A CHARACTERIZATION OF THE GAUSSIAN distribution in a hilbert space

Jeffrey L. Spielman

Abstract

In this paper we consider the case in which random variables X_{j} take values in a real, separable Hilbert space \mathscr{H}. We look at a linear form $\Sigma A_{i} X_{j}$ where each A_{j} is a bounded linear operator in \mathscr{H}. We then assume that this linear form is identically distributed with a monomial and form conditions under which it is possible to deduce that the common distribution of the random variables is the Gaussian distribution.

The study of identically distributed linear forms of independent and identically distributed random variables has been undertaken by several authors. J. Marcinkiewicz studied linear forms in which all moments of the random variables are assumed to exist. He then proved that the common distribution of the random variables was the Normal distribution. R. G. Laha and E. Lukacs have considered the case where one of the linear forms is a monomial. They have obtained characterizations of the Normal distribution for both the case when the variance is assumed finite and when no assumption is made concerning the variance.

1. Statement of the main result. Suppose now that X_{1}, X_{2}, \cdots is a sequence (possibly finite) of independent, identically distributed, nondegenerate \mathscr{H}-valued random variables, where X_{1} has a finite variance (i.e. $\operatorname{Var} X_{1}<+\infty$). Let A_{1}, A_{2}, \cdots be a sequence of 1-1 bounded linear operators in \mathscr{H}, with the following two properties:

$$
\begin{equation*}
\sum_{i}\left\|A_{j}\right\|^{2}<+\infty \quad \text { and } \quad \sum_{j} A_{j}^{*} A_{i} \geqq I \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{j}\left\|A_{j}\right\|<1 \tag{2}
\end{equation*}
$$

We note that in the above A_{j}^{*} represents the adjoint of A_{j} and that the inequality $\Sigma_{i} A_{j}^{*} A_{j} \geqq I$ is true in the sense of positivedefiniteness. (For example, see page 313 of [7].)

Our goal is to prove the following theorem.

Theorem 1. Suppose that $\Sigma_{l} A_{j} X_{l}$ converges with probability one. If $\Sigma_{l} A_{j} X_{j}$ has the same distribution as X_{1}, then X_{1} has a Gaussian distribution.

In §2 we will prove an important preliminary result (Theorem 2). Then in $\S 3$ we will present the proof of Theorem 1.
2. A preliminary result. In this section we will prove the following result.

Theorem 2. Let X_{1}, X_{2}, \cdots be a sequence (possibly finite) of independent, identically distributed, nondegenerate, \mathscr{H}-valued random variables. Suppose that the sum $\Sigma_{j} A_{j} X_{j}$ exists with probability one, where A_{1}, A_{2}, \cdots are bounded linear operators in \mathscr{H}, with $\sup _{j}\left\|A_{j}\right\|<1$.

If $\Sigma_{,} A_{J} X_{J}$ has the same distribution as X_{1}, then X_{1} has an infinitely divisible distribution.

Note. The hypotheses of Theorem 2 are somewhat weaker than the hypotheses of Theorem 1.

Before beginning the proof of Theorem 2, let us fix some notation.
Let $\varphi(y)$ be the common characteristic functional of X_{1}, X_{2}, \cdots. Then $\varphi(y)=\mathscr{E} e^{\iota\left\langle X_{1}, y\right\rangle}$ for all $y \in \mathscr{H}$, where \mathscr{E} denotes mathematical expectation.

The characteristic functional of $A_{J} X_{J}$ is then given by:

$$
\begin{equation*}
\mathscr{C} e^{i\left\langle A, X_{r}, y\right\rangle}=\mathscr{C} e^{\imath\left\langle X_{,}, A ; y\right\rangle}=\varphi\left(A_{j}^{*} y\right) \tag{3}
\end{equation*}
$$

where $A_{,}^{*}$ denotes the adjoint operator of $A_{\text {. }}$.
Now, suppose that $\Sigma_{j} A_{j} X_{j}$ has the same distribution as X_{1}. Then equation (3) gives us:

$$
\begin{equation*}
\varphi(y)=\prod_{,} \varphi\left(A_{,}^{*} y\right), \quad \text { for all } \quad y \in \mathscr{H} \tag{4}
\end{equation*}
$$

where the product converges uniformly on bounded spheres. (See Theorem 4.4, pg. 171 of [5].)

