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A CHARACTERIZATION OF SOLENOIDS

CHARLES L. HAGOPIAN

Suppose M is a homogeneous continuum and every proper
subcontinuum of M is an arc. Using a theorem of E. G. Effros
involving topological transformation groups, we prove that M is
circle-like. This answers in the affirmative a question raised by
R. H. Bing. It follows from this result and a theorem of Bing
that M is a solenoid. Hence a continuum is a solenoid if and
only if it is homogeneous and all of its proper subcontinua are
arcs. The group G of homeomorphisms of M onto M with the
topology of uniform convergence has an unusual property. For
each point w of M, let Gw be the isotropy subgroup of w in
G. Although Gw is not a normal subgroup of G, it follows from
Effros' theorem and Theorem 2 of this paper that the coset space
G/Gw is a solenoid homeomorphic to M and, therefore, a
topological group.

1. Introduction. Let if be the class of all homogeneous
continua M such that every proper subcontinuum of M is an arc. It is
known that every solenoid belongs to if. It is also known that every
circle-like element of 5̂  is a solenoid. In fact, in 1960 R. H. Bing [4,
Theorem 9, p. 228] proved that each homogeneous circle-like continuum
that contains an arc is a solenoid. At that time Bing [4, p. 219] asked
whether every element of 5̂  is a solenoid. In this paper we answer
Bing's question in the affirmative by proving that every element of if is
circle-like.

2. Definitions and related results. We call a nondegen-
erate compact connected metric space a continuum.

A chain is a finite sequence Lu L2, ,Ln of open sets such that
L, Π L ; / 0 if and only if | i - / | ^ l . If Lx also intersects Ln, the
sequence is called a circular chain. Each L, is called a link. A chain
(circular chain) is called an e-chain (e-circular chain) if each of its links
has diameter less than e. A continuum is said to be arc-like (circle-like)
if for each e >0, it can be covered by an e-chain (e-circular chain).

A space is homogeneous if for each pair p, q of its points there exists
a homeomorphism of the space onto itself that takes p to q. Bing [2] [3]
proved that a continuum is a pseudo-arc if and only if it is homogeneous
and arc-like. L. Fearnley [9] and J. T. Rogers, Jr. [20] independently
showed that every homogeneous, hereditarily indecomposable, circle-like
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continuum is a pseudo-arc [11]. However, there are many topologically
different homogeneous circle-like continua that have decomposable
subcontinua [24] [25].

Let nu n2, be a sequence of positive integers. For each positive
integer /, let G, be the unit circle {z E R2: | z | = 1}, and let / be the map
of Gι+ι onto Gι defined by ft(z) = zn\ The inverse limit space of the
sequence {G,,/} is called a solenoid. Since each G, is a topological
group and each / is a homomorphism, every solenoid is a topological
group [13, Theorem 6.14, p. 56] and therefore homogeneous. Each
solenoid is circle-like since it is an inverse limit of circles with surjective
bonding maps [17, Lemma 1, p. 147].

A solenoid can be described as the intersection of a sequence of solid
tori Mi, M2, such that MI+1 runs smoothly around inside M, exactly n,
times longitudinally without folding back and Mf has cross diameter of
less than i~\ The sequence nu n2, determines the topology of the
solenoid. If it is 1,1, after some place, the solenoid is a simple closed
curve. If it is 2, 2, , the solenoid is the dyadic solenoid defined by D.
van Dantzig [7] and L. Vietoris [23]. Other properties involving the
sequence nu n2, are given in [4, p. 210]. From this description we
see that every proper subcontinuum of a solenoid is an arc.

Solenoids appear as invariant sets in the qualitative theory of
differential equations. In [21] E. S. Thomas proved that every compact
1-dimensional metric space that is minimal under some flow and contains
an almost periodic point is a solenoid.

Every homogeneous plane continuum that contains an arc is a simple
closed curve [4] [10] [15]. Hence each planar solenoid is a simple closed
curve.

