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CONVERGENCE THEOREMS IN BANACH ALGEBRAS
ROBERT BEAUWENS AND JEAN-JACQUES VAN BINNEBEEK

It is shown that several convergence theorems for linear
operators, usually established by Hilbert space techniques are
consequences of the general relations between convergence,
monotonicity and order units in ordered Banach spaces.

1. Introduction. Hilbert space techniques have been used to
investigate the convergence properties of matrix and linear operator
iterative methods by Reich [11], Stein [14], [15], Ostrowski [7], John [6],
Householder [4], [5], Petryshyn [8], [9], [10] and de Pillis [2], among
others. It is the purpose of the present note to show that these results
also follow from the general properties of nonnegative operators on
ordered Banach spaces with normal cone and order units. In order to
cover most of the above mentioned results without excessive technical
preliminaries, we shall present our technique of proof in the framework
of Banach algebras.

A direct proof of the relations between convergence, monotonicity
and order units, not going through generalizations of the
Perron-Frobenius theory, is proposed in §2. Needed properties of the
hermitian elements of complex unital Banach algebras and of B*
algebras are established in §3. Convergence properties are considered
in §4, mainly in B* algebras.

General notations and terminology are taken from Schaefer [13]
with the following exceptions: an element x of an ordered vector space E
with cone C is called nonnegative (resp. positive) and denoted x =0
(resp. x >0) if x € C (resp. if x is an order unit); A € L(E, F) where E
and F are ordered vector spaces is called nonnegative (resp. positive) if
x=0 implies Ax =0 (if x=0, x#0 implies Ax >0); it is called
monotone if Ax =0 implies x = 0.

Specific notations and terminology relative to Banach algebras are
taken from Bonsall and Duncan [1].

2. Monotonicity and convergence. Convergence proper-
ties of nonnegative operators on an ordered (real) Banach space with
normal cone and order units are established in the present section.
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THEOREM 2.1. Let E be an ordered (real) Banach space with
normal cone and order units; let T € £(E), T =0; then

(2.1) r(T) = inf inf {a | Tx = ax}

where x €E E and a € R.

Proof. The relation (2.1) may be written
22) F(T)=inf | |,

where || T||, denotes the norm induced on Z£(E) by the Minkowski
functional of the order interval [ — x, x ]; the latter functional is a norm on

E, equivalent to the original one since the cone of E is normal (cf.
Corollary 2 of Theorem 6.2, in Chap. V of Schaefer [13]). Therefore

r(T)=|T|, for any x € E, x >0; thus

@3) A(T)=ing | T]L.

Let a = r(T)+ € >r(T), let y EE, y >0 and set
2.4) x=<I—%T)—1y=§:ikT“y

the convergence of the series being guaranteed by r((1/a)T)=
(1/a)r(T)<1; on the other hand

2.5) x=y+ S L Tyzys0

thus x > 0; moreover

2.6) I-LT)x=y>0
thus
2.7) Tx < ax

and, therefore || T|. < a; since @ may be chosen arbitrarily close to r(T),
we have
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) inf | T, = r(T).
The conclusion follows.

LEMMA 2.1. Let E be an ordered (real) vector space with order units
and let A € L(E) be monotone and surjective. Then

(2.9) x>0 2> A'x>0.

Proof. Let x>0,y € E and set u = Ay. Since x >0, there exists
a € R, a >0 such that au = x, thus such that ay = A™'x. Thus A 'x
>0.

THEOREM 2.2. Let E be an ordered Banach space with normal cone
and order units; let T € L(E), T=0. Then the following conditions are
equivalent :

1 ()<,

(2) I—T is monotone and surjective ;

(3) there exists x >0 such that Tx < x.

Proof.

(1) = (2) is obvious since the cone of L(E) is closed;

2)> (3):lety €EE, y >0;byLemma 2.1, wehavex =(I - T) 'y >
0, thus (I - T)x =y >0, whence Tx <x;

(3) > (1): by Theorem 2.1.

RemMAaRrks. These results generalize well known theorems of matrix
iterative analysis, classically obtained as consequences of the
Perron-Frobenius theory of nonnegative matrices. For an intrinsic
summary of the theory in finite dimensional spaces, we refer to Rhein-
boldt and Vandergraft [12]. Note that our attempt here was neither at
the most general nor at the most complete possible setting but at the most
direct proofs of the few general properties needed in §4.

