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A CHARACTERIZATION OF THE GAUSSIAN
DISTRIBUTION IN A HILBERT SPACE

JEFFREY L. SPIELMAN

In this paper we consider the case in which random
variables X, take values in a real, separable Hubert space
$ί. We look at a linear form ΣA7X, where each A} is a bounded
linear operator in $?. We then assume that this linear form is
identically distributed with a monomial and form conditions
under which it is possible to deduce that the common distribu-
tion of the random variables is the Gaussian distribution.

The study of identically distributed linear forms of independent and
identically distributed random variables has been undertaken by several
authors. J. Marcinkiewicz studied linear forms in which all moments of
the random variables are assumed to exist. He then proved that the
common distribution of the random variables was the Normal
distribution. R. G. Laha and E. Lukacs have considered the case where
one of the linear forms is a monomial. They have obtained char-
acterizations of the Normal distribution for both the case when the
variance is assumed finite and when no assumption is made concerning
the variance.

1. Statement of the main result. Suppose now that
Xί9 X2y' * is a sequence (possibly finite) of independent, identically
distributed, nondegenerate $f-valued random variables, where Xi has a
finite variance (i.e. Var Xx < + o°). Let Au A2, be a sequence of 1-1
bounded linear operators in $f, with the following two properties:

(i)

and

(2)

We note that in the above A * represents the adjoint of A, and that
the inequality ΣjA*Aj^ I is true in the sense of positive-
definiteness. (For example, see page 313 of [7].)

Our goal is to prove the following theorem.
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THEOREM 1. Suppose that ΣyAy Xy converges with probability
one. If Σ}A}X} has the same distribution as Xu then Xι has a Gaussian
distribution.

In §2 we will prove an important preliminary result (Theorem
2). Then in §3 we will present the proof of Theorem 1.

2. A pre l iminary result . In this section we will prove the
following result.

THEOREM 2. Let XUX2, ••• be a sequence (possibly finite) of
independent, identically distributed, nondegenerate, X-valued random
variables. Suppose that the sum ΣyAyXy exists with probability one, where
Au A 2 , ' ' ' are bounded linear operators in ffl, with supy || A} || < 1.

If ΣJAJXJ has the same distribution as Xu then Xx has an infinitely
divisible distribution.

Note. The hypotheses of Theorem 2 are somewhat weaker than the
hypotheses of Theorem 1.

Before beginning the proof of Theorem 2, let us fix some notation.
Let ψ(y) be the common characteristic functional of

XUX2, -. Then φ ( y ) = « β I < ^ y > for all y E %, where % denotes
mathematical expectation.

The characteristic functional of AyXy is then given by:

(3) %ei{A^ = ge'<VW = φ(A*y)

where A * denotes the adjoint operator of Ar

Now, suppose that ΣyAy Xy has the same distribution as Xx. Then
equation (3) gives us:

(4) φ(y) = U<P(A1y), for all y E %,

where the product converges uniformly on bounded spheres. (See
Theorem 4.4, pg. 171 of [5].)

Since ΣyAyX/ converges, then ΣjLπA;Xy converges, with probability
one, to the origin of ffl as n -»α>. (Of course, if Xi,X2, is a finite
sequence, the preceding statement is unnecessary.)

Thus, it is possible to choose No for any 6 > 0, such that
P{\\ Σy°°=N+1 AJXJ || > e} < 6, whenever N ^ No. Let φN(y) denote the
characteristic functional of Σ"=N+1AyXr Then using equation (4), we
have:

(5) ψ(y)= ψ(Λ*y)- - φ(A%y)φN(y).
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Proof of Theorem 2. We assume that ΣyA/Xy has the same distribu-
tion as Xj. Then equation (5) holds. If we replace y by A*y in
equation (5), we obtain:

(6)

for each / = 1,2, •• ,N.
Combining equations (5) and (6) we have:

φ(y)=ΐl φ((A*;)2y) n φ(A*A*ky)Yl
7 = 1 /Vk 7 = 1

If we repeat the above process n times, we get the following result:

(7)

The product on the right hand side of equation (7) consists of
Nn + Nn~ι + + N + 1 factors, where each of the subscripts /Ί, •••,/„
can take any of the values 1, , N with repetitions allowed.