Each of the three known examples of homogeneous plane continua
(a circle, a pseudo-arc [2] [18], and a circle of pseudo-arcs [5]) is
circle-like. If one could show that every homogeneous plane continuum
is circle-like, it would follow that there does not exist a fourth example [6]
[12] [14, p. 49] and a long outstanding problem would be solved.

A topological transformation group (G,M) is a topological group G
together with a topological space M and a continuous mapping
(g,w)-*gw of G x M into M such that ew = w (e denotes the identity
of G) and (gh)w = g(hw) for all elements g, ft of G and w of M.

For each point w of M, let Gw be the isotropy subgroup of w in G
(that is, the set of all elements g of G such that gw = w). Let G/Gw be
the left coset space with the quotient topology. The mapping φw of
G/Gw onto Gw that sends gGw to gw is one-to-one and
continuous. The set Gw is called the orbit of w.

Assume M is a continuum and G is the topological group of
homeomorphisms of M onto M with the topology of uniform con-
vergence [16, p. 88]. E. G. Effros [8, Theorem 2.1] proved that each
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orbit is a set of the type Gδ in M if and only if for each point w of M, the
mapping φw is a homeomorphism.

Suppose M is a homogeneous continuum. Then the orbit of each
point of M is M, a Gδ-set. According to Effros' theorem, for each point
w of M, the coset space G/Gw is homeomorphic to M. By Theorem 2 of
§4, if M has the additional property that all of its proper subcontinua are
arcs, then G/Gw is a solenoid and, therefore, a topological group. Note
that Gw is not a normal subgroup of G.

Throughout this paper R2 is the Cartesian plane. For each real
number r, we shall denote the horizontal line y = r and the vertical line
x = r in R2 by H(r) and V(r) respectively.

Let P and Q be subsets of R2. The set P is said to project
horizontally into Q if every horizontal line in R2 that meets P also meets
0.

We shall denote the boundary and the closure of a given set Z by
BdZ and C1Z respectively.

3. Preliminary results. In this section M is a homogeneous
continuum (with metric p) having only arcs for proper subcontinua.

Let p and q be two points of the same arc component of M. The
union of all arcs in M that have p as an endpoint and contain q is called a
ray starting at p.

The following two lemmas are easy to verify.

LEMMA 1. Each ray is dense in M.

LEMMA 2. // an open subset Z of M is not dense in M, then each
component, of Z is an arc segment with both endpoints in BdZ.

Let 6 be a positive number. A homeomorphism h of M onto M is
called an e-homeomorphism if p{v,h{v))<e for each point v of M.

LEMMA 3. Suppose e is a given positive number and w is a point of
M. Then w belongs to an open subset W of M with the following
property. For each pair p, q of points of W9 there exists an e-
homeomorphism h of M onto M such that h{p) = q.

Proof Define G, Gw, and φw as in §2. Since M is homogeneous,
the orbit of each point of M is M. Therefore φw is a homeomorphism of
G/Gw onto M [8, Theorem 2.1].

Let πw be the natural open mapping of G onto G/Gw that sends g to
gGw. Define Tw to be the mapping of G onto M that sends g to
g(w). Since Tw = φwπw, it follows that Tw is an open mapping [22,
Theorem 3.1]. Note that the following diagram commutes.
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Let U be the open subset of G consisting of all e/2-
homeomorphisms of M onto M. Define W to be the open set
TJ[U], Since the identity e belongs to U and Tw(e)= w, the set W
contains w.

Assume p and q are points of W. Let / and g be elements of U
such that Tw(f) = p and Tw(g) = q. Since /(w) = p and g(w) = q, the
mapping h = gf'1 of M onto M is an e-homeomorphism with the
property that h(p) = q.

For each positive integer i, let At be an arc with endpoints p{ and
qιm The sequence A1? A2, is said to be folded if it converges to an arc
A and the sequence pu qu p2, qi, * * * converges to an endpoint of A.

LEMMA 4. (Bing [4, Theorem 6, p. 220]). There does not exist a
folded sequence of arcs in M.