3. Hermitian elements in Banach algebras.

3.1. Hermitian elements in complex unital Banach algebras. Let A
be a complex unital Banach algebra with unit e; by p(a) we denote the
functional
3.1) p(a)=sup {{A[; A € V(a)} a€EA

where V(a) is the numerical range of a in Aj; i.e.

3.2 V(a)={f(a); f€ D(e)}
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with
(3.3) D(e)={fE€ S(A"); f(e)=1}

where S(A’) is the unit sphere in the strong dual A’ of A ; by Proposition
10.4 and Theorem 10.14 of Bonsall and Duncan [1], p(a) is anorm on A,
equivalent to the original one.

An element a € A is called hermitian if V(a) CR; the space
E = Her(A) of hermitian elements of A is a real closed subspace of A ;
the set C = Pos(A) of the elements a € A such that V(a)CR, is a
proper closed cone in E and we consider here E as an ordered (real)
Banach space with nonnegative cone C. In particular, we consider that
Z(E) is ordered by the induced order (i.e. by the cone of the bounded
nonnegative endomorphisms of E).

LEmMMmA 3.1. Let A be a complex unital Banach algebra, E =
Her(A), a€E, a=0 and 0 & V(a); then a is an interior point of
C=Pos(A) in E.

Proof. Set A =inf{a | @ € V(a)}; by Proposition 10.4 of Bonsall
and Duncan [1], A >0 and

34 V(a+b)CV(a)+ V(b)CV(a)+[~|blllbll

for any b€ E. Thus, if |b|<A, we have V(a+b)CR,, and the
proposition follows.

REMARK. When the cone of an ordered topological vector space
has nonempty interior, the notions of interior point and of order unit
coincide; accordingly for any a € Her(A), we have a >0 if and only if
f(a)>0 for any f € D(e); we also recall here that a cone with order units
is generating.

We shall call pencil of elements of an algebra A the set of linear
combindtions a — Ab where a € A, b € A and A is a scalar parameter.

DEerFINITION 3.1. Let a and b be elements of a complex unital
Banach algebra, the set

(3.5 Vi(a)={A | 3f) (f € D(e) and f(a ~Ab)=0)}

is called the numerical range of the pencil a — Ab. This notion will be
used here under the additional assumption that b € Her(A ) with b > 0;
in the latter case it is readily seen that
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Vi(a)= {%%%; fe D(e)}.

Definition 3.1 generalizes (3.2) since V(a) = V,/(a) where e is the unit of
A; in other words V(a) is the numerical range of the pencil a —
Ae. Generalizing (3.1), we also introduce

(3.6) pr(a)=sup{|A[; A € Vi(a)}

and we have, in particular, p(a) = p.(a).

LemMMA 3.2. Let A be a complex unital Banach algebra with unit e,
and b € E =Her(A), b >0; then

(3.7) pr(a)=inf {— Ab < a < Ab}.

Proof. For any a € E and A >0, the relation
(3.8) —Ab<a<ib
is successively equivalent to

(3.9 Ab+a>0 and Ab—a>0
(3.10) f(Ab+a)>0 and f(Ab—a)>0 for any f€ D(e)

(3.11) A+M>O and /\—M>O for any f€ D(e)

f(b) f(b)
(3.12) fﬂ(%% <A for any f€ D(e).

Thus (3.7) is equivalent to

(.13) p.(a) = int{A:91) (€ D()> ]%%%

< )\)} =sup{|A|; A € V,(a)}

which completes the proof.

REMARK. In other words p,(a) is the Minkowski functional of the
order interval [ — b, b]. Since, as stated previously, p.(a)is a norm on E,
equivalent to [ a |, it follows from the Corollary 2 of V.6.2 in Schaefer
[13] that C = Pos(A) is a normal cone and therefore that p,(a) is also an
equivalent norm for arbitrary b € E, b > 0.
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It must be remembered that E is considered here as an ordered
Banach space; in particular p,(a) is not an algebra norm. Nevertheless,
we have

LemMmA 3.3. Let A be a complex unital Banach algebra, E =
Her(A), a€ A, b€ E, b>0. Then

(3-14) r(ba)=pi(a)=[b7'lla].

Proof. If A Eo(b'a), then a—Ab is singular, thus 0€
o(a—Ab)CV(a—Ab); therefore, for some f& D(e), we have
f(a— Ab) =0, thus also A = f(a)/f(b), i.e. A € Vi(a). The left inequal-
ity follows.

