unitary cover of *S* through *G* if ϕ is surjective.

Proof. The fact that ϕ is a subhomomorphism and the statement about the surjectivity of ϕ are readily verified.

Let $a = 1\theta$; then, since θ is a \wedge -prehomomorphism

$$a = aa^{-1}a = aaa \leq (1.1)\theta a = a^2 \leq a$$

so that a is idempotent. Let $(g, s) \in \Pi(G, S, \phi)$ and suppose that (g, s)(1, e) = (1, e) where e is idempotent. Then g = 1 so that $s \le 1\theta = a$; thus s is idempotent. Hence $\Pi(G, S, \phi)$ is E-unitary.

Suppose that ϕ is surjective. Then, if we identify $S \times G$ with $G \times S$, $\Pi(G, S, \phi) = \Pi(S, G, \phi^*)$ where $g \in \phi^*(s)$ if and only if $s \in \phi(g)$. Since $1 \in \phi^*(s)$ implies $s \leq 1\theta = a$, which is idempotent, ϕ^* is unitary. Hence, by Proposition 3.2, $\Pi(G, S, \phi)$ is an *E*-unitary cover of *S* through *G*.

Proposition 4.2 is analogous to Proposition 3.2. The next proposition is similar to Proposition 3.8; it shows that every *E*-unitary cover of *S* through *G* is determined by a \land -prehomomorphism of *G* into a semigroup C(S) depending only on *S*.

DEFINITION 4.3 [9]. Let S be an inverse semigroup. Then a nonempty subset H of S is called *permissible* if

(i) $a \in H, b \leq a \text{ implies } b \in H;$

(ii) $a, b \in H$ implies $ab^{-1}, a^{-1}b$ idempotent.

Schein [9] shows that the set C(S) of permissible subsets of S forms an inverse semigroup under subset multiplication. Further S can be embedded in C(S) by means of the homomorphism η given by

$$a\eta = \{x \in S \colon x \leq a\}$$

for each $a \in S$.

PROPOSITION 4.4. Let S be an inverse semigroup and let G be a group. Suppose that ϕ is a surjective subhomomorphism of G into S such that $\Pi(G, S, \phi)$ is an E-unitary cover of S through G. Then $\phi(g)$ is permissible for each $g \in G$ and θ defined by

 $g\theta = \phi(g)$ considered as a member of C(S)

is a \wedge -prehomomorphism of G into C(S). Further

$$\Pi(G, S, \phi) = \{(g, s) \in G \times S \colon s \leq g\theta\};\$$

here we identify S with $S\eta$.

Proof. Suppose $a \in \phi(g)$, $b \leq a$; thus b = ea for some $e^2 = e \in S$. Then $(g, a) \in P = \prod(G, S, \phi)$ and $(1, e) \in P$ so that $(1, e)(g, a) = (g, b) \in P$. Hence $b \in \phi(g)$. Next, suppose $a, c \in \phi(g)$ then (g, a), $(g, c) \in P$ so that $(1, a^{-1}c) \in P$. Since P is an E-unitary cover of S through G, with $\pi_G \circ \pi_G^{-1} = \sigma$, where π_G denotes the projection of P onto G, this implies that $a^{-1}c$ is an idempotent. Similarly ac^{-1} is an idempotent. Hence $\phi(g)$ is permissible.

It is now easy to show that θ is a \wedge -prehomomorphism and, because $X \leq Y$ in C(S) if and only if $X \subseteq Y$, that $P = \{(g, s) \in G \times S : s \leq g\theta\}$.

If we combine the results of Propositions 4.2 and 4.4, then we obtain the following dual to Theorem 3.9.

THEOREM 4.5. Let S be an inverse semigroup and let G be a group. Let θ be a \wedge -prehomomorphism of G into C(S) such that, for each $s \in S$ there exists $g \in G$ with $s \leq g\theta$. Then

$$\{(g,s)\in G\times S\colon s\leq g\theta\}$$

is an E-unitary cover of S through G. Conversely, each E-unitary cover of S through G has this form for some \wedge -prehomomorphism θ of G into C(S).

