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TENSOR PRODUCTS OF FUNCTION RINGS
UNDER COMPOSITION

N. J. FINE

Let C(X), C(Y) be the rings of real-valued continuous
functions on the completely regular Hausdorff spaces X, Y and
let T = C(X) <g) C( Y) be the subring of C(X x y ) generated by
functions of the form fg, where / E C(X) and g G C(y) . If P
is a real polynomial, then F °t E T for every ί 6 T . If G ° ί E T
for all t G T and if G is analytic, then G is a polynomial,
provided that X and Y are both infinite (A. W. Hager, Math.
Zeitschr. 92, (1966), 210-224, Prop. 3.). In this note I remove
the condition of analyticity. Clearly the cardinality condition is
necessary, for if either X or Y is finite, then T = C(X x Y) and
G ° ί E T for every continuous G and for every r E Γ.

It is convenient to admit a somewhat wider class of G's. Let
T* = T + iT, that is, the set of all functions tλ + it2 with tu t2 E Γ. (Γ* is
the tensor product of the complex-valued continuous function rings on X
and Y). Define K(X, Y) as the set of all continuous complex-valued
functions G on R (the reals) with the property that G°t E T* for all
ί E T. Then the result is

THEOREM. // X and Y are infinite completely regular Hausdorff
spaces, then K(X, Y) consists of all the polynomials with complex coeffi-
cients.

It follows from the Theorem that if G ° t E T for all t E T, then G is
a polynomial with real coefficients.

The proof of the Theorem, which is rather lengthy, will be broken up
into a sequence of lemmas.

LEMMA 1. Let φ and ψ be continuous mappings of X and Y onto X'
and y respectively. Then K(X, Y)CK(X\ Y').

Proof Let G E K(X, Y), t' E T = C(X')® C(Y').
I must show that G ° ί Έ V*. Define t by

Clearly t E Γ, and by hypothesis G °t E T* . That is, there are continu-

ous complex-valued functions uu •**,«„ on X, t^, , υn on y, such that
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(1) (G°n(φ(x),ψ(y))=Σu,(Φ,(y) (xEX,y(ΞY).

If y0, yι, — m,yn are any elements of Y, then there exist complex
Co, c b , cn not all 0 such that

(2) ]jΓ cj{G °t')(φ{x), ψ(y})) = 0 (jtGX),

since (1) shows that the y-sections oϊ G°t are contained in an n-
dimensional subspace of C(X)+ iC(X). Let yό, , yήbe any elements
of Y', and let x' be any element of X\ Then, since φ and ψ are onto,
there exist y0, , yn and x such that

= y ί O'=O,l, ,n).

Insert these values in (2) to get

/ = 0

This means that the y'-sections of G°t' are contained in an n-
dimensional subspace of C(X')+ iC(X'). By Hager1, this implies that
G o / ' 6 Γ;*. Hence G G

LEMMA 2. // X r - X, Y' - y, ίften K(X', Y') = K(X, Y).

Proof. Immediate from Lemma 1.

LEMMA 3. // the conclusion of the Theorem holds for all infinite
subspaces X', Y' of R then the Theorem holds.

Proof Every infinite completely regular Hausdorff space can be
mapped continuously onto an infinite subset of R. Apply Lemma 1 and
the hypothesis.

LEMMA 4. Suppose that Xo and Yo are C-embedded in X and Y
respectively. Then K(X, Y) CK(X0, Yo)

Proof. Let GGK(X, Y), t0 G To = C(X0) <g) C( Yo). Then there is
a / G Γ such that ί | (Xo x Yo) = ί0, obtained by extending each component
of tQ. By assumption, G°t E Γ*. By restriction, G°to£ T*. Hence
G G K(X0, Yo).

1 Ibid. Prop. 1
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LEMMA 5. If X is an infinite subset of R, then there is a continuous
mapping φ of X into R such that φ[X] contains the terms of a convergent
infinite sequence and its limit.

Proof If X is unbounded, let p E X and define

Then φ[X] has the required property. If X is bounded, then it contains
a countably infinite set {xn} such that xn —> q (perhaps not in X). Let
p E X and define

φ(x)=(x~q)(χ-p) (x£X).

Clearly φ{xn)—>0 = φ(p). Also the set {φ(xn)} is infinite. Hence φ[X]
has the required property.

LEMMA 6. Let XQ be any one infinite set {jcn};=0, WίΛ xn ->x(). //
K(XihX0) consists of the complex polynomials, then the Theorem holds.

Proof. Follows from Lemma 3, Lemma 5, Lemma 4, and the fact
that Xo is compact, hence C-embedded in ̂ >[X], and Lemma 2.