Since $\sum_{j} A_{j} X_{j}$ converges, then $\sum_{j=n}^{\infty} A_{j} X_{j}$ converges, with probability one, to the origin of \mathscr{H} as $n \rightarrow \infty$. (Of course, if X_{1}, X_{2}, \cdots is a finite sequence, the preceding statement is unnecessary.)

Thus, it is possible to choose N_{0} for any $\epsilon>0$, such that $P\left\{\left\|\sum_{j=N+1}^{\infty} A_{l} X_{j}\right\|>\epsilon\right\}<\epsilon$, whenever $N \geqq N_{0}$. Let $\varphi_{N}(y)$ denote the characteristic functional of $\sum_{j=N+1}^{\infty} A_{j} X_{l}$. Then using equation (4), we have:

$$
\begin{equation*}
\varphi(y)=\varphi\left(A_{1}^{*} y\right) \cdots \varphi\left(A_{N}^{*} y\right) \varphi_{N}(y) . \tag{5}
\end{equation*}
$$

Proof of Theorem 2. We assume that $\Sigma_{j} A_{j} X_{j}$ has the same distribution as X_{1}. Then equation (5) holds. If we replace y by $A_{,}^{*} y$ in equation (5), we obtain:

$$
\begin{equation*}
\varphi\left(A_{j}^{*} y\right)=\varphi\left(A_{1}^{*} A_{j}^{*} y\right) \cdots \varphi\left(A_{N}^{*} A_{j}^{*} y\right) \varphi_{N}\left(A_{j}^{*} y\right) \tag{6}
\end{equation*}
$$

for each $j=1,2, \cdots, N$.
Combining equations (5) and (6) we have:

$$
\varphi(y)=\prod_{j=1}^{N} \varphi\left(\left(A_{,}^{*}\right)^{2} y\right) \cdot \prod_{j \neq k} \varphi\left(A_{,}^{*} A_{k}^{*} y\right) \prod_{j=1}^{N} \varphi_{N}\left(A_{j}^{*} y\right) \varphi_{N}(y) .
$$

If we repeat the above process n times, we get the following result:

$$
\begin{equation*}
\varphi(y)=\Pi \varphi\left(A_{j_{1}}^{*} \cdots A_{j_{n}}^{*} y\right) \prod_{k=1}^{n-1} \Pi \varphi_{N}\left(A_{j_{1}}^{*} \cdots A_{j n-k}^{*}\right) \varphi_{N}(y) \tag{7}
\end{equation*}
$$

The product on the right hand side of equation (7) consists of $N^{n}+N^{n-1}+\cdots+N+1$ factors, where each of the subscripts j_{1}, \cdots, j_{n} can take any of the values $1, \cdots, N$ with repetitions allowed.

Thus, equation (7) says that X_{1} is distributed as the sum of $k_{n}=\sum_{k=0}^{n} N^{k}$ independent, \mathscr{L}-valued random variables, $Y_{n, k} \quad(k=$ $1,2, \cdots, k_{n}$), for any positive integer n.

We will now show that $Y_{n, k}$ is a uniformly infinitessimal collection of random variables. That is, we will show that for any $\epsilon>0$, $\sup _{1 \leqq k \leqq k_{n}} P\left\{\left\|Y_{n k}\right\|>\epsilon\right\} \rightarrow 0$ as $n \rightarrow \infty$. Once this has been established, the infinite divisibility of X_{1} will follow from Corollary 6.2, page 199 of [5].

Consider the factors on the right hand side of equation (7). Let $\epsilon>0$ be given. By definition $\varphi_{N}(y)$ is the characteristic functional of $\sum_{j=N+1}^{\infty} A_{j} X_{j}$ and $P\left\{\left\|\sum_{j=N+1}^{\infty} A_{j} X_{j}\right\|>\epsilon\right\}<\epsilon$, for all $N \geqq N_{0}$.