Lemma 4 follows from a simple argument (shorter than Bing's)
involving Lemma 3 and the fact that M does not contain a triod.

A chain Lu L2, , Ln in M is said to be free if C\Lλ Π C\Ln=0
and Bd U {L,: 1 ̂  ί ^ n) is a subset of C\{Lλ U Ln).

LEMMA 5. (Bing [4, Property 17, p. 219]). Let A be an arc in M with
endpoints p and q. For each positive number e, there exists a free e-chain
Lu L2, * , Ln in M covering A such that p and q belong to Lλ and Ln

respectively.

A continuum is decomposable if it is the union of two proper
subcontinua; otherwise, it is indecomposable.

LEMMA 6. IfM is decomposable, then M is a simple closed curve.

Proof Since M is the union of two proper subcontinua (arcs), M is
locally connected. Since M is homogeneous, it does not have a separat-
ing point. Hence M contains a simple closed curve [19, Theorem 13, p.
91]. It follows that M is a simple closed curve.



A CHARACTERIZATION OF SOLENOIDS 429

4. Principal results.

THEOREM 1. If M is a homogeneous continuum and every proper
subcontinuum of M is an arc, then M is circle-like.

Proof. According to Lemma 6, if M is decomposable, then M is a
simple closed curve and therefore circle-like. Hence we assume that M
is indecomposable.

By Lemmas 4 and 5, there exists a free chain Lu L2, , La (α > 5)
in M such that N = Cl U { L , : l g i g α } is a proper subset of M and
N - Cl U {L,: 3 ̂  i S α - 2} contains every arc in N that has both of its
endpoints in C\LX or ClLa. (This chain is formed from another free
chain by unioning links to make L2 and La-X sufficiently long and
narrow.) Let B be the union of all components of N that meet
C1(L3 U Lα_2). By Lemma 2, each component of B is an arc with one
endpoint in BdLj and the other endpoint in BdLα. Note that B is a
closed set. Since M is indecomposable, each component of B is a
continuum of condensation.

Since B contains no folded sequence of arcs, we can assume that B
is the intersection of M and the plane JR2 and that the following
conditions are satisfied:

I. A component C of B is {(JC, y):0 ^ x ̂  6 and y = 0}.

II. Each component of B - C is a horizontal interval above H(0)
(the jc-axis) and below H(l) that crosses both V(l) and V(5).

III. The sets Cl(L x U L2 U La-λ U La) and {(JC, y): 1 ̂  x ̂  5} are
disjoint.

(Bing's theorem [2, Theorem 11], involving sequences of refining covers
that induce a homeomorphism, can be used to define this embedding of B
in R2. Each covef of B consists of finitely many free chains that
correspond to disjoint straight horizontal chains with rectangular links in
R2.) Note that B Π {(JC, y) : 1 < x < 5} is an open subset of M.

Let p be a metric on M whose restriction to B agrees with the
Euclidean metric on R2 [1, Theorems 4 and 5].

There exists a positive number d less than 1 such that M Π H(d) =
0 and the following condition is satisfied:

Property 1. Every arc in M that has its endpoints in {(JC, y):x = 3
a n d O ^ y < d} meets both {(JC, y) :x = 1 a n d O ^ y < d) and {(x, y):jc = 5
and O^y <d}.

To see this we assume Property 1 does not hold for any positive
number d. For each positive integer i, let Wt be an open set in
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M Π {(*, y): 1< x < 5} that contains (3,0) such that for each pair p, q of
points of Wh there exists an i^-homeomorphism of M onto M that takes
p to q (Lemma 3). For each i, there exists an arc A, in M with
endpoints px and g, in Wt Π V(3) such that the horizontal interval Γ, from
pi to V(l) is in A, if and only if the horizontal interval Δ, from qx to V(ί)
is in A,.

For each /, let hx be an /"Miomeomorphism of M onto M such that
ht(Pi) = <7i Since each hx maps Γj approximately onto Δ, , for each ί, there
exists a point α, of A, such that Λi(α/)= #*•

For each i, let J3, be the arc in A, from p{ to α,-. Note that for each i,
the diameter of B, is greater than 1 and B, Π h\Bx\ consists of the point
α, .