LEMMA 7. Let Xo = {j/n2: n ̂  1,0^j' ^k Mn}, where Mn is a se-
quence of positive integers satisfying Mn^ n (n ^ 1). Let G E K(X0, Xo),
with X 0 C Z ( G ) , the zero-set of G. Then there exists an N such that

Proof Define tET0= C(X0) <g) C(X0) by

t{χ,y) = χ + y ( x E X 0 , y E X 0 ) .

Let N = rank(G°ί ) , i.e., the dimension of the vector-space of
y-sections of G° ί . If n > N, there exist c, (/ = 1, , N + 1 ) (possibly
depending on n) not all 0, such that

(Note that the arguments
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n2 n2 n2 n2

are all in Xo). Let M be the largest j such that ς^O, so l ^ M ^
and

(3)

Choose x = (Mn + 1 - M)/n2. Since M S N + K n + l i M n + l, x >
0. Since M ^ 1, x ^ Mn/n2. Hence x E X<>. Therefore, from (3),

Since Mn + l - M + / ^ n + 2 - M > n + 2 - ( n + l ) = l , and
Mn + 1 - M + j ^ MB + 1 - M + (M - 1) = MH for all / such that 1 ̂  / ^
M - 1, the arguments on the right in (4) are all in X0CZ(G). Since

LEMMA 8. Under the hypothesis of Lemma 7, but with Mn = n
(n ^ 1), there is an a > 0 such that [0, α] CZ(G).

Proof. Define

Mn = S U P { M : θ t t ) = 0 for / = 0,1, • , NίV

Note that Mn ^ n. Suppose that ά = lim(Mn/n2) = 0. Then there is an
infinite sequence nί < n2 < such that

4o.

Define Ln = Mn if n = n, for some i, Ln = n otherwise. Let

Then (i) X '«X 0 , (ϋ) X 'CZ(G), (iii) X' is of the form prescribed in
Lemma 7, since Ln ^ n. By (i) and Lemma 2, K(X0, Xo) = K(X', X'), so
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G E K(X\ X'). Combining this with (ii), (iii), and Lemma 7, one finds
that there is an N such that

In particular, for n = nt > N,

2—E Z(G).
n2 v '

This contradicts the definition of Mn. Hence ά > 0 (α = + oo? possibly).
Clearly the set β = {j/n2: 0 ^ / ^ Mn, n ^ 1} is dense in

[0,5). Since BCZ(G), there exists an α > 0 such that
[0,α]C5CZ(G).

LEMMA 9. Under the hypotheses of Lemma 8, G = 0.

Proo/. Let α = sup{α: [0, a] CZ(G)}. By Lemma 8, a >0. Sup-
pose α < oo. Let £ ̂  0. For

ί ( * , y ) = α + f ( x - y ) (AC, y G Xo),

let rank(Go/) = M .̂ Define N^ = 1 + max(Λ^, ξMJa). For n ^ N ,̂
there exist q (/ = 0,1, , Λί̂ ) not all 0, such that

(5) Σ cβ (a + ξ (x - ^ ) ) = 0 (x E Xo).

(Note that for 0 ^ / ^ Mξ9

<
2 = 2 2 = 2?n n n n

so j/n2EX0). If qf is the least j such that cy^0, set x =
(q4-l)/n2. Since 0 < q + l ^ M ^ + l g N ^ n , JC E XO. For j = q +
1, , Mi? one has a + £(JC - /n2) ̂  α and

2 2

n n 2

n n
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Hence a + ξ(x - j/n2) E Z(G), and from (5),

Thus it has been proved that for each ξ ^ 0, there is an Nξ such that

For each N = 1,2, , define

Clearly SN is closed and [0,α>)= UN^iSN. By the Baire category
theorem, there is an interval [u,v]CSN for some N^ 1, with 0 ^ w <
u That is,

(6) G (a +Ίp) = 0 ( M ^ ^ M ^ N).

Thus the intervals [a + u/n2, a + u/n2] are contained in Z(G) for all
n Ξ̂  N. For sufficiently large ft, these intervals overlap and fill out an
interval (a, β], with β > a. Hence [0, β]CZ(G). This contradicts the
definition of α, and shows that a = oo. Hence G(x) = 0
(x ^ 0). Finally, the function Gλ defined by G,{x) = G(l - x) (x E JR)
belongs to K(Xo>^o) and GI(JC) = 0 (X E XO) By what has just been
proved, Gί(x) = 0 (x^O), so G(x) = 0 (x ^ 1). Therefore G =
0. (There is an alternate proof that avoids the use of Baire category).

LEMMA 10. Let Xo = {//ft2: 0 g / g n , n g l } , αftd let G E
satisfy, for some positive h and complex r,

G(x + h)=rG(x) (xEXo).

G is α constant, and r - 1 unless that constant is 0.