Consider now a factor of the form $\varphi_{N}\left(A_{j_{1}}^{*} A_{j_{2}}^{*} \cdots A_{j_{n-k}}^{*} y\right)$. This is the characteristic functional of

$$
A_{j_{n-k}} \cdots A_{l_{2}} A_{j_{1}} \sum_{j=N+1}^{\infty} A_{j} X_{j} .
$$

Also,

$$
\begin{aligned}
P\left\{\| A_{j_{n-k}}\right. & \left.\cdots A_{j_{2}} A_{j_{1}} \sum_{j=N+1}^{\infty} A_{j} X_{j} \|>\epsilon\right\} \\
& \leqq P\left\{\left\|A_{j_{n-k}}\right\| \cdots\left\|A_{j_{2}}\right\| \cdot\left\|A_{j_{1}}\right\| \cdot\left\|\sum_{j=N+1}^{\infty} A_{j} X_{j}\right\|>\epsilon\right\} \\
& \leqq P\left\{\left\|\sum_{j=N+1}^{\infty} A_{j} X_{j}\right\|>\epsilon\right\}<\epsilon \quad \text { whenever } \quad N \geqq N_{0},
\end{aligned}
$$

since $\sup _{j}\left\|A_{j}\right\|<1$.

Finally, we consider a factor of the form $\varphi\left(A_{j_{1}}^{*} \cdots A_{j_{n}}^{*} y\right)$, which is the characteristic functional of $A_{j_{n}} \cdots A_{j_{1}} X_{1}$. Set $\alpha=\sup ,\left\|A_{j}\right\|$.

Then

$$
\begin{aligned}
P\left\{\| A_{j n} \cdots A_{j_{1}}\right. & \left.X_{1} \|>\epsilon\right\} \\
& \leqq P\left\{\left\|A_{j_{n}}\right\| \cdots\left\|A_{j_{1}}\right\| \cdot\left\|X_{1}\right\|>\epsilon\right\} \\
& \leqq P\left\{\left\|X_{1}\right\|>\frac{\epsilon}{\alpha^{n}}\right\}
\end{aligned}
$$

Now choose an integer N^{\prime} such that $P\left\{\left\|X_{1}\right\|>\epsilon / \alpha^{n}\right\}<\epsilon$, whenever $n \geqq N^{\prime}$. (This is possible because $0<\alpha<1$). Set $n_{0}=\max \left\{N_{0}, N^{\prime}\right\}$.

Hence, we have shown that $P\left\{\left\|Y_{n k}\right\|>\epsilon\right\}<\epsilon$, for all $k=1,2, \cdots, k_{n}$, whenever $n \geqq n_{0}$. Therefore, the collection $Y_{n k}$ is uniformly infinitesimal and X_{1} is infinitely divisible. This completes the proof of the theorem.
3. Proof of the main result. For convenience, we now will make the assumption that X_{1}, X_{2}, \cdots are symmetric random variables. Since the common distribution of these random variables is infinitely divisible, the common characteristic functional, $\varphi(y)$, has a unique Levy-Khintchine representation given by:

$$
\begin{equation*}
\ln \varphi(y)=-\frac{1}{2}\langle S y, y\rangle+\int(\cos \langle x, y\rangle-1) d L(x) \tag{8}
\end{equation*}
$$

where S is an S-operator (a nonnegative, self-adjoint compact operator on \mathscr{H}, with a finite trace), and L is a σ-finite measure with finite mass outside every neighborhood of the origin and with the property that

$$
\int_{\|x\| \leq 1}\|x\|^{2} d L(x)<+\infty
$$

(see [5], page 181.)
Furthermore, since X_{1}, X_{2}, \cdots have finite variance, $\varphi(y)$ has a unique Kolmogorov representation, given by:

$$
\begin{equation*}
\ln \varphi(y)=-\frac{1}{2}\langle S y, y\rangle+\int_{\mathscr{E}\{0\}} \frac{\cos \langle x, y\rangle-1}{\|x\|^{2}} d K(x) \tag{9}
\end{equation*}
$$