5. Examples

5.1. Free group covers. Let S be an inverse semigroup and let X be a set of generators for S as an inverse semigroup. Let X^{-1} be a set in one to one correspondence with, but disjoint from, X. Then there is a homomorphism θ from the free semigroup $F_{X \cup X^{-1}}$, on $X \cup X^{-1}$, onto S such that $x\theta^{-1} = x^{-1}\theta$ for each $x \in X$. Similarly, there is a homomorphism $\psi: F_{X \cup X^{-1}} \to FG_X$, the free group on X such that $x\psi^{-1} = x^{-1}\psi$ for each $x \in X$. Define $\phi: S \to 2^{FG_X}$ by

 $w \in \phi(s)$ if and only if $w = u\psi$ for some $u \in F_{X \cup X^{-1}}$

with $u\theta = s$; that is $\phi(s) = s\theta^{-1}\psi$ for some $s \in S$.

PROPOSITION 5.1. ϕ is a surjective unitary subhomomorphism of S into FG_x .

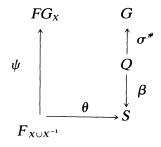
Proof. It is straightforward to show that ϕ is a surjective subhomomorphism of S into FG_x . Suppose that $1 \in \phi(s)$. Then there exists $w \in F_{X \cup X^{-1}}$ such that $w\theta = s$, $w\psi = 1$.

Let η be the canonical homomorphism from $F_{X \cup X^{-1}}$ into the free inverse semigroup FI_X on S. Then both θ and ψ can be factored through η . Since $w\psi = 1$ and FI_X is E-unitary [7] it follows that w, regarded as an element of FI_X , is idempotent. Hence $s = w\theta$ is an idempotent of S. This shows that ϕ is unitary.

As a result of the freeness of FG_x , $\Pi(S, FG_x, \phi)$, with ϕ as above, has a weak universal property.

PROPOSITION 5.2. Let S be an inverse semigroup and let $P = \Pi(S, FG_x, \phi)$ as above with α the homomorphism $P \rightarrow S$. Suppose that Q is an E-unitary cover of S through G with homomorphism $\beta: Q \rightarrow S$. Then there is a homomorphism $\gamma: P \rightarrow Q$ such that $\alpha = \gamma\beta$.

Proof. With the notation above, we have the following diagram of maps



For each $x \in X$, choose $y \in Q$ such that $y\beta = x\theta$. Then there is a homomorphism $\nu: F_{X \cup X^{-1}} \to Q$ such that $x\nu\beta = x\theta$ and $(x\nu)^{-1} = x^{-1}\nu$ for each $x \in X$. Then $\nu\sigma^{\ddagger}$ is a homomorphism of $F_{X \cup X^{-1}}$ into G and can be factored through ψ . That is, there is a homomorphism $\delta: FG_X \to G$ such that $\nu\sigma^{\ddagger} = \psi\delta$.

From the definition of P, $P = \{(w\theta, w\psi): w \in F_{X \cup X^{-1}}\}$. Define $\gamma: P \to Q$ by $(w\theta, w\psi)\gamma = w\nu$. Then $w\theta = u\theta$, $w\psi = u\psi$ implies $w\psi\delta = u\psi\delta$, that is $w\nu\sigma^{\ddagger} = u\nu\sigma^{\ddagger}$ and $w\nu\beta = u\nu\beta$. Since Q is an E-unitary cover of S through G, Corollary 1.8 shows that $u\nu = w\nu$. Hence γ is well defined; it is clearly a homomorphism. Further, from the definition,

$$(w\theta, w\psi)\gamma\beta = w\nu\beta = w\theta = (w\theta, w\psi)\alpha,$$

for each $(w\theta, w\psi) \in P$. Hence $\alpha = \gamma\beta$.

5.2. The Preston-Vagner cover. Let $\rho: S \to \mathscr{I}_S$ be the Preston-Vagner representation of an inverse semigroup S and let Y = S if S is finite, if not $Y = S \cup S'$ with $S \cap S' = \Box$, |S| = |S'|. Then $F = \{\alpha \in \mathscr{I}_Y : \alpha \leq \gamma \text{ for some permutation } \gamma \text{ of } Y\}$ is a factorizable inverse semigroup containing $S\rho$. It gives rise to the subhomomorphism ϕ where, for each $s \in S$,

$$\phi(s) = \{\alpha : \rho_s \leq \alpha, \ \alpha \text{ a permutation of } Y\}$$
$$= \{\alpha : x\alpha = xs \text{ for each } x \in Sss^{-1}, \ \alpha \text{ a permutation of } Y\}.$$

This subhomomorphism gives an E-unitary cover of S through K where

$$K = \{ \alpha \in S_Y : (xe)\alpha = x(e\alpha) \text{ for all } x \in S \text{ and some } e^2 = e \in S \},\$$

where S_Y denotes the symmetric group on Y.

