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GENERALIZED PRIMITIVE ELEMENTS FOR
TRANSCENDENTAL FIELD EXTENSIONS

JAMES K. DEVENEY

Let L be a finitely generated separable extension of a field K
of characteristic p^ 0. Artin's theorem of a primitive element
states that if L is algebraic over K, then L is a simple extension
of K. If L is non-algebraic over K, then an element θ G L with
the property L = L'(θ) for every L', LD L'D K, such that L is
separable algebraic over L' is called a generalized primitive
element for L over K. The main result states that if [K: Kp] >
p, then there exists a generalized primitive element for L over
K. An example is given showing that if [K : Kp] ^ p, then L
need not have a generalized primitive element over K.

I. Introduction. Let L be a finitely generated extension of a
field K of characteristic p ^ 0. Artin's theorem of the primitive element
states that if L is separable algebraic over K, then L is a simple extension
of K. In this paper we examine the following analogue of Artin's
theorem in the case where L is a separable non-algebraic extension of
K. Does there exist an element θ E L with the property that θ is a
primitive element for L over every intermediate field L' such that L is
separable algebraic over L'Ί The main result states that if K has at least
two elements in a p-basis, then there does exist such a generalized
primitive element (Theorem 4). Such elements θ are characterized by
the condition that L is reliable over K(θ) (Theorem 1). As a corollary,
it follows that automorphisms of L over K are uniquely determined by
their action on a generalized primitive element θ. Other results which
indicate the essential nature of a generalized primitive element include
the following. If Lx and L2 are intermediate fields of L/K where L is
separable over Lλ and L2, then L2D L] if and only if some generalized
primitive element for Lλ is in L2 (Theorem 6).

II. Generalized primitive elements. Throughout we as-
sume L is a finitely generated extension of a field K of characteristic
p^ 0. As usual, a relative p -basis for L over K is a minimal generating
set for L over K(LP).

DEFINITION. L is a reliable extension of K if L = K(M) for every
relative p -basis M of L over K.
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In the case where L is finitely generated over K, L is reliable over K
if and only if there does not exist a proper intermediate field L with L
separable over L [5, Theorem 1, p. 524]. Using this result it follows that
if L is reliable over K, then L is reliable over any intermediate field M.

THEOREM 1 [1, Theorem 1.9], If L is finitely generated over K, then
there exists a unique intermediate field C with the property L/C is separable
and C/K is reliable.

In fact, C is the intersection of all subfields L' such that L/L' is
separable. If L is separable over K, then an element θ in L is a
generalized primitive element for L over K if L = L'(#) for any L such
that L is separable algebraic over IΛ Henceforth, L will be a finitely
generated separable (non-algebraic) extension of K.

THEOREM 2. An element θ in L is a generalized primitive element for
L over K if and only if L is reliable over K(θ).

Proof Assume θ is a generalized primitive element. It suffices to
show there are no proper intermediate fields LJ, L D L' D K(θ), over
which L is separable. Since θ is a generalized primitive element, there
are no proper fields over which L is separable algebraic. But in any
finitely generated separable extension L/Lf there exist subfields over
which L is separable algebraic (by applying Luroth's Theorem). Thus
L/K(θ) is reliable.

Conversely, assume there exists an element θ such that L is reliable
over K(θ) and let L be any intermediate field such that LjL' is separable
algebraic. Then L/L'(θ) is also separable. Since L/K(θ) is reliable
and L'DK, L/L'(θ) is reliable and hence L = L'(0).

The following result of Mordeson and Vinograde is essential to this
paper.

THEOREM 3 [4, Theorem 2]. Assume L is a finitely generated
separable extension of K, L^ K, and assume [K: Kp]> p. Then there
exists a field M = L(a) where M is reliable over K and ap is in L.

THEOREM 4. Let L be a finitely generated separable extension of K
and assume [K: Kp]>p. Then there exists a generalized primitive
element for L over K.

Proof By Theorem 3, there exists a field M = L(a) which is
reliable over K and ap E L. Let θ = ap and we show θ is the desired
element. By Theorem 2, it suffices to show L is reliable over
K(θ). Assume there exists an intermediate field L', LD L'D K(θ)
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where L is separable over ZΛ Since ap E K(θ), ap G IΛ Thus L'{a) is
purely inseparable over L. Thus L and L'(α) are linearly disjoint over
IΛ By [3, Corollary 4, p. 265], L'(α)(L)=M is separable over
L\a). As M is reliable over L'(α), M = L'(α) and since L and L'(α)
are linear disjoint over L', we must have L — L' and L is reliable over
K(θ).

COROLLARY 1. If L IK is nonalgebraic, then any generalized
primitive element is transcendental over K.

Proof. Let ί be a generalized primitive element. If θ were
algebraic over K, then L/K(θ) would be separable and hence L = K(θ).

The following corollary is a direct result of a calculation in [4]. For
completeness, it is presented here.