where S is an S-operator and K is a finite measure on \mathscr{H}. (See [6].)
By equations (4) and (8) we have:

$$
\begin{aligned}
&-\frac{1}{2} \sum_{j}\left\langle S A_{,}^{*} y, A_{,}^{*} y\right\rangle+\sum_{j} \int\left(\cos \left\langle x, A_{j}^{*} y\right\rangle-1\right) d L(x) \\
&=-\frac{1}{2}\langle S y, y\rangle+\int(\cos \langle x, y\rangle-1) d L(x)
\end{aligned}
$$

Also,

$$
\begin{align*}
-\frac{1}{2} & \sum_{j}\left\langle S A_{j}^{*} y, A_{j}^{*} y\right\rangle+\sum_{j} \int\left(\cos \left\langle x, A_{j}^{*} y\right\rangle-1\right) d L(x) \\
& =-\frac{1}{2}\left\langle\sum_{j} \mathrm{~A}_{j} \mathrm{SA}_{j}^{*} \mathrm{y}, \mathrm{y}\right\rangle+\sum_{j} \int\left(\cos \left\langle A_{j} x, y\right\rangle-1\right) d L(x) \tag{10}\\
& =-\frac{1}{2}\left\langle\sum_{j} A_{j} S A_{j}^{*} y, y\right\rangle+\sum_{j} \int(\cos \langle x, y\rangle-1) d L A_{j}^{-1}(x) .
\end{align*}
$$

It is not difficult to show that $\Sigma_{l} A_{j} S A_{,}^{*}$ is an S-operator. Also, it is clear that $L A_{j}^{-1}$ is the σ-finite measure which occurs in the Levy-Khintchine representation of $A_{j} X_{j}$, for each j.

We denote by \mathscr{B}, the class of Borel sets in \mathscr{H}. Then the measure K_{j}, defined by:

$$
K_{l}(D)=\int_{D}\|x\|^{2} d L A_{j}^{-1}(x), \quad \text { for all } \quad D \in \mathscr{B}
$$

is the finite measure which occurs in the Kolmogorov representation of $A_{i} X_{i}$, for each j.

Since X_{1}, X_{2}, \cdots have finite variance,

$$
\begin{equation*}
\int\|x\|^{2} d L(x)<+\infty . \quad(\text { See }[6] .) \tag{11}
\end{equation*}
$$

By equation (10), $\ln \Pi_{j} \varphi\left(A_{,}^{*} y\right)$

$$
\begin{equation*}
=-\frac{1}{2}\left\langle\sum_{j} A_{j} S A_{,}^{*} y, y\right\rangle+\sum_{j} \int_{\{x \neq 0\}} \frac{(\cos \langle x, y\rangle-1)}{\|x\|^{2}} d K_{j}(x) . \tag{12}
\end{equation*}
$$

We note that

$$
\begin{aligned}
& \sum_{j} \int_{\{x \neq 0\}}\left|\frac{\cos \langle x, y\rangle-1}{\|x\|^{2}}\right| d K_{l}(x) \leqq \sum_{l} \int_{\{x \neq 0\}} \frac{\|x\|^{2}\|y\|^{2}}{\|x\|^{2}} d K_{l}(x) \\
& \quad=\|y\|^{2} \sum_{l} \int_{\{x \neq 0\}} d K_{l}(x)=\|y\|^{2} \sum_{l} \int\|x\|^{2} d L A_{j}^{-1}(x) \\
& \quad=\|y\|^{2} \sum_{l} \int\left\|A_{l} x\right\|^{2} d L(x) \leqq\left(\sum_{l}\left\|A_{j}\right\|^{2}\right)\|y\|^{2} \int\|x\|^{2} d L(x)<\infty
\end{aligned}
$$

because of relations (1) and (11).
Thus we may interchange the integral and summation signs in equation (12) to obtain:
$\ln \prod_{,} \varphi\left(A_{,}^{*} y\right)=-\frac{1}{2}\left\langle\sum_{J} A_{j} S A_{,}^{*} y, y\right\rangle+\int_{\{x \neq 0\}} \frac{\cos \langle x, y\rangle-1}{\|x\|^{2}} d\left(\sum_{l} K_{l}(x)\right)$.
Then, by the uniqueness of the Kolmogorov representation, we have:

$$
\sum_{l} A_{j} S A_{j}^{*}=S \quad \text { and } \quad \sum_{l} K_{l}=K
$$

From the second of these relations, $\Sigma_{j} K_{J}(\mathscr{H})=K(\mathscr{H})$, which leads to the following sequence of equations.

