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TENSOR PRODUCTS OF FUNCTION RINGS
UNDER COMPOSITION

N. J. FINE

Let C(X), C(Y) be the rings of real-valued continuous
functions on the completely regular Hausdorff spaces X, Y and
let T =C(X)& C(Y) be the subring of C(X X Y) generated by
functions of the form fg, where f€ C(X)and g € C(Y). If P
is a real polynomial, then Pot € T foreveryt€T. IfGotET
for all t € T and if G is analytic, then G is a polynomial,
provided that X and Y are both infinite (A. W. Hager, Math.
Zeitschr. 92, (1966), 210-224, Prop. 3.). In this note I remove
the condition of analyticity. Clearly the cardinality condition is
necessary, for if either X or Y is finite, then T = C(X X Y) and
Got €T for every continuous G and for every t € T.

It is convenient to admit a somewhat wider class of G’s. Let
T* = T +iT, that is, the set of all functions ¢, + it, with ¢t,,t,€ T. (T* is
the tensor product of the complex-valued continuous function rings on X
and Y). Define K(X, Y) as the set of all continuous complex-valued
functions G on R (the reals) with the property that Got € T* for all
t € T. Then the result is

THEOREM. If X and Y are infinite completely regular Hausdorff
spaces, then K (X, Y) consists of all the polynomials with complex coeffi-
cients.

It follows from the Theorem thatif Get € T for all t € T, then G is
a polynomial with real coefficients.

The proof of the Theorem, which is rather lengthy, will be broken up
into a sequence of lemmas.

LEmma 1. Let ¢ and  be continuous mappings of X and Y onto X’
and Y' respectively. Then K(X, Y)CK(X', Y’).

Proof. Let GEK(X,Y), t'eT' =C(X)QC(Y').
I must show that Got'€ T'*. Define ¢t by

txy)=1t(e(x)d(y)) (xEXy€eEY)

Clearly t € T, and by hypothesis G ot € T*. That is, there are continu-
ous complex-valued functions u,, - - -, u, on X, v, - - -, v, on Y, such that
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(1) (Gor'><¢(x>,w(y>)=§u,<x>v,<y> (xEX, y€EY).

If yo,yi,°--,y. are any elements of Y, then there exist complex
Co, €1, * *, ¢, not all 0 such that
) 2 (Got) e(x), ¥(y)=0 (x€X),

=0

since (1) shows that the y-sections of G ot are contained in an n-
dimensional subspace of C(X)+ iC(X). Letyg, - -, y.beany elements
of Y’, and let x’ be any element of X'. Then, since ¢ and ¢ are onto,
there exist yy, -+, y, and x such that

e(x)=x's ¥(y)=y; (=01,-n)

Insert these values in (2) to get

n

> ¢(Gor)(x',y)=0.

1=0

This means that the y’-sections of G ot are contained in an n-
dimensional subspace of C(X')+iC(X'). By Hager', this implies that
Got'eT'*. Hence GEK(X',Y').

Lemma 2. If X'=X, Y'=Y, then K(X',Y')= K(X,Y).
Proof. Immediate from Lemma 1.

LEmMA 3. If the conclusion of the Theorem holds for all infinite
subspaces X', Y' of R then the Theorem holds.

Proof. Every infinite completely regular Hausdorff space can be
mapped continuously onto an infinite subset of R.  Apply Lemma 1 and
the hypothesis.

LEMMA 4. Suppose that X, and Y, are C-embedded in X and Y
respectively. Then K(X, Y)CK(X,, Y)).

Proof. Let GEK(X,Y), t,€ T,= C(Xy)) Q@ C(Y,). Then there is
at € T such that t|(X, X Y,) = t,, obtained by extending each component
of t,. By assumption, G°t € T*. By restriction, G°t,€ T5. Hence
G € K(X,, Y)).

' Ibid. Prop. 1
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LEmMMA 5. If X is an infinite subset of R, then there is a continuous
mapping ¢ of X into R such that ¢{X] contains the terms of a convergent
infinite sequence and its limit.

Proof. 1f X is unbounded, let p € X and define
N
e()=172 (EX)

Then ¢[X] has the required property. If X is bounded, then it contains
a countably infinite set {x,} such that x, — g (perhaps not in X). Let
p € X and define

p(x)=(x—q)(x—p) (xEX).

Clearly ¢(x,)—=>0= ¢ (p). Also the set {¢(x,)}isinfinite. Hence ¢[X]
has the required property.

LEMMA 6. Let X, be any one infinite set {x,},_,, with x, > x,. If
K (X,, X,) consists of the complex polynomials, then the Theorem holds.

Proof. Follows from Lemma 3, Lemma 5, Lemma 4, and the fact
that X, is compact, hence C-embedded in ¢[X], and Lemma 2.

LEMMA 7. Let Xo={j/n*>> n=1,0=j=M,}, where M, is a se-
quence of positive integers satisfying M, Z n (n=1). Let G € K(X,, X)),
with X, CZ(G), the zero-set of G. Then there exists an N such that

M";;i—l-e Z(G) (n>N).

