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RESIDUALLY CENTRAL WREATH PRODUCTS

ROGER D. KONYNDYK

This paper is concerned with the problem of determining
which standard restricted wreath products of two groups A and
G are residually central. Complete characterizations are ob-
tained in the case where G is orderable and in the case where A
and G are locally nilpotent.

The contents of this paper formed a part of the author's doctoral
dissertation submitted to Michigan State University in 1975. I wish to
thank Professor Richard E. Phillips for his guidance and advice. I also
wish to thank the referee for his suggestions for simplifying the proofs of
Lemma 1, Theorem 2, and Lemma 3.

A group G is said to be residually central if for all 1 ̂  x E G,
x£[x, G ] . Other definitions may be found in [10] and
[11]. Residually central groups were first studied by Durbin in [3] and
[4]. Further information may be found in papers by Ayoub [1], Slotter-
beck [12], and Stanley [13] and [14].

The wreath product of two groups A and G is the semi-direct
product W =_A ] B, where A is the direct sum Π{Ag | g E G} of copies of
A. If a E A, then a can be written as α=Π/

m=iαfi, meaning that
a(gi) = ah l ^ i S m , and a(g)j= 1 if g £ {gι, , gm}. If g E G, then
α g =ΠΓ=i<2?ίg. The subgroup A is called the base group of W. Note
that if a E A, the element a1 in A can be identified with a. Note also
that if B<G, then (A/B)wrG is a homomorphic image of_A wrG in the
obvious way; the kernel of the homomorphism is B =U{Bg\g E
G}. Throughout this paper W will denote the wreath product AwrG
and A its base group.

LEMMA 1. // gu ,gn E G, then ΠΓ«i[g,, G] = [<gb ,gB), G].

Proof. Since each [gt,G]^[(gl9-;gn),G], Πr= 1[g,,G]g
[(gu ,gn>, G]. Let K = Πr=1[g,, G], a normal subgroup of G. If Z/K
is the center of G/K, then each g{ E Z. Hence (g l5 •• , g B ) i Z , and so

THEOREM 1. Suppose that W = AwrG is residually central. If G
is infinite, then A is a Z-group.

Proof Let au , am E A, K = (αi, , αm). By a theorem of Hic-
kin and Phillips [7], it suffices to show that Kik [K, A ]. Let gu , gm be
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distinct elements of G, and set a = Π^αf E A. Since W is residually
central, a £ [a, W] ̂  [a, A] = Tl7=ι[an A]gι as a direct sum. Let
btG[anAl l^i^m. Then ftf E [α,, A] g ^ [α, W]< W; thus &;° =
(6f )g ' E [α, IV]. Hence ΠΓ=i [fl«, A ] = [K, A ] ̂  [α, W]< W, and so
Πϋi{[K, A ]* I g E G} ̂  [α, W]. If K ̂  [X, A ], then α, E [K, A ], 1 ̂  i =i
m, and α = ΠΓ=iαf E ΠΓLi[X, A]A ̂  [α, W], a contradiction.

LEMMA 2. Lei A and G be residually central groups. Then W =
AwrG is residually central if and only if for all l ^ α G A , aξέ.
[a,G][a,A]G.

Proof. The necessity of the condition follows from the definition of
residual centrality.

Let w E W. Since W is a semi-direct product A ] G, w can be
expressed uniquely in the form αg, where a E A and g E G. Now
[αg, W] ̂  [α, W][g,AG] £ A[g, G}. If g^ 1, then g g [g, G], since G
is residually central. Thus αg ̂  [αg, IV]. If g = 1, then [α, IV] g
[α, G][a, A]G. Hence if a £ [a, G][a, A]G, then W is residually cen-
tral.

A group G is ordered if it possesses a total order ^ which is
preserved under right and left multiplication. Further information may
be found in [8]. Orderable groups must be torsion-free. Examples of
orderable groups are free groups [8, p. 17] and torsion-free locally
nilpotent groups [8, p. 16].

THEOREM 2. If G is a residually central orderable group, and A is a
Z-group, then W = AwrG is residually central.