$$
\begin{aligned}
& \sum_{l} \int\|x\|^{2} d L A_{l}^{-1}(x)=\int\|x\|^{2} d L(x) \\
& \sum_{l} \int\left\|A_{1} x\right\|^{2} d L(x)=\int\|x\|^{2} d L(x) \\
& \int\left[\sum_{l}\left\|A_{1} x\right\|^{2}-\|x\|^{2}\right] d L(x)=0 \\
& \int\left[\left\langle\sum_{l} A_{,}^{*} A_{l} x, x\right\rangle-\langle x, x\rangle\right] d L(x)=0 .
\end{aligned}
$$

In view of relation (4), it must then be true that

$$
\begin{equation*}
L\left\{x: \sum_{l}\left\|A_{j} x\right\|^{2}-\|x\|^{2}>0\right\}=0 \tag{13}
\end{equation*}
$$

We note that for n a positive integer, $\sum_{j=1}^{n} A_{j} X_{,}$has characteristic functional $\Pi_{j=1}^{n} \varphi\left(A_{j}^{*} y\right)$, and

$$
\begin{align*}
\ln \prod_{j=1}^{n} \varphi\left(A_{j}^{*} y\right)= & -\frac{1}{2}\left\langle\sum_{j=1}^{n} A_{j} S A_{j}^{*} y, y\right\rangle \\
& +\int(\cos \langle x, y\rangle-1) d\left(\sum_{j=1}^{n} L A_{l}^{-1}(x)\right) \tag{14}
\end{align*}
$$

Thus $\sum_{j=1}^{n} L A_{j}^{-1}$ converges weakly, outside closed neighborhoods of $0 \in \mathscr{H}$, to L, as $n \rightarrow \infty$. (See [5], page 189).

It now becomes necessary to state and prove two technical lemmas.
Lemma 1. For any $\epsilon>0$,

$$
\int_{\|x\|>\epsilon}\|x\|^{2} d L(x)=\sum_{j} \int_{\|A, x\|>\epsilon}\left\|A_{j} x\right\|^{2} d L(x)
$$

Proof. Let ϵ_{1} and ϵ_{2} be positive constants with $\epsilon_{1}<\epsilon_{2}$. Define a function $f(x)$ by:

$$
f(x)= \begin{cases}\|x\|^{2}, & \epsilon_{1}<\|x\| \leqq \epsilon_{2} \\ \left(\epsilon_{2}\right)^{2}, & \|x\|>\epsilon_{2}\end{cases}
$$

Then $f(x)$ is bounded and continuous. Thus by comment (14),

$$
\int_{\|x\|>\epsilon_{1}} f(x) d L(x)=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \int_{\|x\|>\epsilon_{1}} f(x) d L A_{j}^{-1}(x)
$$

which implies that

$$
\sum_{i=1}^{n} \int_{\epsilon_{1}<\|x\| \leqslant \epsilon_{2}}\|x\|^{2} d L A_{j}^{-1}(x)+\left(\epsilon_{2}\right)^{2} \sum_{j=1}^{n} L A_{j}^{-1}\left\{\|x\|>\epsilon_{2}\right\}
$$

converges to

$$
\int_{\epsilon_{1}<\|x\| \leqslant \epsilon_{2}}\|x\|^{2} d L(x)+\left(\epsilon_{2}\right)^{2} L\left\{\|x\|>\epsilon_{2}\right\}
$$

as $n \rightarrow \infty$.
But, again because of comment (14), $\sum_{j=1}^{n} L A_{j}^{-1}\left\{\|x\|>\epsilon_{2}\right\}$ converges to $L\left\{\|x\|>\epsilon_{2}\right\}$ as $n \rightarrow \infty$.

