SKEW LINEAR VECTOR FIELDS ON SPHERES IN THE STABLE RANGE

J. C. Becker

Theorem. Assume $n>2 k$. Then every $(k-1)$-field on S^{n-1} is skew linear.

1. Introduction. Skew linear vector fields on spheres have been studied by Strutt [6], Zvengrowski [8] and Milgram and Zvengrowski [4,5]. Extensive calculation of projective homotopy classes in [5] led Milgram and Zvengrowski to conjecture that every r-field on S^{n-1} is skew linear. Here we will prove this conjecture in the stable range, as stated above.

After a reformulation using a construction of L. Woodward [7] and the results of [1], the theorem will follow from the Kahn-Priddy theorem [3].

Since proving this theorem I have learned that Milgram and Zvengrowski had already obtained the result using different methods [9]. They have also shown that 7 and 8 -fields on S^{15} are skew linear, the two remaining cases excluded by the condition $n>2 k$ and not already dealt with in [8]. L. Woodward has also proved the theorem by methods similar to those used here.
2. Proof of the theorem. If $p: E \rightarrow B$ is a fibration let $C(B ; E)$ denote the set of vertical homotopy classes of cross sections to p. If Z_{2} acts freely on B and E in such a way that p is equivariant let $C_{Z_{2}}(B ; E)$ denote the set of equivariant vertical homotopy classes of equivariant cross sections to p.

Let $V_{n, k}$ denote the Stiefel manifold of k-frames in R^{n} with the involution $\left[v_{1}, \cdots, v_{k}\right] \rightarrow\left[-v_{1}, \cdots,-v_{k}\right]$. Recall that a skew linear ($k-1$)-field on S^{n-1} is a cross section to the bundle $V_{n, k} \rightarrow S^{n-1}$ which is vertically homotopic to an equivariant cross section. Let $L_{n, k}$ denote the space of equivariant maps $S^{k-1} \rightarrow S^{n-1}$. Fixing $x_{0}=(1,0, \cdots, 0) \in S^{k-1}$ as base point we have a fibration $L_{n, k} \rightarrow S^{n-1}$ by evaluating at x_{0} and a commutative square

where σ is the natural inclusion. The antipodal map on S^{n-1} induces an involution on $L_{n, k}$ such that the maps in the above diagram are equivariant. As is well known [2], σ is a $(2(n-k)-1)$ equivalence. Hence

$$
C\left(S^{n-1} ; V_{n, k}\right) \simeq C\left(S^{n-1} ; L_{n, k}\right)
$$

and

$$
C_{Z_{2}}\left(S^{n-1} ; V_{n, k}\right) \simeq C_{Z_{2}}\left(S^{n-1} ; L_{n, k}\right) .
$$

Let P_{k} denote $(k-1)$-dimensional real projective space and η_{k} the Hopf bundle over P_{k}. Let $\operatorname{Tr}\left(n \eta_{k}\right)$ (respectively, $\operatorname{Tr}_{Z_{2}}\left(n \eta_{k}\right)$) denote the set of fiber homotopy classes of fiber preserving maps (respectively, equivariant fiber homotopy classes of equivariant fiber preserving maps) $P_{k} \times S^{n-1} \rightarrow S\left(n \eta_{k}\right)$, whose restriction to the fiber over [x_{0}] is the identity map. Here $S\left(n \eta_{k}\right)$ is the unit sphere bundle of $n \eta_{k}$. Define a map

$$
\mu: C\left(S^{n-1} ; L_{n, k}\right) \rightarrow \operatorname{Tr}\left(n \eta_{k}\right)
$$

by $\Delta \rightarrow \tilde{\Delta}$ where $\tilde{\Delta}([x], y)=[x, \Delta(y)(x)], x \in S^{k-1}, y \in S^{n-1}$. This map is a bijection; in fact the underlying function spaces are homeomorphic (see Woodward [7, Lemma 1,2]). Similarly we have a bijection

$$
\mu_{Z_{2}}: C_{Z_{2}}\left(S^{n-1} ; L_{n, k}\right) \rightarrow \operatorname{Tr}_{Z_{2}}\left(n \eta_{k}\right)
$$