Let α be a limit point of the sequence {αj. Assume without loss of
generality that {a,} is a convergent sequence in E = {v E M:p(v, a)<
1/2}.

For each i, let £* be an arc in B, Π CIE that goes from a point ^ of
BdJB to ah Assume without loss of generality that {£>,} converges to a
point of BdE and {Et} converges to an arc F in Cl E. Since each hx is an
Γ^homeomorphism, {Et U ft, [£,-]} is a folded sequence of arcs conver-
ging to F. This contradiction of Lemma 4 completes our argument for
Property 1.

For i = 1 and 2, let

Di= M Π { ( jc ,y) : i^x^6- i and Ogy < d}.

Let 6 be a given positive number less than p (D2, M - D^. We
shall complete this proof by defining an e-circular chain that covers M.

By Lemma 1, there exists an arc A in M that is irreducible with
respect to the property that it contains {(5,0), (6,0)} and intersects
{(x, y): x = 5 and 0 < y <d). According to Property 1, A intersects
{(x,y): x = 4 and 0 < y <d}.

Let W be an open set in Di - A containing (4,0) such that for each
pair p, q of points of W, there exists an 6/50-homeomorphism of M onto
M that takes p to q (Lemma 3).

Let c be a number (0<c < e/50) such that M Π H(c) = 0 and
M Π {(JC, y): x = 4 and 0 ^ y < c} is in W. Since W and A are disjoint,
c is less than d.

For / = 1 and 2, let

C = M Π {(jc,y):/gjc S 6 - i and 0 § y < c } .

Let δ be the minimum of e and p(C2, M - d ) . Let (7 be an open
subset of d containing (2,0) such that for each point q of (7, there exists a
δ-homeomorphism of M onto M that takes (2,0) to q (Lemma 3).
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Define S to be the ray in M that starts at (2,0) and contains A. Let
{Si} be the sequence consisting of all points of S Π {(*, y):x = 3 and
0 ̂  y < d) and having the property that for each i, the points s, precedes
5I+1 with respect to the linear order on S.

Define Tλ to be an arc containing A in S that starts at the point
ίi = (2,0) and ends at a point t2 of UΓ) V(2). Let h be a δ-
homeomorphism of M onto M that takes fi to ί2.

We proceed inductively. Assume an arc Tn is defined in S with
endpoints tn and ίπ+1 in C2 Π V(2). Let y be the number such that
h(tn+ι) belongs to H(y) . Define Tn+ι to be the arc in 5 with endpoints
tn+1 and ίn+2 = (2,y). Since h is a δ -homeomorphism, tn+2 belongs to
C2. Note that since each Tn has diameter greater than 1, the ray 5 is the
union of {Tn: n = 1, 2, }.

Define β to be the largest integer such that {$•: 1 ̂  i g β} is a subset
of Γi. The δ-homeomorphism ft maps each Γn approximately onto
Γn+1. Hence, for each n, the arc Tn contains {s, :(n - l)β < i ^
Mjβ}. Furthermore, β has the following property:

Property 2. For each positive integer i, the point s, belongs to C 2 if
and only if sι+β belongs to C2.

Define γ to be the least positive integer that has Property 2. Note
that since s2 does not belong to C2, the integer γ is greater than 1.

Let X be { 5 l : i = / γ + l and / = 0, 1, 2, •}, and let L be

(s n D2n v(3))-κ.

Property 3. The sets C1X and C1L are disjoint.

To establish Property 3, we assume there is a point z in C\K Π
Cl L. Let Z be an open subset of M containing z such that for each pair
/?, g of points of Z, there exists a δ-homeomorphism of Λί onto M that
takes p to q (Lemma 3).