Therefore, $\sum_{j=1}^{n} \int_{\epsilon_{1}<\|x\| \leq \epsilon_{2}}\|x\|^{2} d L A_{j}^{-1}(x)$ converges to

$$
\int_{\epsilon_{1}<\|x\| \leqslant \epsilon_{2}}\|x\|^{2} d L(x)
$$

whenever we choose $0<\epsilon_{1}<\epsilon_{2}$.
Let $\epsilon>0$ be given. Let ϵ_{n} be a strictly increasing sequence of positive numbers, $\epsilon_{n} \uparrow+\infty$, with $\epsilon_{1}>\epsilon$. For convenience we set $\epsilon=\epsilon_{0}$.

Then

$$
\begin{aligned}
\int_{\|x\|>\epsilon_{0}}\|x\|^{2} d L(x) & =\sum_{k=0}^{\infty} \int_{\epsilon_{k}<\|x\| \| \epsilon_{k+1}}\|x\|^{2} d L(x) \\
& =\sum_{k=0}^{\infty} \sum_{j} \int_{\epsilon_{k}<\|x\|<\epsilon_{k+1}}\|x\|^{2} d L A_{/}^{-1}(x) \\
& =\sum_{j} \sum_{k=0}^{\infty} \int_{\epsilon_{k}<\|x\| \| \epsilon_{k+1}}\|x\|^{2} d L A_{\jmath}^{-1}(x) \\
& =\sum_{j} \int_{\|x\|>\epsilon}\|x\|^{2} d L A_{j}^{-1}(x)=\sum_{j} \int_{\left\|A_{i}\right\| \|>\epsilon}\left\|A_{j} x\right\|^{2} d L(x)
\end{aligned}
$$

This completes the proof.
Lemma 2. $L\left(\left\{x:\left\|A_{k} x\right\|^{2} \geqq\|x\|^{2}\right.\right.$, for some $\left.\left.k=1,2, \cdots\right\}\right)=L(\{0\})$.

Proof. Let k be a fixed positive integer.
Set $E_{k}=\left\{x:\left\|A_{k} x\right\|^{2}=\|x\|^{2}\right\}$. Then, using equation (13), $L\left(E_{k}\right)=$ $L\left(E_{k} \cap\left\{x: \Sigma_{j}\left\|A_{i} x\right\|^{2}=\|x\|^{2}\right\}\right)$.

Thus, $L\left(E_{k}\right)=L\left\{x: \Sigma_{j \neq k}\left\|A_{j} x\right\|^{2}=0\right\}=L(\{0\})$, since each operator A_{j} is $1-1$.

$$
\begin{equation*}
\text { Similarly, } \quad L\left(\bigcup_{k} E_{k}\right)=L(\{0\}) \tag{15}
\end{equation*}
$$

Using the same type of argument, it is easy to show that for all $k=1,2, \cdots$

$$
\begin{equation*}
L\left\{x:\left\|A_{k} x\right\|^{2}>\|x\|^{2}\right\}=0 \tag{16}
\end{equation*}
$$

Combining equations (15) and (16) we are done.
From relations (1) and (13), we see that $L\left\{x:\|x\|^{2} \neq \Sigma,\left\|A_{,} x\right\|^{2}\right\}=$
0 . Hence, referring to Lemma 1 , it is true that, for all $\epsilon>0$,

$$
\sum_{j} \int_{\|x\|>\epsilon}\left\|A_{i} x\right\|^{2} d L(x)=\sum_{j} \int_{\|A, x\|>\epsilon}\left\|A_{j} x\right\|^{2} d L(x)
$$

and this implies that
(17) $\sum_{j}\left[\int_{\|x\|>\epsilon}\left\|A_{j} x\right\|^{2} d L(x)-\int_{\|A, x\|>\epsilon}\left\|A_{i} x\right\|^{2} d L(x)\right]=0$, for all $\epsilon>0$.