The right inequality follows from

sup{[A[; A € V(a)}

(3.13) P(a) == A E Vb))

since

(3.16) sup{{A[; A € V(a)} = al

and

(3.17) inf (V(b)) = inf (o(b)) = — L

sup(a(6™) b7
by Theoréms 10.4, 10.5, 10.17 and 7.4 of Bonsall and Duncan [1].

3.2.  The Stein transformation in B* algebra. We recall that a B*
algebra is a complex unital Banach algebra A with a linear involution
a— a* such that |a*a| =|la| forany a € A. If A is a B* algebra,
a € A is hermitian if and only if it is symmetric, i.e. a* = a.

DeriNiTION 3.1, Let A be a B* algebra and let a € A ; then the
linear transformation T,on E = Her(A ) into A defined by T,: x - a*xa
for each x € E is called the Stein transformation associated with a.

LEmMA 3.4. Let A be a B* algebra, E = Her(A) and T, be the
Stein transformation associated with a€A ; then T,€ £(E) and T,=0.

Proof. Letx€E, x=0and y = T,(x)= a*xa; by Lemma 38.7 of
Bonsall and Duncan [1], there exists u € E, u = 0 such that u® = x; since
E =Sym(A) we have u* = u, thus y = (a*u*)(ua) which entails y =0
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by Lemma 38.9 of Bonsall and Duncan [1]. On the other hand, it is
clear that T, is bounded.

LEMMA 3.5. Let A be a B* algebra with unit e, E = Her(A), and
T, be the Stein transformation associated with aEA. Then

@ [T]=lal
@) r(T)=(r(a)).

Proof. We have

*
X
619 170 = sup LX< o) fa = ap
0
Moreover, for x = e,
(3.19) IT.zla*al=lal

and the first assertion follows.
Applying (1) to a”, we get

(3.20) I Tal =1 Ter | =1l 2" |P.
Therefore
(3.21) r(T)=lim | T7["" =lim [[a" | = (r(a)).

4. Convergence theorems. New proofs, based on the rela-
tions between monotonicity, convergence and order units are proposed
in the present section for several convergence theorems usually estab-
lished in the framework of Hilbert spaces.

The following theorem is a generalization of a result by Householder

[4]:

THEOREM 4.1. Let A be a complex unital Banach algebra with unit
e, E=Her(A) and t €E; then r(t)<1 if and only if —e<t<e.

Proof. By Lemma 3.3 and by Theorem 10.17 of Bonsall and
Duncan [1], we have r(¢t) = p(t). The conclusion follows by Lemma 3.2.

We now consider the application of Theorem 2.2 in B* algebras;
thus we have

THEOREM 4.2. Let A be a B* algebra, E = Her(A) and T, be the
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Stein transformation associated with t€ A ; then the following conditions
are equivalent:

(1) r@)<It;

(2) I-— T, is monotone and surjective;

(3) there exists x € E, x >0 such that (I — T)x >0.

Proof. By Lemma 34, T, € #(E) with T,=0; by Lemma 3.5,
r(T,) = r(¢)’; the conclusion follows by Theorem 2.2.

As a consequence, we have the following generalization of a
theorem by Stein [14], [15].

THEOREM 4.3. Let A be a B* algebra, E = Her(A), a € E and T,
be the Stein transformation associated with t€A. If (I— T)a >0, then
r(t)<1 if and only if a > 0.

Proof. Let b=(I—T)a>0. If r(t)<1, I—T, is monotone and
surjective, thus a >0 by Lemma 2.1. If, on the other hand, we have
a >0, then r(¢t)<1 by Theorem 4.2, [3].

The preceding results apply in practice when, in a given Banach
space V, one solves a linear system

ax =y, xXEYV, yEYV, a € Z(v)
by an iterative scheme of the form
bxUV=cxP+y j=0,1,2---

with a = b — ¢; assuming that b™' € £(V), one introduces the iteration
operator t = b~'c and the condition r(¢) <1 is equivalent to the norm-
convergence of the Neumann expansion for (e —t)™' where e is the
identity operator of £(V).

In this context, we have the following generalization of Theorem 4.1
(cf. Petryshyn [9]):

THEOREM 4.4. Let A be a B* algebra and E =Her(A); let
a,bc € E witha=b~—c, b>0 and sett =b"'c. Thenr(t)<1 if and
only if —b<c<b.