Thus, equation (7) says that Xx is distributed as the sum of
kn ~ Σΐ=0N

k independent, ^-valued random variables, Y^k (k =
1,2, , fcn), for any positive integer n.

We will now show that Yn,fc is a uniformly infinitessimal collection of
random variables. That is, we will show that for any e > 0,
supiSkgkflP{|| Ynk | | > e } - * 0 as n-*°o. Once this has been established,
the infinite divisibility of Xx will follow from Corollary 6.2, page
199 of [5].

Consider the factors on the right hand side of equation (7). Let
e > 0 be given. By definition φN(y) is the characteristic functional of
Σ;= N + 1 Aft and P{\\ Σ;=N+1 Aft \\ > e} < 6, for all N g No.

Consider now a factor of the form φN(A *,A *2 A * n_j). This is
the characteristic functional of

Ajn_k A]2AjX 2J Aft.

Also,

p\\Ain_k --AhAh Σ

/=N+i

= H Σ A x / > € [ < e whenever N ^ JV0,
U / = N+1 || J

since supjAyl^ 1.
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Finally, we consider a factor of the form φ(A *, A *j), which is
the characteristic functional of Aln AhXu Set a = sup, || A, ||.

Then

Now choose an integer N' such that PIHX^^ e/an}< β, whenever
n ^ N'. (This is possible because 0 < a < 1). Set n0 = max{N0, N'}.

Hence, we have shown that P{\\ Ynk || > e} < e, for all fc = 1,2, , fen,
whenever n ̂  n0. Therefore, the collection Ynk is uniformly infinites-
imal and Xx is infinitely divisible. This completes the proof of the
theorem.

3. Proof of the main result. For convenience, we now will
make the assumption that Xu X2, - are symmetric random
variables. Since the common distribution of these random variables is
infinitely divisible, the common characteristic functional, φ(y), has a
unique Levy-Khintchine representation given by:

(8) lnφ(y)= -

where 5 is an 5-operator (a nonnegative, self-adjoint compact operator
on Sίf, with a finite trace), and L is a σ-finite measure with finite mass
outside every neighborhood of the origin and with the property that

ί \xfdL(x)<+">.

(see [5], page 181.)
Furthermore, since XuX2,

m m have finite variance, φ(y) has a
unique Kolmogorov representation, given by:

(9) \nφ(y)=-USy,y)+\

where 5 sis an 5-operator and K is a finite measure on 3€. (See [6].)
By equations (4) and (8) we have:

Σ ί (cos<x, A * y ) - l)dL(x)

) + j(cos(x,y)-l)dL(x).
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Also,

Σ ί (cos<x, A*y>-
J J

(cos(x, y) - ί)dLA;ι(x).

It is not difficult to show that ΣJAJSA * is an 5-operator. Also, it is
clear that LA]1 is the σ-finite measure which occurs in the
Levy-Khintchine representation of AyXy, for each /.

We denote by 53, the class of Borel sets in $f. Then the measure Kp

defined by:

K} (D) = f || x fdLA ]\x), for all D E S3
JD

is the finite measure which occurs in the Kolmogorov representation of
A,Xh for each /.

Since XUX2, * * * have finite variance,

(11) ί ||x||2dL(jc)< +00. (See [6].)

By equation (10), l

We note that

cos(x,y)-l

\\xfdL(x)<cc

because of relations (1) and (11).
Thus we may interchange the integral and summation signs in

equation (12) to obtain:
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Then, by the uniqueness of the Kolmogorov representation, we
have:

A,SA * = S and Σ K, = K.

From the second of these relations, Σ;lζ(5ίf) = K(ffl), which leads to
the following sequence of equations.

ΣJ\\AlxfdL(x)=j \\xfdL(x)

In view of relation (4), it must then be true that

(13)

We note that for n a positive integer, Σ%λA}Xj has characteristic
functional Π"=1φ(A*y), and

*y)= -\(ΣA,SA*y,y

Thus Σ^iLAj1 converges weakly, outside closed neighborhoods of
OG W, to L, as n ->oo. (See [5], page 189).

It now becomes necessary to state and prove two technical lemmas.