Proo/. The function Gi defined by

Gi(x) = G(x + h)-rG(x) (x E J?)

belongs to K(Xo,Xo), and X0CZ{Gλ). By Lemma 9, Gλ = 0, so
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G(x + h)=rG(x) (x<ER).

Define F(x) = G(hx) (x E R). Then F E K(X0,Xo) and

(7) F(jc + l )=rF(x) (x e R).

Let N = rank(F°ί), where t(x,y)=-xy (x,yEX0). Then the N + l
y-sections of F°t at y ; =2" ; (/'=0,1, , JV) are linearly dependent
(note that T] = 2'/(2')2 E Xo). Hence there exist c0, cu " ,cN not all 0
such that

N

As above, (8) holds for all x E JR, by Lemma 9. Let M be the least
nonnegative integer for which an equation of the form (8) holds for all
x E JR, with the sum running from 0 to M and the c; not all 0. Then
cM Ϊ 0. If M = 0, then F = 0 and therefore G = 0. For M > 0, let q be
the least / such that c ; ^ 0. Again, if q = M, then G = 0. Hence one
may assume that q < M. Thus

(9)

with cq^0, cM 7^0, q<M, and M minimal. Replace x by 2Mx +
2M. Then

J C,F(2M-'JC + 2M-') = 0 (JC e Λ).
/ = <?

By (7),

Replacing x by 2"Mx, one gets

(10) § c/2 M /F(2-^) = 0 (JC E 1?).

Combining (9) and (10), one has

Σ(11) Σ c,(r - r2M-')F(2-'x) = 0 (xGR).
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Because of the minimality of M, all the coefficients in (11) must be
0. Since cq^ 0,

r - r

2^q = 0.

Now r = 0 implies G(x + h) = 0 (x E R), that is, G = 0. Since g < M,

2 M - , ^ 2 , so if r ^ 0, rm = 1 with m = 2 M ί ? - 1 ^ 1 . It follows that

F(x + m)= rmF(x) = F(x) (x G J R ) .

Thus F is periodic. Either F (hence G) is constant or it has a least
positive period p. From (9),

Therefore

1 ^
F(x)= - — X c,F{2M~]x) (xER).

Hence

Fix+£)=-— Σ c;F(2M-'x+2M-'-p)

= - 7 - Σ ^ ( 2 M - ' χ )

= F(JC) ( J C G Λ ) .

This contradicts the fact that p is the minimal period. Hence F is a
constant and so is G. It G/ 0, then

implies that r = 1.

LEMMA 11. Lei X0 = {j/n2: 0^j^n,n^l}, and let
G E K(X o ? ^o) 77ten G is a polynomial.

Proof. Let N = rank(G ° ί)> where

ί ( x , y ) = * + y (x,y E X 0 ) .
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Then, if one reasons as in Lemma 10, there is an M ̂  ΛΓ and c0, , cM,
with cM = 1, such that

(12)

Equation (12) holds for all x E R, by Lemma 9. Define F(x)
G(x/N2) (xER). Then

(13) ic/F(x+/)=icj

One may assume that M is minimal for F in equation (13). Write

φ(z) = Σclz'.
j=0

Then, using the standard notation

one has

(φ(E)F)(x) = 0 (xER).

Let r be any zero of φ(z), so that ψ(z) = (z - r)ψ(z). Define

J(x)=(ψ(E)F)(x) (xER).

By the minimality of M, J^ 0, and

J(x + l)-rJ(x) = (E-r)J(x)

= (E-r)φ(E)F(x)

Since JEK(X0,X0) and / ^ 0, Lemma 10 yields r = 1. Thus all
zeroes of φ(z) are 1, and

(E-l)MF(x) = 0 (xER).

Note that M = 0 implies F = G = 0. Let P(x) be the polynomial of
degree Si M - 1 which agrees with F at x = 0,1,2, , M - 1. Then
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P(O) = F(O)

(F - 1)M-'P(O) = (E - 1)M-'F(O).

Also, because d e g P g M - 1 ,

(F - 1)MP(JC ) = 0 = (F - l)MF(x) (JC G R).

Now

Go(x) = (B - 1)M 1(^(^) ~ F(x)) G K(X0, Xo)

and

(J5-l)Go(x) = O (x<ΞR).

By Lemma 10, G0(x) = constant = G0(0) = 0. Thus

(E - 1 ) M 1 P ( J C ) = (E - l ) M 1 F(x) (xER).

Continuing by induction, one obtains

(JB - ΐ)M'Ψ{x) = (E- 1)M /F(x) (xER)

for / = 1,2, , M Thus

Therefore F, hence G, is a polynomial.
Combination of Lemma 11 and Lemma 6 completes the proof of the

Theorem.
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