COROLLARY 2. Assume L = K(zu- , zn-uzn) where zu---,zn-l

are algebraically independent over K and F/K(zu , zn-x) is nontrivial
separable. Let {JC, y} be p-independent in K. Then θ = ap is a general-
ized primitive element for L/K where

and

χpO+...+pi-2

k, = ( - \y~x

 po+...+pi-χ for / = 2, , n - 1

Proof. This follows from Theorem 4 and the proof of [4, Theorem
1, P 44],

COROLLARY 3. Let θ be a generalized primitive element for L over
K. Then any automorphism of L over K is uniquely determined by its
action on θ.

Proof Let σ, τ be automorphisms of L/K and assume σ(θ)"=
τ(θ). Then στ~[(0)= θ and K(θ) is contained in the fixed field L of
στ~ι. Since L is separable over L', L = L' and σ = r.
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LEMMA 1. Let θbe a generalized primitive element for L over X, and
let F be an intermediate field such that L is separable nonalgebraic over
F. Then F is free from K(θ) and F(θ) is separable over K(θ).

Proof If θ were algebraic over F, then L would be separable over
F(0), a contradiction to L being reliable over F(θ). Thus K(θ) is free
from F. The remainder of the Lemma follows from [3, Corollary 4, p.
265].

A generalized primitive element for L over K will generate L over
any subfield L such that L is separable algebraic over L. The following
theorem shows that with one exception these are the only subfields with
this property.

THEOREM 5. Let θ be a generalized primitive element for L over K,
and let L be a subfield of L containing K. Then L - L(θ) if and only if
either L/Lf is separable algebraic or L = K(θ).

Proof Assume L = L'(θ). If L/L are not algebraic, then L/L'
would be pure transcendental and hence separable. But then by
Lemma 1, L/K(θ) would be separable, and hence L = K(θ). Thus we
may assume L/L' is algebraic and L^ K(θ). Since L/K(θ) is not
separable and L/K is, θ G K(LP) [1, Proposition 1.3]. Thus L = L'{LP)
and L is relatively perfect over L. Since L/L is also finitely generated,
L/L is separable algebraic [6, Theorem 2, p. 419]. The converse is
Theorem 2.

If L is a finitely generated separable extension of K, then any
intermediate field L is also finitely generated and separable over L. If
[K: Kp]> p, then L' will alsσ have a generalized primitive element θ'
over K. Moreover, each element of L will be a generalized primitive
element for a unique subfield L where L/L is separable. For if θ E L,
let L be the unique intermediate field of L/K(θ) such that L is separable
over L and L is reliable over K(θ). Then θ is a generalized primitive
element for L. Thus any intermediate field L where L is separable
over L is uniquely determined by any of its generalized primitive
elements. The following theorem and corollary indicate how a general-
ized primitive element is basic in the structure of an intermediate field.

THEOREM 6. Assume L is a finitely generated separable extension of
K and let Lλ and L2 be two intermediate fields over which L is
separable. Then the following are equivalent.

(1) L,CL 2

(2) Every generalized primitive element for L] is in L2

(3) Some generalized primitive element for Lλ is in L2.
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Proof. We show (3) implies (1). Let θx be a generalized primitive
element for LJK and assume ΘXELL2. If L2 is separable over K(θx),
then L is separable over K(θx) and Lx is separable over K(θx). Since Lx

is reliable over K(θx), Lx = K(0i) and Lx C L2. If L2 is inseparable over
K(θx), then there is a unique field C2, L 2 D C 2 D K ( 0 i ) where L2 is
separable over C2 and C2 is reliable over K(θx). Thus L is separable
over C2 and C2 is reliable over K(θx). But I.! is uniquely determined by
these properties and hence C2 = Lx and Lx C L2.

COROLLARY 4. Assume L is separable over Lu LD LXD K, and θx

is a generalized primitive element for Lx over K. IfL2 is any intermediate
field of L over K such that L is separable algebraic over L2, then
L2(LX) = L2(ΘX).

Proof Since L is separable algebraic over L2, L is separable over
L2(θx). By Theorem 6, L2(ΘX)DLX and hence L2(LX). Obviously
L2(θx) C LX(L2) and thus L2(LX) = L2(θx).

EXAMPLE 1. If [K: Kp]^p, then L may not have a generalized
primitive element over K. Let K be a perfect field and let L =
K(x, y,z) where {x, y, z) is algebraically independent over K We claim
there is no generalized primitive element for L over K. Assume θ is
one. Then L/K(θ) is reliable. However K(θ) has one element in a
relative p-basis and hence by [2, Theorem 7 (iv)] L is separable over
(K(Θ))*ΠL, where (K(0))* is the perfect closure of K(θ). But
(K(θ))* Π L is of transcendence degree at most 1 over K, and hence
(K(0))* Π L ^ L This contradicts L being reliable over K(θ).
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