Proof. Let a = Tl?=ι α? E A, where g, EG, a, E A, and α,^ 1, 1 ̂
i ^ m. By Lemma 2 it is enough to assume that a E [a, G][a,A]G and
reach a contradiction. Let L = [(au- , am),A]. Since A is a Z-
group, so_me a^L, by [7]. If L = U{Lg | g E G}, then α ̂  L, but
αL E ζ^A/L), where ζn{H) denotes the nth center of a group H. Let
Aι = A/L, and W1 = A1wrG, a homomorphic image of W. Then
a E [α, W] implies that ah E [αL, WJ. Because ah E ̂ (A^, a charac-
teristic subgroup of Au [aL, W^ ̂  ζ\{Aλ). Let A2 = ίi(Ai); then W2 =
A2wrG is not residually central, and so we may assume that the base
group A is abelian. We may also assume that A = (au , am).

With these assumptions, there is a prime p and subgroup B of index
p in A. Since some α, £• B, a £ BG, so that we may factor out B and
assume that A is cyclic of prime order p. Denoting the field of p
elements by Zp, we note that Λ is a free ZPG-module of rank 1. Let
Δ = (1 - g I g E G) denote the augmentation ideal of ZPG. If g E G,
then [a, g] may be written in (additive) module notation as - a + ag -
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- α ( l - g ) ; thus the assumption that a E [α, G] means, in module
notation, that a£aΔ. Hence there exists δ E Δ such that a =
aδ. Then α(l - δ) = 0, and α / 0 , 1 - δ ^ O . But since G is orderable,
ZPG can have no zero divisors [10, 26.2 and 26.4], a contradiction.

This shows that if G is a residually central, orderable group, then
AwrG is residually central if and only if A is a Z-group. For example,
free groups are orderable and are residually nilpotent; thus the wreath
product of two free groups is residually central.

LEMMA 3. Suppose that W = AwrG is residually central, and G
has an element g of prime order p. Then every element of A and of G of
finite order has p-power order.

Proof Suppose a E A has prime order q^ p. As elements of A,
a^ ag. However, in a residually central group, elements of relatively
prime, finite orders commute [10, Theorem 6.14], and so a = a\ which is
impossible.

Suppose h E G has prime order q^ p. Then g and h commute,
and (g, h) is cyclic of order pq. Let 1 / α G A and Ax = (a). Then
Wλ = Aλwr (g, ft) is residually central with an abelian base group. Let
a = [α, g, h]. Modulo [α, g] we have

Since h and g commute, and Aλ is abelian,

= [a,h,g].

As before, modulo [a, G],

Thus α p E [α, G], α ? E [α, G] for the distinct primes p and q, so that
a E [α, G], implying that W is not residually central, a contradiction.

THEOREM 3. Suppose A and G are locally nilpotent. Then W =
AwrG is residually central if and only if either

(1) G is torsion-free, or
(2) For some prime p, all elements of G and of A of finite order have

p-power order.

Proof The necessity of (1) or (2) follows from Lemma 3.
If (1) holds, then G is orderable [8, p. 16], and Theorem 2 applies.
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Suppose (2) holds. Since residual centrality is a local property [3], it
suffices to show that every finitely generated subgroup (wu , wm) of W
is contained in aresidually central subgroup. Each w, = atgh where
gi E G and αt E A, and each a, = U"LΛ a\f. Hence

(wu - , wm) ^ <α,y, giy, g, 11 g / S m, ί ^ / ^ n, >

Thus we may assume that both A and G are finitely generated and hence
nilpotent.

Let a= ΠUi0?k By Lemma 2, it suffices to assume that 1 / α G
[α, G] [α, A ] G and reach a contradiction. Since A is nilpotent, there is
an integer r such that each at E ζr(A) and some α( gί ζr-x(A). Then

WΊ = (A/ζr-ι(A)) wrG is a homomorphic image of W in the obvious
way. If a denotes the image of a in Wu then α E
[α, G) [a, A/ζr^(A)] == [α, G] in W,,since α E [α, G] [α, A]G in W.Let A ^
ζr(A)/ζr-ι(A).^ Thus A!wrG is a subgroup of Wλ containing
ά. [ά, G] ^ Au since Ai is a characteristic subgroup of Alζr-λ{A). By
[2, Corollary 2.11], every element of Ai of finite order has p-power
order. By [5, Theorem 2.1], Aλ and G are residually finite p~
groups. Because άE[ά,G], AλwrG is not residually central and
therefore not residually nilpotent. Hartley [6], however, has shown that
AλwrG is residually nilpotent, a contradiction.

COROLLARY. // A is abelian and G is locally nilpotent, then
W = AwrG is residually central if and only if W is locally a residually
nilpotent group.

Proof. The sufficiency of the condition is clear. Theorem 3 and
Theorems Bl and B2 of [6] combine to prove the necessity.
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