Proof. Since b€ E, b >0, there exists u € E, u>0 such that
u’=>b. Let T,~ be the Stein transformation associated with ¥ ' and S,
be the similarity transformation defined by S,-x =uxu™ for all
x € A. We have
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4.1) T,(bxc)=S,(e=xt)

thus, by Lemma 3.4, S,-t € E and, by Theorem 4.1, r(¢) = r(S,~t) <1 if
and only if

4.2) —e<St<e
or
(4.3) S, (e £1)>0.

Since, on the other hand, T,-: is both nonnegative and monotone with
T, =(T,+)", it follows from Lemma 2.1 that the preceding relation is
equivalent to

4.4) bxc=TS.(ext)>0
or
4.5) —-b<c<b.

As an immediate consequence, we have the following result in B*
algebras.

COROLLARY. Let A be a B* algebra, E = Her(A), a,b € E, b >0;
then r(b™'a)= p,(a).

ReEMARK. It follows from Lemma 3.3 that the sufficient condition of
Theorem 4.4 still holds in a complex unital Banach algebra; whether
or not the necessary condition also extends in the latter case remains an
open question. In the same framework, practical application of
Theorem 4.3 is made easier by the following result which generalizes a
theorem by Feingold and Spohn [3].

THEOREM 4.5. Let A be a B* algebra and E = Her(A); leta € E,
b,ce Awitha=b—candb €Inv(A); sett = b~'c and let T, be the Stein
transformation associated with t. Then (b*+c)EE; moreover
(I - T)a >0 if and only if (b*+c¢)>0.

Proof. We have

(4.6) (b*+c)*=b+c*=a+c+c*=a*+c+c*=b*+c¢

thus (b*+ ¢)E E.
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On the other hand, the following identity is readily established
4.7) (I-T)a=ab*'(b*+c)b'a

and the conclusion follows by Lemma 3.4 and Lemma 3.1.

As a consequence, we have the following generalization of a
theorem of matrix iterative analysis, sometimes attributed to Reich [11]
and Ostrowski [7] who considered the particular case of the successive
overrelaxation method; its general form seems however to appear first in
John [6] for the sufficient condition, and in Householder [5].

THEOREM 4.6. Let A be a B* algebra and E = Her(A); let a € E,
bceEAwitha=b—-candb€Inv(A), andsett =b7'c. If (b*+c)>
0, then r(t)<1 if and only if a > 0.

Proof. In virtue of Theorem 4.5, the proposition is a restatement of
Theorem 4.3.

With slight additional notations, these results also cover generaliza-
tions of Petryshyn’s theorems for bounded operators.

THEOREM 4.7. Let A be a B* algebra and E =Her(A); let
a,bc,k€Awitha=b—-c k €Inv(A), kaand kb € E, kb >0, and set
t=>b""'c. Then r(t)<1 if and only if — kb < kc <kb.

Proof. Using the notations of the proof of Theorem 4.4, but with
u’= kb, we have

(4.8) T,-(kb £kc)=S,-(e £1t).
The conclusion follows, as precedingly.

REMARK. When k € E with k >0, an element a € A such that
ka € E is termed k-symmetric by Petryshyn; it is termed k-positive-
definite if, in addition, ka >0. In the case of finite matrices, alternate
characterizations of k-positive-definite elements are considered in [8].

On the other hand, Theorems 4.5 and 4.6 admit the following
generalizations.

THEOREM 4.8. Let A be a B* algebra and E =Her(A); let
a,bc,k,EA a=b—c, kal €EE, bk, €Inv(A); setu=1"b""cl and
let T, be the Stein transformation associated with u. Thenl*b*k* + kcl €
E and (I - T,)kal >0 if and only if I*b*k* + kcl > 0.
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Proof. We have

(I*b*k*+ kcl)* = kbl + I*c*k*
= kal + kcl + [*c*k*

4.9) = I*a*k*+ kel + [*c*k*
= I*b*k* + kel

thus [*b*k* + kcl € E.
On the other hand, we have

(4.10) (I - T)kal =1*a*b*"1*'(I*b*k* + kcl)l"'b"al
and the conclusion follows by Lemma 3.4 and Lemma 3.1.

THEOREM 4.9. Let A be a B* algebra and E =Her(A); let
a,bc k€A a=b-c kalEE, bk, I€Inv(A) and set t =b"'c. If
I*b*k* + kel >0, then r(t)<1 if and only if kal > 0.

Proof. 1f u =17"tl, we have r(t)=r(u); therefore, in virtue of
Theorem 4.8, the proposition is a restatement of Theorem 4.3.
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