Let Si and sn be points oί Z Π K and Z ΓΊ L, respectively, and let /
be a δ-homeomorphism of M onto M such that /($) = sn. Let 0 be the
smallest positive integer such that sn-θ belongs to K. The existence of /
implies that θ has Property 2. Since θ is less than γ, this is a
contradiction and Property 3 is established.

Note that since M = C\S (Lemma 1), C1(X U L) = D2 Π V(3).
Let / be the arc in S that goes from sλ to sr+1. By an argument

similar to Bing's [4, Property 17, p. 219], there exists a free e/50-chain
P h P2, , Pλ in M covering ί such that

(i) 5! and sγ+i belong to Pλ and P λ respectively,

ίii) Pr U PΛ is in C2,
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(iii) each component of H = U {P}: 1 ^ j ^ A} that meets Cl Px also
meets Pλ and V(5), and

(iv) each component of H that meets ClP λ meets Pλ and V(l).

From Property 1 we get the following:

Property 4. Each component of H meets both P} and Pλ.

Let Pμ be an element of Pu P2, , P λ that contains the point
(4,0). Since W intersects each component of C2, there exists a finite
sequence gu g2, * , gσ of β/50-homeomorphisms of M onto M such that
Cl K projects horizontally into U {g»[Fμ]: 1 = i = σ}. Assume without
loss of generality that no proper subsequence of gu g2, * , gσ has this
horizontal projection property.

Note that each gt[Pμ] is a subset of Dλ.
From Properties 1 and 4 we get the following:

Property 5. For each i (1 ^ i g or), if T is a component of g,[H],
then T Π g ^ O P J is a nonempty set that projects horizontally to a point
of D2 Π V(3).

For each i (1 ^ i: ^ σ), let X, be the set consisting of all points in
gt[Pμ] that project horizontally into C1K, and let Y) be the union of all
components of gt[H] that meet Xt.

For each i (1 ^ / ^ σ), the set Y, is open in M. To see this assume
that for some i, a point M of Yx is in Cl (M - Y,). According to Property
3, u does not belong to g, [P,J. By Property 5, there exists a sequence
{/„} of arcs in gt[H] that meet gi[Pμ] such that the limit superior / of {/„}
is an arc in g, [H] that contains u and for each n, the set Jn Π gi[Pμ]
projects horizontally to a point of Cl L. It follows that J Π g/[Cl Pμ] is a
nonempty set that projects horizontally to a point of C1L. Since / is in
the u -component of Yn this is a contradiction of Property 5. Hence Y, is
an open subset of M.

For each i (1 ^ i ^ σ) and y (1 ^ / g λ), let Q^ = Zn gt[P]. It
follows from an argument similar to the one given in the preceding
paragraph that for each i, the set Cl(Qu U O i λ ) contains Bd U {Qhj: 1 S
j ^ λ}. Hence, for each i, the sequence O u , O i 2, * , O/,λ is a free chain
in M.

Property 6. For each / (1 ^ i! g cr), the set O u U O u projects
horizontally into C1K

Obviously, Q u projects horizontally into Cl K. Therefore, to estab-
lish Property 6, we assume there is a point t of Qiλ that projects
horizontally into Cl L. By Property 3, there exists a positive number η
less than e such that Q = {υ E M:p(v, t)< η} projects horizontally in
C1L.
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Let T denote the ί-component of Yh and let w be a point of T Π QiΛ

(Property 4). Since g, is an e/50-homeomorphism, T crosses Dx Π V(l)
exactly γ times (Property 1). Since w belongs to Qu, it projects
horizontally into C1K

By Lemma 3, there exists an η -homeomorphism g of M onto M
such that g(w) belongs to Q u and projects horizontally into K. Since
the g(w)-component of Y, is an arc segment in S that crosses Dλ Π V(l)
exactly γ times and is mapped approximately onto T by g~\ the point
g(t) of Q projects horizontally into K. This contradiction of the
definition of Q completes our argument for Property 6.

Let 77 be an integer (5 < π < μ) such that Pπ contains the point
(3 + e/10,0). Let ω be an integer (μ < ω < λ - 4) such that Pω contains
the point of V(3-6/10) that projects horizontally to sy+1.

