ON THE DISTRIBUTION OF a-POINTS OF A STRONGLY ANNULAR FUNCTION

Akio Osada

Abstract

This paper gives an example of a strongly annular function which omits 0 near an arc I on the unit circle C and which omits 1 near the complementary arc $C-I$. This example affirmatively answers the following question of Bonar: Does there exist any annular function for which we can find two or more complex numbers w such that the limiting set of its w-points does not cover C ?

1. Introduction. The purpose of this paper is to study the distribution of a-points of annular functions. We recall that a holomorphic function in the open unit disk $D:|z|<1$ is said to be annular [1] if there is a sequence $\left\{J_{n}\right\}$ of closed Jordan curves about the origin in D, converging out to the unit circle $C:|z|=1$, such that the minimum modulus of $f(z)$ on J_{n} increases to infinity as n increases. When the J_{n} can be taken as circles concentric with $C, f(z)$ will be called strongly annular. Given a finite complex number a, the minimum modulus principle guarantees that every annular function f has infinitely many a-points in D and hence their limit points form a nonempty closed subset, say $Z^{\prime}(f, a)$, of C. On the other hand, by virtue of the Koebe-Gross theorem concerning meromorphic functions omitting three points, it follows from the annularity of f that open sets $C-Z^{\prime}(f, a)$ and $C-Z^{\prime}(f, b)$ on the circle can not overlap if $a \neq b$ and consequently that the set of all values a for which $Z^{\prime}(f, a) \neq C$ must be at most countable. Therefore we may well say such a to be singular for f.

For this reason we will be concerned with the set $S(f)=$ $\left\{a: Z^{\prime}(f, a) \neq C\right\}$ in this paper. We denote by $|S(f)|$ the cardinality of $S(f)$ and then, from the simple fact observed above, we have that $0 \leqq|S(f)| \leqq \boldsymbol{N}_{0}$, which in turn conversely tempt us to raise the following question: Given a cardinality $N\left(0 \leqq N \leqq \boldsymbol{N}_{0}\right)$, can we find any annular function f for which $|S(f)|=N$? ([1], [2]).

We know many examples of strongly annular functions such that $|S(f)|=0$ [4]. In particular if an annular function f belongs to the MacLane class, i.e., the family of all nonconstant holomorphic functions in D which have asymptotic values at each point of everywhere dense subsets of C, the set $S(f)$ becomes necessarily empty. As for $N=1$, Barth and Schneider [3] constructed an example of an annular function f for which $|S(f)|=1$. The example involved in their construction,
however, did not appear to be strongly annular. An example of a strongly annular f with $|S(f)|=1$ was constructed independently by Barth, Bonar and Carroll [2] and the author [5]. The aim of this paper is to give an example of a strongly annular function f for which $|S(f)|=2$.
2. For this purpose we consider a class of functions holomorphic in D. Let I_{0} and I_{1} be a pair of complementary open arcs on the unit circle C and choose a Jordan arc J_{J} connecting the end points of I_{l}, which is contained, except for its end points, in the open sector

$$
\left\{z: 0<|z|<1, z \| z \mid \in I_{u}\right\} \quad(j=0,1)
$$

Further denote by G_{j} the Jordan domain surrounded by I_{j} and J_{J} and consider
$S\left(G_{0}, G_{1}\right)=\{g \in H(D): g$ is bounded away from 0 (or 1$)$ in $G_{0}\left(\right.$ or $\left.\left.G_{1}\right)\right\}$
where $H(D)$ denotes the set of all functions holomorphic in D. In terms of this notation our purpose is in amount to find a strongly annular function which is locally a uniform limit of a sequence in $S\left(G_{0}, G_{1}\right)$. To construct such a function, we make essential use of the approximation theorem of Runge, which asserts that if K is a compact set with connected complement relative to the plane and a function g is holomorphic in an open set containing K, for any $\rho>0$, there is a polynomial P such that

$$
|P(z)-g(z)|<\rho \quad(z \in K)
$$

We call such P an approximating polynomial with respect to the triple (K, g, ρ). In our arguments to follow we may restrict ourselves to the special pair of G_{0} and G_{1} such that

$$
G_{0}=\{z=x+i y:|z|<1,2 x+|y|>1\} \quad \text { and } \quad G_{1}=\left\{z:-z \in G_{0}\right\}
$$

with no loss of generality, which serves to simplify the geometric formulation. Then the Runge theorem, in cooperation with our previous lemma, yields the following:

Lemma. Let there be given positive numbers ϵ and k, numbers a and b with $0<a<b<1$, and a function f in $S\left(G_{0}, G_{1}\right)$ (simply S), which is bounded in G_{1}. Then there exists a function g in S, which is also bounded in G_{1}, such that

$$
\begin{equation*}
|g(z)|>k \quad(|z|=b) \tag{1}
\end{equation*}
$$

and
(2)

$$
|g(z)-f(z)|<\epsilon \quad(|z| \leqq a)
$$

Proof. We first divide the circle $|z|=b$ into 4 closed arcs as follows:

$$
\begin{array}{ll}
A_{0}=\left[-b i e^{i t}, b i e^{-i t}\right], & A_{1}=\left\{z:-z \in A_{0}\right\} \\
B_{0}=\left[b i e^{-i t}, b i e^{i t}\right], & B_{1}=\left\{z: \bar{z} \in B_{0}\right\} .
\end{array}
$$

Here $t(>0)$ should be chosen so small that we may apply our lemma [5] to an appropriately small open annular sector R_{0}, which is contained in

$$
\{z=x+i y: y>0,|z|>a, 2|x|+|y|<1\}
$$

and contains the $\operatorname{arc} B_{0} . \quad$ Set $R_{1}=\left\{z: \bar{z} \in R_{0}\right\}$.

Next, to make use of the Runge theorem, we prepare two triples, which are defined, except for c_{j} and ρ_{j}, by the following:
(3) $\left\{\begin{array}{ll}K_{i}=\bar{G}_{l} \cup A_{j} \cup A_{1-j} \cup \bar{D}_{a}, \bar{D}_{a}=\{z:|z| \leqq a\} \\ g_{l}(z)=0 & \left(z \in \bar{G}_{l} \cup A, \cup \bar{D}_{a}\right) \\ g_{\jmath}(z)=c_{j}(>0) & \left(z \in A_{1-\jmath}\right)\end{array} \quad(j=0,1)\right.$.

As for c_{l} (or ρ_{l}) we shall later choose positive numbers large (or small) enough to satisfy our requirements. Obviously these definitions allow us to apply the Runge theorem to $\left(K_{j}, g_{J}, \rho_{J}\right)(j=0,1)$ and hence we can find an approximating polynomial P_{f}. On the other hand, if necessary, adding a small vector we may assume that $f(z) \neq 0,1$ on the circle $|z|=b$. Combining these functions, define a function F holomorphic in D by

$$
F(z)=\left\{(f(z)-1) \exp \left(P_{0}(z)\right)+1\right\} \exp \left(P_{1}(z)\right)
$$

Then carefully observing (3) and suitably choosing values of c_{j} and ρ_{j}, we can conclude that the function F is a member of S, bounded in G_{1} and has the following properties:

$$
\begin{array}{ll}
|F(z)|>2 k & \left(z \in\{z:|z|=b\}-B_{0}-B_{1}\right) \\
|F(z)-f(z)|<\epsilon / 2 & \left(z \in \bar{D}_{a}\right) . \tag{5}
\end{array}
$$

In addition it may be supposed that F does not vanish on $B_{0} \cup B_{1}$.
Thus the last step in our construction of g is to make $|F(z)|$ large on the remaining arcs B_{0} and B_{1} without losing the properties described above of F. Given $c_{2}>0$ and $\rho_{2}>0$, applying our lemma [5] to the annular sectors R_{0} and R_{1} previously chosen, and successively using the standard "pole sweeping" method for the resulting rational functions, we can find a holomorphic function $H_{\text {J }}$ in D such that

$$
\begin{array}{ll}
\left|H_{j}(z)\right|>c_{2} & \left(z \in B_{l}\right) \\
\operatorname{Re} H_{l}(z)>-\rho_{2} & \left(z \in R_{j} \cap\{z:|z|=b\}-B_{l}\right) \tag{7}
\end{array}
$$

