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A PERTURBATION THEOREM FOR
SPECTRAL OPERATORS

DIETER LUTZ

This note is concerned with analytic perturbations of spec-
tral operators. It is shown that under small perturbations
simple isolated eigenvalues remain simple and isolated and de-
pend holomorphically upon the perturbation parameter. As
one would expect the bounds are rather complicated in the case
of a spectral operator with general quasinilpotent part. For
scalar operators, however, these bounds become simple and
reproduce in the selfadjoint case those given by F. W. Schafke.

For the sake of simplicity we deal only with bounded
operators. The method used is an appropriate modification of the
elegant Hilbert space method introduced by Schafke in [3] to settle the
analogous problem for selfadjoint operators. The generalization to the
unbounded case is then straightforward.

Let X be a Banach space over C and B(X) the algebra of bounded
linear operators on X with the norm topology. Let further σ(T), ρ{T),
and Rλ{T) : = (T- λl)'1 for A G ρ(T) denote the spectrum, the resolvent
set, and the resolvent operator for T E B(X). Spectral measures,
spectral operators and scalar spectral operators are defined as in
Dunford-Schwartz [1]. Especially, if SGB(X) is a scalar spectral
operator, we have

S= I λE(dλ)
Jc

with an uniquely determined spectral measure E. A spectral operator
can be uniquely decomposed as T = S + N, where S is a scalar spectral
operator, and N is a bounded quasinilpotent operator commuting with
the spectral measure E of S. If £ is a spectral measure we denote by
ω(E) the minimum of all reals c which obey

f(λ)E(dλ) U c sup|/(λ) |
λec

for all bounded, Borel measurable, C-valued functions on C. Then
j)g 1.
If T = S 4- N as above is a spectral operator we have
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σ(T)=σ(S)

and

ker (T - λl)n = ker Nn Π ker (S - λl)

for each n G N and λ G C ([1]).
Especially, the point spectrum of T is contained in the point

spectrum of S (the converse is not true, in general). From the second
equation we get also that A G C is a simple eigenvalue of T (that means,
dim ker (T - λl) = 1) if A is a simple eigenvalue of S and an eigenvalue of
T. If for some n G N Nn = 0, the point spectra of S and T coincide.

Now let T = S + N be a spectral operator with spectral measure
E. Further, let A0GC be an isolated point of σ{T) and a simple
eigenvalue of Γ, and y0 G X with || yo|| = 1 an eigenvector to λ0. We put

d :=dist{λo,σ-(Γ)-{λo}},

( S l λ

Now, let Gn G J5(X) be given for n G N such that

obeys 0 < p < o°, that means that not all the Gn are zero. There exists a
maximal p0 = °° such that

exists for all μ G C with | μ | < p0, and

defines on {μ G C, \μ \ < p0} a holomorphic JB(X)-valued function G.
Now we can state our perturbation theorem.

THEOREM 1. There exist holomorphic functions y and A on {μ G
C, I μ I < po} with y (0) = y0 and λ(0) = λ0 wfiic/i obey
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(i) £(λo)y(/i)=yo;
(ii) [T-G(μ))y(μ) =
(iii)
(iv)

(v) If [T-G(μ)]y = λy with y^O, | μ | < p , |λ - λo | < β~ι - a'\
then we have λ = λ ( μ ) and y = c y(μ) with some c EC.

Proof, (i), (ii) We put

n=0 J D

where D := {A e C, |λ - λo | ̂  d/2}.
Then for every pair (A, μ) with

0, /3 ( | λ - λ o | + Σ l / * Γ l l G . | | ) < l

there is exactly one solution z = z(λ, μ ) of the equation

(1) z - Λ((λ - λo)z

z depends holomorphically upon λ and μ.
In fact, we have

| | f l | |<y UN" 1
\\J\ II = ^ J | | i > I

so for I μ I < po

Then, if α,, i>,eX and

α2 := R((λ - λo)α, + G(μ)α,)+ RG(μ)y0

b2:=R((λ- λo)Z>,

we get
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Since the second factor on the right side is smaller than 1, uniqueness and
existence of the solution z follow immediately as well as the holomorphy
of z. Starting for example with z() = 0, z is the limit of the iteration
given by

zn+1 = R((λ- λo)zn + G(μ)zn) + RG(μ)y0.

Especially, we get z(λ, 0) = 0.
We now consider the X-valued holomorphic function

Δ(λ, μ ) : = E (λ0) [(λ - λ0) (z (λ, μ ) + y0) + G (μ ) (z (λ, μ ) + y0)]

f o r I μ I < p 0 , 0 (I λ - λo I + Σ I μ I" II Gn II) < 1.
It is Δ(λ,O)=£(λo)[(λ-λo)(z(λ,O)+yo)] = (λ-λo)yo. The im-

plicit function argument used by Schafke can be employed in the vector
valued case, too (e.g. Lang [2]). This gives us the existence of a
holomorphic function λ on | μ | < p with

(2) E(λn)[(λ(μ)- λo)(z(λ(μ),μ)+ yo)+ G(μ)(z(λ(μ),μ)+ yn) = 0.