Property 7. For each n (1 ̂  n ^ σ), the set Qnl U Qnλ does not
intersect U {Q,,y : 1 ̂  ί: ^ σ and π ^ / ^ ω}.

To see this assume there exist integers ΐ, /, and n such that π ^j ^ ω
and a point p belongs to QUj Π (On l U On,λ). According to Property 6,
{p}uOuU0,,λ projects horizontally into C1K By Property 3, there
exists a positive number χ less than e such that {υ E M : p(ι; ?p)<^}
projects horizontally into O K

Let P be the p -component of Yt. Let Y be an arc in P that goes
from a point g of QιΛ to p. Since g, and gn are 6/50-homeomorphisms
and π ^j ^ ω, the set Q u U Qiλ and the p-component of P Γ) Dλ are
disjoint. Hence Y crosses D1Π V(l) exactly i times where t is a
positive integer less than γ.

By Lemma 3, there exists a ^-homeomorphism k of M onto M such
that k(q) belongs to QιΛ and projects horizontally into K. The arc k[Y]
crosses Dλ Π V(l) exactly i times. Since k[Y] is in S and p(p, fc(p))<
^, the point fc(p) projects horizontally into K. It follows from the
definition of K that i is a multiple of γ, and this is a
contradiction. Hence Property 7 holds.

For each i (1 ̂  i: ^ cr) and / (1 ̂ / ^ λ), let P^ = Oij - Cl U {Yn: 1 ^
n < /}. By Property 7, for each i, the subchain of P u , P l2, , Aλ that
has Pi7T and F i ω as end links is free in M.

For each / (1 g / ^ λ), let l/; = U {Py: 1 ̂  i '^ or}. The subchain <€
of [7i, U2j '' , fΛ that has [Λ, and ί7ω as end links is a free e/16-chain in
M

Let D be the union of all components of C2 Π {(x, y) :3-e/5<x <
3 + 6/5} that meet Cl if. According to Property 3, D is open in M The
diameter of D is less than e/2. Each point of Uw U C/ω is within e/5 of
V(3). By Property 6, (7, U C/ω projects horizontally into C1K Hence
Uπ U Uω is in D.

Let T be the largest integer less than μ such that Uτ intersects
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D. Let ψ be the smallest integer greater than μ such that Uφ intersects
D. For each / (l^j <ψ- r), let Z] = L/τ+;, Note that
Zu Z2, , Z^_τ_! is a free 6-chain in M

Define Zψ_τ to be the union of D and all elements of @ = {U,: π S
/ ^ r o r ψ ^ / g ω } . Since Cl K projects horizontally into ί/μ and % is a
free chain in M, each element of 3) intersects D. Thus Z ,̂_τ is an open
set in M of diameter less than e. Note that Z^_τ meets both Zx and

Since % is free and Uw U [/«, is in D, the boundary of̂  U {Z;: 1 ̂  / <
ι/f - r} is in Zψ_τ. Since C\K projects horizontally into'Uμ9 the set Zx

contains every boundary point of Zφ-r that is to the right of V(3) in R2.
Furthermore, each point of BdZ^_T that is to the left of V(3) is in

Zφ-τ-ι. To see this let s be such a.point. Let X be the arc in M that
intersects V(l) and is irreducible between s and Cl Uμ (Lemma 1). By
Property 1, X does not meet Uπ U Uω. Since Uμ is an interior link in
the free chain % the arc X is covered by ^ and s belongs to Z^_τ_i.

It follows that BdZ^_τ is in ^ U Z ^ - H . Therefore
Z1 ? Z2,

 :, Zφ-T is an e-circular chain that covers M. Hence M is
circle-like.

Since every homogeneous circle-like continuum that contains an arc
is a solenoid [4, Theorem 9, p. 228], Theorem 1 implies the following:

THEOREM 2. A continuum M is a solenoid if and only if M is
homogeneous and every proper subcontinuum of M is an arc.
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