and

$$
\begin{equation*}
\left|H_{l}(z)\right|<2 \rho_{2} \quad\left(z \in D-T_{j}\right) \tag{8}
\end{equation*}
$$

where T_{0} (or T_{1}) denotes an appropriate "pole sweeping route" ending at $z=i$ (or $-i$) which is contained in

$$
E_{0}=\{z=x+i y: y>0,|z|>b, 2|x|+|y|<1\}
$$

(or $E_{1}=\left\{z: \bar{z} \in E_{0}\right\}$) (see Figure 1). Using these functions and F defined above, set

$$
F(z)\left\{1+H_{0}(z)\right\}\left\{1+H_{1}(z)\right\}=g(z) .
$$

Since F does not vanish on $B_{0} \cup B_{1}$, if we appropriately choose a large (or small) positive number as a value of c_{2} (or ρ_{2}), by virtue of (4) and (5) together with (6), (7) and (8), we can show that the function g belongs to the class S, is bounded in G_{1} and further satisfies (1) and (2). This proves Lemma.
3. The following result is immediate from Lemma in 2.

Theorem. Let $\left\{r_{n}\right\}$ and $\left\{k_{n}\right\}$ be two sequences of positive numbers with $r_{n} \uparrow 1$ and $1<k_{n} \uparrow+\infty$. Then there exists a function f, which is locally a uniform limit of a sequence in S and which furthermore satisfies that $|f(z)| \geqq k_{n}$ on the circle $|z|=r_{n}$.

Proof. It is sufficient to construct a sequence $\left\{f_{n}(z)\right\}$ in S such that

$$
\begin{array}{ll}
\left|f_{n}(z)\right|>k_{j} & \text { if } \quad 1 \leqq j \leqq n \\
\left|f_{n}(z)-f_{n-1}(z)\right|<\epsilon_{n-1} & \left(z \in C_{j}=\left\{z:|z|=r_{j}\right\}\right), \tag{10}\\
\left(|z| \leqq r_{n-1}, n \leqq 2\right)
\end{array}
$$

and

$$
\begin{equation*}
f_{n} \text { is bounded in } G_{1} \tag{11}
\end{equation*}
$$

where $\left\{\epsilon_{n}\right\}$ is a preassigned sequence of positive numbers with $\Sigma \epsilon_{n}<+\infty$. In order to construct $\left\{f_{n}\right\}$ inductively, let $f_{1}(z)=2 k_{1}$ and suppose that f_{1}, \cdots, f_{n-1} have already been defined. In Lemma in 2 , on setting $f=f_{n-1}, a=r_{n-1}, b=r_{n}, k=k_{n}$ and $\epsilon=\min \left\{\epsilon_{n-1}, m_{1}, \cdots, m_{n-1}\right\}$ where $m_{j}=\min \left\{\left|f_{n-1}(z)\right|-k_{j}: z \in C_{i}\right\}$, we can find a function f_{n} in S satisfying (9), (10) and (11). Thus we obtain a sequence $\left\{f_{n}\right\}$ in S, which, by virtue of (10), converges uniformly on any compact subset of D. Obviously its limit f is a desired function in Theorem. Hence our proof is complete.

The author is grateful for the valuable comments and suggestions of the referee.

References

[^0]2. K. Barth, D. D. Bonar and F. W. Carroll, Zeros of strongly annular functions, Math. Z., 144 (1975), 175-179.
3. K. Barth and W. Schneider, On a problem of Bagemihl and Erdös concerning the distribution of zeros of an annular function, J. Reine Angew. Math., 234 (1969), 179-183.
4. D. D. Bonar, On annular functions, VEB Deutscher Verlag der Wissenschaften, Berlin, (1971).
5. A. Osada, On the distribution of zeros of a strongly annular function, Nagoya Math. J., 56 (1974), 13-17.

Received January 28, 1976 and in revised form June 6, 1976.
Gifu College of Pharmacy
Mitahora, Gifu, Japan

[^0]: 1. F. Bagemihl and P. Erdös, A problem concerning the zeros of a certain kind of holomorphic function in the unit circle, J. Reine Angew. Math., 214/215 (1964), 340-344.