Proof. Define t € T, = C(X,)& C(X,) by
tx,y)=x+y (x € X, y € X)).
Let N =rank(G-t), i.e., the dimension of the vector-space of

y-sections of Got. If n> N, there exist ¢; (j =1, -+, N + 1) (possibly
depending on n) not all 0, such that

(Note that the arguments



66 N. J. FINE

3

LN+l _n M
n*=~ n? n*= n?

1A

are all in X;). Let M be the largest j such that ¢, #0,s0 =M =N + 1
and

3) qu<x+#>=o (x € X,).

Choose x =(M,+1-M)/n’. Since M=N+1<n+1=M,+1, x>
0. Since M =1, x=M,/n’. Hence x € X,. Therefore, from (3),

(4) — G (M + 1) Ag (Mﬂ_ﬂ)

nz
Since M,,+1—M+j§n+2—M>n+2—(n+l)=1, and
M, +1-M+j=M,+1-M+(M-1)=M, for all j such that 1 =j =

M — 1, the arguments on the right in (4) are all in X,CZ(G). Since
CM;é 09

G<M§1)=o (n> N).

LEMMA 8. Under the hypothesis of Lemma 7, but with M, = n
(n=1), there is an a >0 such that [0,a] CZ(G).

Proof. Define
M, = sup {M: G<;1L2>=O for j=0,1,"',M}‘

Note that M, = n. Suppose that @ =lim(M,/n?) =0. Then there is an
infinite sequence n, < n,<--- such that

Define L, = M, if n = n, for some i, L, = n otherwise. Let
Xu{ﬁ;0§j§Lmnzl}

Then (1) X' = X,, (ii)) X' CZ(G), (iii)) X' is of the form prescribed in
Lemma 7, since L, = n. By (i) and Lemma 2, K(X,, X,) = K(X', X’), so
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G € K(X', X'). Combining this with (ii), (iii), and Lemma 7, one finds
that there is an N such that

L,+1

n2

€ Z(G) (n>N).

In particular, for n = n, > N,

M, +1
——€ Z(G).

This contradicts the definition of M,. Hence @ >0 (a = +x, possibly).

Clearly the set B={j/n>0=j=M,n=1} is dense in
[0,&). Since B CZ(G), there exists an a>0 such that
[0,a]CB CZ(G).

LEMMA 9. Under the hypotheses of Lemma 8, G = 0.

Proof. Let @ =sup{a:[0,a]CZ(G)}. By Lemma 8, a >0. Sup-
pose a« <. Let £=0. For

t(x’y):a+§(x_y) (X>YEX0),

let rank(Got)= M, Define N, =1+ max (M, éM,;/a). For n= N,
there exist ¢; (j =0,1,---, M;) not all 0, such that

M,

5) > ¢G <a+§<x—-nl§>>=0 (x € Xy).
=
(Note that for 0=j=M,,
os-Lst<N§S—'l
—nZ—nZ nZ—nZ’

so j/n*€X,). If q is the least j such that ¢#0, set x=
(@ +1)/n*. Since 0<g+1=M;+1=N,=n, x€X, For j=q+
1,--+,M, one has @ + ¢(x —j/n*)= a and

a+§<x~#)§a+§<%l_"1\£z§>

n
s M MM,
= 2.—. =

n n N;
=q-< N —1 >0
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Hence a + &(x — j/n?) € Z(G), and from (5),

G (a+-5)- 1 oG (a+€(x =L))o

Cq jZq+ n

Thus it has been proved that for each & =0, there is an N; such that
G(a +’—1§2)=0 (n = N,).
For each N=1,2,---, define
SN={§§O: n=N> G(a+;l§—z>=0}.

Clearly Sy is closed and [0,%)= U yz; Sy. By the Baire category
theorem, there is an interval [u, v] CSy for some N=1, with 0su <
v. That is,

©) G(a+71%>=0 (u=t=v,n=N)

Thus the intervals [a + u/n’, @ + v/n?] are contained in Z(G) for all
n = N. For sufficiently large n, these intervals overlap and fill out an
interval (e, B8], with B >a. Hence [0, 3] CZ(G). This contradicts the
definition of « and shows that a=x. Hence G(x)=0
(x 20). Finally, the function G, defined by G,(x)=G(1—-x) (x € R)
belongs to K(X,, X;) and G,(x)=0 (x € X,). By what has just been
proved, Gy(x)=0 (x=0), so G(x)=0 (x=1). Therefore G =
0. (There is an alternate proof that avoids the use of Baire category).

LEMMA 10. Let X,={j/n*:0=j=n,n =1}, and let G € K(X,, X,)
satisfy, for some positive h and complex r,

G(x+h)=rG(x) (x € Xy).

Then G is a constant, and r = 1 unless that constant is 0.