Let $G\left(S^{n-1}\right)$ denote the identity component of the space of maps $S^{n-1} \rightarrow S^{n-1}$ and let $G=\operatorname{inj}$. lim. $G\left(S^{n-1}\right)$. Let $G_{Z_{2}}=\operatorname{inj}$. lim. $G_{Z_{2}}\left(S^{n-1}\right)$ where $G_{Z_{2}}\left(S^{n-1}\right)$ is the identity component of the space of equivariant maps $S^{n-1} \rightarrow S^{n-1}$. Fixing an equivariant fiber map $f: S\left(n \eta_{k}\right) \rightarrow P_{k} \times$ S^{n-1} whose restriction to the fiber over $\left[x_{0}\right]$ is the identity, we have equivalences

$$
\nu: \operatorname{Tr}\left(n \eta_{k}\right) \rightarrow\left[P_{k} ; G\right]
$$

and

$$
\nu_{Z_{2}}: \operatorname{Tr}_{Z_{2}}\left(n \eta_{k}\right) \rightarrow\left[P_{k} ; G_{Z_{2}}\right]
$$

Each of these is defined by sending $h: P_{k} \times S^{n-1} \rightarrow S\left(n \eta_{k}\right)$ to the adjoint of

$$
P_{k} \times S^{n-1} \xrightarrow{h} S\left(n \eta_{k}\right) \xrightarrow{f} P_{k} \times S^{n-1} \rightarrow S^{n-1}
$$

Here [;] denotes homotopy classes of base point preserving maps.
Summarizing, let

$$
\psi: C\left(S^{n-1} ; V_{n, k}\right) \rightarrow\left[P_{k} ; G\right]
$$

denote the composite

$$
C\left(S^{n-1} ; V_{n, k} \xrightarrow{\sigma *} C\left(S^{n-1} ; L_{n, k}\right) \xrightarrow{\mu} \operatorname{Tr}\left(n \eta_{k}\right) \xrightarrow{\nu}\left[P_{k} ; G\right]\right.
$$

and let $\psi_{z_{2}}$ denote its equivariant analogue.
Lemma. Assume $n>2 k$. There is a commutative square

in which ψ and $\psi_{z_{2}}$ are equivalences and ϕ is the forgetful map.
If X is a connected space let $Q^{0}\left(X^{+}\right)$denote the o-component of $Q\left(X^{+}\right)=\Omega^{\infty} S^{\infty}\left(X^{+}\right)$. By the main result of [1] there is a commutative square

in which the horizontal maps are homotopy equivalences and τ is the transfer map associated with the double cover $S^{\infty} \rightarrow R P^{\infty}$. In view of this and the above lemma, our theorem will follow by showing that

$$
\tau_{\star}:\left[P_{k} ; Q^{0}\left(R P^{\alpha+}\right)\right] \rightarrow\left[P_{k} ; Q^{0}\left(S^{0}\right)\right]
$$

is epimorphic. This is a consequence of the Kahn-Priddy theorem [3]. First note that both of these groups are finite and τ_{*} is clearly onto
the odd primary part. The Kahn-Priddy result states that τ_{*} also maps onto the 2-primary part. (Although they only consider the morphisms $\tau_{\#}:\left[S^{m} ; Q^{0}\left(R P^{\infty+}\right)\right] \rightarrow\left[S^{m} ; Q^{0}\left(S^{0}\right)\right]$, for all m, their proof is valid with S^{m} replaced by any finite complex.)

References

1. J. C. Becker and R. E. Schultz, Equivariant function spaces and stable homotopy theory I, Comm. Math. Helv., 49 (1974), 1-34.
2. A. Haefliger and M. W. Hirsch, Immersions in the stable range, Ann. Math., 75 (1962), 231-241.
3. D. S. Kahn and S. B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc., 78 (1972), 981-987.
4. R. J. Milgram and P. Zvengrowski, Projective Stiefel manifolds and skew linear vector fields, Proc. London Math. Soc., 28 (1974), 671-682.
5. - Stable projective homotopy and applications to skew linear vector fields, to appear.
6. J. Strutt, Projective homotopy of Stiefel manifolds, Canad. J. Math., 24 (1972), 465-476.
7. L. M. Woodward, Vector fields on spheres and a generalization, Quart. J. Math., 24 (1973), 357-366.
8. P. Zvengrowski, Skew linear vector fields on spheres, J. London Math. Soc., 3 (1971), 625-632.
9. R. J. Milgram and P. Zvengrowski, Skew linearity of r-fields on spheres, Topology, to appear.

Received February 3, 1976. Research supported by the Science Research Council (Gt. Britain) and the National Science Foundation.

Purdue University