LEMMA 1. For any e >0,

ί \\xfdL(x)=Σ\ llA*
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Proof. Let eι and e2 be positive constants with ex < e2. Define a
function f(x) by:

Then f(x) is bounded and continuous. Thus by comment (14),

ί f{x)dL{x) = lim Σ ί f(x)dLAj1(x)
J\\x\\>€i n^°° ; = 1 J\\x\\>eι

which implies that

Σ f IIx II2 dLA Jι(x) + (62)
2 Σ LA: ' { | | X || > €l)

y = l Jei<||x||^€2 / = 1

converges to

ί \\x\\2dL(x) + (€2fL{\\x\\>€2}
Jci<\\x 1̂ 62

as n —»oo.
But, again because of comment (14), Σ;"=i LA y

7l{||x | | > e2} converges
to L{||jc| |>e2} as n-^oo.

Therefore, Σf=1 J \\x\fdLA]\x) converges to
Jei<||x||gC2

ί llχ|Pdί-(χ),
Jei<||x||g€2

whenever we choose 0 < eγ < e2.
Let 6 > 0 be given. Let en be a strictly increasing sequence of

positive numbers, en f + oo, with βj > e. For convenience we set e = e0.
Then

ί II^II2^(^)=Σ ί \\χ\\2dL(χ)
J\\x\\>€0 k=0 J €k<\\x\\^€k + l

= ΣΣ ί n x
k=0 Jek<||x||<ek + i

= ΣΣ ί h
j k=0 J €k<\\x\\^€k + l

= Σ ί \\x\\2dLAj\χ)= Σ f HAx
J||χ||>« / J||A/χ||>€

This completes the proof.

LEMMA 2. L({x: || A,JC ||2 g ||x ||2, /or 5ome fc = 1,2, •}) = L({0}).
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Proof. Let k be a fixed positive integer.
Set Ek ={x: \\Akx f = \\x ||2}. Then, using equation (13), L(Ek) =

fcn{x:ΣjAyx||2H!*ll2})
Thus, L(Ek) = L{x: Σy^fe || Ayoc ||2 = 0} = L({0}), since each operator Ay

is 1-1.

(15) Similarly, L ( U £*) = L ({0}).

Using the same type of argument, it is easy to show that for all

fc = l,2,

(16) L{x:| |Ak jc| |2>||x| |2} = 0.

Combining equations (15) and (16) we are done.
From relations (1) and (13), we see that L{x: | | x | | V Σy ||Ayx ||2} =

0. Hence, referring to Lemma 1, it is true that, for all e > 0 ,

Σ{ \\AlxfdL(x)=Σ ί \\A,xfdL(x),
j J||x||>6 J||A7x||>£

and this implies that

(17) Σ i f ||Ayx||2rfL(jc)- f \\Ajx\\2dL(x)} = 0, forall£>0.
/ LJ||x||>€ J\\AjX\\>€ J

But

(18) L {x: x έ 0 and || Ayjc || ^ || x ||} = 0, for all /.

Thus, each term in the sum of equation (17) must be nonnegative, which
yields:

ί \\AjxfdL{x)=\ ||Ayjc||2dL(x), for all e>0 and all .
J||x||>e J||A,x||>e

Or, using equation (18),

ί \\A1xfdL(x)=f WAjxfdLix),
J{||x||>e}nF, JiWAμl^ejΠF,

for all 6 > 0 and all /, where Fy = {x: \\AjX \\<\\x ||}, for each / = 1,2, .
The above implies that
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\\A,xfdL{x) = 0, for all e > 0 and all /,

or,

|| AjX fdL (x) = 0, for all e > 0 and all /.
Jib

So, we must have that

(19) L{x: || JC || > e and \\Apc || ^ e} = 0, for all 6 > 0 and all /.

Consider the set Q+ of positive rational numbers. Let k be a fixed
positive integer.

and ^ r}]= L[{x: \\Akx | |< ||x||} = L[X\{0}].
J

Therefore, L[#f\{0}] g Σ r e ( rL{x: \\x \\> r and \\Akx\\^ r) = 0, by
equation (19).

This last relation says that L is degenerate at 0 E Sίf, which means
that the common characteristic functional of XUX29 * is given by:

lnφ(y)= -ί(Sy,y> (seeEq.(8)).

Hence Xi,X2, * *' have a common Gaussian distribution.
Recall that we have assumed XUX2, to be symmetric, but it is

now easy to extend our result to the general case by using Cramer's
Theorem (see page 141 of [1]).

The proof of Theorem 1 is now completed.
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