But

$$
\begin{equation*}
L\{x: x \neq 0 \quad \text { and } \quad\|A, x\| \geqq\|x\|\}=0, \quad \text { for all } j \tag{18}
\end{equation*}
$$

Thus, each term in the sum of equation (17) must be nonnegative, which yields:

$$
\int_{\|x\|>\epsilon}\left\|A_{i} x\right\|^{2} d L(x)=\int_{\|A, x\|>\epsilon}\left\|A_{i} x\right\|^{2} d L(x), \quad \text { for all } \quad \epsilon>0 \text { and all } j .
$$

Or, using equation (18),

$$
\int_{\left\{\| \| \|>\epsilon \cap \cap F_{1}\right.}\left\|A_{j} x\right\|^{2} d L(x)=\int_{\| \| A_{1} x \|>\epsilon \cap \cap F_{1}}\left\|A_{j} x\right\|^{2} d L(x)
$$

for all $\epsilon>0$ and all j, where $F_{j}=\left\{x:\left\|A_{j} x\right\|<\|x\|\right\}$, for each $j=1,2, \cdots$.
The above implies that

$$
\int_{\| \|\| \| \in \in \mid\| \| A, x \| \in \epsilon \cap F_{i}}\|A, x\|^{2} d L(x)=0, \text { for all } \epsilon>0 \text { and all } j,
$$

or,

$$
\int_{\{\|x\|>\epsilon \operatorname{and}\|A, x\| \leqq \epsilon\}}\left\|A_{j} x\right\|^{2} d L(x)=0, \quad \text { for all } \epsilon>0 \text { and all } j .
$$

So, we must have that

$$
\begin{equation*}
L\left\{x:\|x\|>\epsilon \quad \text { and } \quad\left\|A_{j} x\right\| \leqq \epsilon\right\}=0, \quad \text { for all } \epsilon>0 \text { and all } j \tag{19}
\end{equation*}
$$

Consider the set Q^{+}of positive rational numbers. Let k be a fixed positive integer.
$L\left[\bigcup_{r \in Q^{+}}\left\{x:\|x\|>r \quad\right.\right.$ and $\left.\left.\quad\left\|A_{k} x\right\| \leqq r\right\}\right]=L\left[\left\{x:\left\|A_{k} x\right\|<\|x\|\right\}=L[\mathscr{H} \backslash\{0\}]\right.$.
Therefore, $L[\mathscr{H} \backslash\{0\}] \leqq \sum_{r \in Q^{+}} L\left\{x:\|x\|>r\right.$ and $\left.\left\|A_{k} x\right\| \leqq r\right\}=0$, by equation (19).

This last relation says that L is degenerate at $0 \in \mathscr{H}$, which means that the common characteristic functional of X_{1}, X_{2}, \cdots is given by:

$$
\ln \varphi(y)=-\frac{1}{2}\langle S y, y\rangle \quad(\text { see Eq. (8)) }
$$

Hence X_{1}, X_{2}, \cdots have a common Gaussian distribution.
Recall that we have assumed X_{1}, X_{2}, \cdots to be symmetric, but it is now easy to extend our result to the general case by using Cramer's Theorem (see page 141 of [1]).

The proof of Theorem 1 is now completed.

References

1. U. Grenander, Probabilities on Algebraic Structures, Wiley, New York (1963).
2. R. G. Laha, On a property of infinitely divisible distributions in a Hilbert space, Acta Math. Acad. Sci. Hungar. 20 (1969), 143-147.
3. R. G. Laha and E. Lukacs, On a linear form whose distribution is identical with that of a monomial, Pacific J. Math., 15 (1965), 207-214.
4. J. Marcinkiewicz, Sur une propriété de la loi de Gauss, Math. Zeitschr., 44 (1949), 612-618.
5. K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York (1967).
6. B. L. S. Prakasa Rao, Some characterization theorems for Wiener processes in a Hilbert space, Z. Wahr. verw. Geb., 19 (1971), 103-116.
7. W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).

Received April 2, 1976.