5.3. E-unitary covers of bisimple inverse semigroups. A construction is given in [6] for the v-prehomomorphisms θ of a bisimple inverse semigroup S into an inverse semigroup T. When applied to the semigroup $\mathcal{H}(G)$ of cosets of a group G, this construction specializes to give the following construction for the E-unitary covers of S through G.

Let *H* be a subgroup of *G* and let $S(H) = \{a \in G : aHa^{-1} \subseteq H\}$. Then S(H) is a subsemigroup of *G* and (G/H, S(H)/H) is a partial semigroup under the multiplication *:

$$X * Y = XY$$
 for each $X \in S(H)/H$, $Y \in G/H$.

Pick an idempotent $e \in S$ and set $R_e = \{a \in S : aa^{-1} = e\}$, $P_e = R_e \cap eSe$ and let $\theta : R_e \to G/H$ be a one-to-one mapping such that the following hold

(i) $a\theta \in S(H)/H$ if $a \in P_e$

(ii) $a\theta b\theta = (ab)\theta$ for $a \in P_e$, $b \in R_e$

(iii) $G = \bigcup \{a\theta^{-1}b\theta : a, b \in R_{\epsilon}\}.$

Then $\{(s, g) \in S \times G : g \in a\theta^{-1}b\theta$ where $s = a^{-1}b\}$ is an *E*-unitary cover of *S* through *G*. Conversely, each such has this form for some $\theta : R_{\epsilon} \to G/H$ as above.

5.4. E-unitary covers for semilattices of groups. A construction is given in [6] for the v-prehomomorphisms θ of a semilattice of groups S into an inverse semigroup T. When applied to the semigroup $\mathcal{K}(G)$ of cosets of a group G, this construction specializes to give the following description of the E-unitary covers of S through G.

Let *E* be a semilattice and let θ be an anti-isotone mapping of *E* into the lattice of subgroups of *G*. For each $e \in E$ set $G_e = e\theta$ and $C_e = \{a \in G : aG_f a^{-1} = G_f \text{ for each } f \leq e\}$. Then G_e is a normal subgroup of C_e and the groups $K_e = C_e/G_e$ form a semilattice of groups $SL(E, \theta, \mathcal{K}(G))$ with linking homomorphisms $\phi_{e,f} : K_e \to K_f$ given by

$$X\phi_{e,f} = G_f X$$
 for each $X \in K_e$, $e \ge f$.

Suppose that S is a semilattice of groups with semilattice of idempotents E. Suppose that θ is an anti-isotone mapping of E into the lattice of subgroups of G and let ϕ be an idempotent determined homomorphism of S into $SL(E, \theta, \mathcal{X}(G))$ such that $G = \bigcup \{a\phi : a \in S\}$. Then

$$\{(s,g)\in S\times G\colon g\in s\phi\}$$

is an *E*-unitary cover of *S* through *G*. Conversely, each such has this form for some $\theta: E \to \mathcal{K}(G)$ and $\phi: S \to SL(E, \theta, \mathcal{K}(G))$.

References

1. S. Y. Chen and S. C. Hsieh, Factorizable inverse semigroups, Semigroup Forum, 8 (1974), 283-297.

2. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Vols. 1 and 2. Math. Surveys of the American Math. Soc. (Providence, R. I., Vol. 1 (1961), Vol. 2 (1967)).

3. P. Dubreil, Contribution à la théorie des demi-groupes, Mèm. Acad. Sci. Inst. France, 63 (1941), 1-52.

4. D. B. McAlister, Groups, semilattices and inverse semigroups, Trans. Amer. Math. Soc., 192 (1974), 227-244.

5. ——, Groups, semilattices and inverse semigroups, II, Trans. Amer. Math. Soc., 196 (1974), 351–370.

6. ——, v-Prehomomorphisms on inverse semigroups.

7. H. E. Scheiblich, Free inverse semigroups, Proc. Amer. Math. Soc., 38 (1973), 1-7.

8. B. M. Schein, Semigroups of strong subsets (Russian), Volžskii Matem. Sbornik, Kuibyšev, 4 (1966), 180-186.

9. ——, Completions, translational hulls and ideal extensions of inverse semigroups, Czechoslovak Math. J., 23 (1973), 575–609.

Received May 24, 1976. This research was partly supported by a grant from the National Science Foundation and a grant from the National Research Council.

Northern Illinois University DeKalb, IL 60115 and Simon Fraser University Burnaby, British Columbia, Canada