We put y(μ)=yo+z(λ(μ),μ).
Then y(μ) obeys

(ii) [T-G(μ)]y(μ)=λ(μ)y(μ).
In fact, we have E(λa)R = RE{λ()) = 0, so (1) gives

(i) E{λo)y(μ) = E(λo)ya+E (λ())z (λ(μ),μ)=E (λo)yo = y«
Further, let be x E X. Then, x = xt + x2 with xtEE(λ0)X,
x2EE(C-{λ0})X, so

(Γ - λJ)Rx = (T - λo/)i?x, + (T - A(1/)JRΛ:2 = x2,

since R | £ ( C - {λo})X = [(T - λ o / ) | E ( C - {λo})X]"'. On the other
hand, we have x2 = x - Xi = x - E(λo)x, so

(T-λ0I)Rx = [I-E(λ0)]x.

If (1) is fulfilled, we get with z = z(λ(μ), μ) and λ = λ(μ)

Tz - λoz = [(λ - λo)z + G(μ)z + G(μ)yo\ - £(Ao)[ ]

= [(λ - λo)(z + yo)+ G{μ)(z + y0)] - E(λo)[ • ],

since (λ - λo)yo = E(λo)((λ - λo)y,,).
Then, (2) gives that

Tz - λoz = (λ - λo)(z + yo)+ G(μ)(z + y0).
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But this is equivalent to

(ii) [T-G(μ)]y(μ)=λ(μ)y(μ).
(iii) We assume that for some λ = λ(μ)

Let y^O be an eigenvector to λ. Then λ E p(T), so from Ty -λy
G(μ)y we get y = Rλ(T)G(μ)y and

Ty - λy - G(μ)y = G(μ)Rχ(T)G(μ)y,

which gives

0<| |G(μ)y | |g | |G(μ) J R Λ (Γ) | | | |G(μ)y| | or l^\\G(μ)Rχ(T)\\.

Now we have according to [1]

n=0 JC

from which we get

= Σ\\N"\\-ω(E)-\λ-λo\—\

So

l ^ | | G ( μ ) i ? A ( Γ ) | | ^ Σ | μ | n | | G n | | ω ( £ ) Σ | | iV" | | λ - λ o | — < 1
n=l n = 0

according to what we have assumed. This contradiction proves (iii).
(iv) We put z(μ) instead of z(λ(μ), μ). Then,

(3)
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\λ(μ)-λo\\\z(μ)\\ + \\G(μ)z(μ)\\

^ β • (\λ(μ)- λo\+Σ \μ\"\\Gn\\) •{•••}.

The last inequality gives

\λ(μ)- λo\\\z(μ)\\ + \\G(μ)z(μ)\\^Σ \μ\n\\Gn\
n = l

β'{\λ(μ)-λo\ + ϊ\μ\'\\

Substituting this into (3), we get

v I K f l . f ..\"\\r. II

y4 = β Σ\μ\\\Gn\\

(v) We assume that y obeys E(λo)y=O. In this case we get
ye£(C-{A0})X, so

y=(T- λ0I)Ry = R(T- λol)y = R((λ - λo)y + G(μ)y).

But this leads to

+ \\G(μ)y\\

and

Altogether we get

If |λ — λo | < β~ι — a~\ further if \μ \ < p, the first factor on the right side
is smaller than
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and we have got a contradiction, unless y = 0.
Since the range of E(λ0) is one-dimensional, we must have

E(λ)y - c - y0 with some c E C, c ^ 0.

As in [3] one then can see, that also Λ = λ(μ).
Some remarks are in order:
1. Since a ^ 2/3 we have jS"1 - α"1 S α"1. So, in (v) the assertion

concerning λ is true especially if j Λ — λo| < a'1.
2. Our conditions and bounds become simpler, if N is small in

norm, that is if | |N | |< d/2. In this case we get

ω(£)

3. Of course a considerable simplification occurs in the scalar case,
that is if N = 0. In this case we have

_ 2ω(E) _ ω(E) _ a a-\ __ -1 _ ^
a ~ d ' P ~ d ~ v P a ~2ω(Ey

The theorem then takes the following form:

THEOREM 2. There exist holomorphic functions A and y on {μ E
C, \μ I < p} vWί/z y(0) = y0 α/trf λ(0) = λ0 which obey

(i) jB(λ o)y(μ)= yo;

(ϋ)
(iii)

ω(E)-Σ\μ\n\\Gn

(iv) ||

(v) // [T-G(μ)]y = λy wiίΛ |μ | < p, |λ - λo| < d/2ω(E), yϊ 0,
we Ziai e A = λ(μ) and y = c y(μ) w/f/i 5ome c G C .

If X is a Hubert space and T self adjoint, we have ω{E) = 1. In this
case Theorem 2 reproduces exactly the bounds given by Schafke.
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Finally, we remark that in Theorem l(iii) one can get more explicit
estimates by familiar methods for localizing zeros of polynomials if N is
assumed nilpotent.
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