Proof. The function G, defined by
Gi(x)=G(x+h)-rG(x) (x ER)

belongs to K (X, Xo), and X, CZ(G,). By Lemma 9, G, =0, so



TENSOR PRODUCTS OF FUNCTION RINGS UNDER COMPOSITION 69
G(x+h)=rG(x) (x €R).
Define F(x)= G(hx) (x € R). Then F € K(X,, X,) and
7 F(x +1)=rF(x) (x ER).

Let N =rank(Fot), where t(x,y)=xy (x,y € X,). Then the N+1
y-sections of Fot at y, =27 (j=0,1,--+,N) are linearly dependent

(note that 27 =2//(2’Y € X;). Hence there exist ¢, c;,* "+, cy not all 0
such that

N .
8) > F(27x)=0  (x € X))

j=9

As above, (8) holds for all x € R, by Lemma 9. Let M be the least
nonnegative integer for which an equation of the form (8) holds for all
x € R, with the sum running from 0 to M and the ¢; not all 0. Then
cu#0. If M =0, then F = 0 and therefore G =0. For M >0, let q be
the least j such that ¢,#0. Again, if ¢ =M, then G =0. Hence one
may assume that ¢ <M. Thus

<

) ¢FQ27x)=0 (x ER),

J

with ¢,#0, cy#0, ¢q<M, and M minimal. Replace x by 2"x +
2™, Then

M
¢FQMix +2M7)=0 (x ER).
. j

=9

By (7),
M i .
> r™’FQMx)=0  (x €R).
i=q
Replacing x by 27Vx, one gets
M i .
(10) > r™'F(27x)=0 (x ER).
i=q
Combining (9) and (10), one has
M-1

(1) > ¢(r—r*")FQ'x)=0 (x €ER).

j=q
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Because of the minimality of M, all the coefficients in (11) must be
0. Since ¢,#0,

r—r=0.
Now r =0 implies G(x + h)=0 (x € R), that is, G =0. Since g <M,
2M 1 =2 so if r#0, rm =1 with m =2"7—-1=1. It follows that

F(x + m)=r"F(x)= F(x) (x ER).

Thus F is periodic. Either F (hence G) is constant or it has a least
positive period p. From (9),

i ¢FM7x)=0 (x ER).

1=q
Therefore

1

F(x)= e

M-1

> ¢F2M7'x)  (x ER).
/=9

Hence

M-1
F(x +§) o > ¢ F(QM7x + 247 'p)
M j=q

lM]

- S F(2Mix)

M j=q

Il

—F(x) (x€R).

This contradicts the fact that p is the minimal period. Hence F is a
constant and so is G. If G#0, then

G(x)=G(x+h)=rG(x)

implies that r = 1.

LEmmA 11. Let Xo={j/n>0=j=n,nz=1} and let
G € K(Xy, Xy). Then G is a polynomial.

Proof. Let N =rank(G °t), where

tx,y)=x+y (x, ¥y € Xp).
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Then, if one reasons as in Lemma 10, there isan M = N and ¢, - - -, ¢,
with ¢y = 1, such that

(12) iﬂ ¢G <x +NL2> -0 (xE€X).

Equation (12) holds for all x € R, by Lemma 9. Define F(x)=
G(x/N*) (x € R). Then

13 2ch@+,‘)=2ch(§+#)=0 (x ER).

One may assume that M is minimal for F in equation (13). Write

M
e(z)= Zﬂ ¢z’
=
Then, using the standard notation

(Ef)(x) = f(x +1),

one has
(e(E)F)(x)=0  (xE€R).
Let r be any zero of ¢(z), so that ¢(z)=(z — r)¥(z). Define
J(x)=W(E)F)(x) (x€R).
By the minimality of M, J# 0, and

Jx+1)—rJ(x)=(E —r)J(x)
=(E-r)y(E)F(x)
=@(E)F(x)=0 (x ER).
Since J € K(X,, X,) and J# 0, Lemma 10 yields r =1. Thus all
zeroes of ¢(z) are 1, and
e(z)=(z - 1"
(E-1D"F(x)=0 (x ER).

Note that M = 0 implies F = G =0. Let P(x)be the polynomial of
degree =M —1 which agrees with F at x =0,1,2,---,M —1. Then
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P(0)= F(0)
(E—1)P(0) = (E - 1F(0),

(E-1)M'P0)=(E - 1)™'F(0).
Also, because degP =M — 1,
(E-1)"P(x)=0=(E - 1)"F(x) (x ER).
Now
Go(x) = (E = 1)""'(P(x) ~ F(x)) € K(X,, X)
and
"(E —1)Gy(x)=0 (x ER).
By Lemma 10, Gy(x) = constant = G,(0) =0. Thus
(E-D)M'P(x)=(E - 1) 'F(x) (x ER).
Continuing by induction, one obtains
(E-1)"'P(x)=(E - 1)"'F(x) (x ER)
for j=1,2,---, M. Thus
F(x)=P(x) (x ER).
Therefore F, hence G, is a polynomial.
Combination of Lemma 11 and Lemma 6 completes the proof of the

Theorem.
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