A CHARACTERIZATION OF SOLENOIDS

Charles L. Hagopian

Abstract

Suppose M is a homogeneous continuum and every proper subcontinuum of M is an arc. Using a theorem of E. G. Effros involving topological transformation groups, we prove that M is circle-like. This answers in the affirmative a question raised by R. H. Bing. It follows from this result and a theorem of Bing that M is a solenoid. Hence a continuum is a solenoid if and only if it is homogeneous and all of its proper subcontinua are arcs. The group G of homeomorphisms of M onto M with the topology of uniform convergence has an unusual property. For each point w of M, let G_{w} be the isotropy subgroup of w in G. Although G_{w} is not a normal subgroup of G, it follows from Effros' theorem and Theorem 2 of this paper that the coset space G / G_{w} is a solenoid homeomorphic to M and, therefore, a topological group.

1. Introduction. Let \mathscr{S} be the class of all homogeneous continua M such that every proper subcontinuum of M is an arc. It is known that every solenoid belongs to $\mathscr{\mathscr { S } \text { . It is also known that every }}$ circle-like element of \mathscr{S} is a solenoid. In fact, in 1960 R. H. Bing [4, Theorem 9, p. 228] proved that each homogeneous circle-like continuum that contains an arc is a solenoid. At that time Bing [4, p. 219] asked whether every element of \mathscr{S} is a solenoid. In this paper we answer Bing's question in the affirmative by proving that every element of \mathscr{S} is circle-like.
2. Definitions and related results. We call a nondegenerate compact connected metric space a continuum.

A chain is a finite sequence $L_{1}, L_{2}, \cdots, L_{n}$ of open sets such that $L_{1} \cap L_{l} \neq \varnothing$ if and only if $|i-j| \leqq 1$. If L_{1} also intersects L_{n}, the sequence is called a circular chain. Each L_{i} is called a link. A chain (circular chain) is called an ϵ-chain (ϵ-circular chain) if each of its links has diameter less than ϵ. A continuum is said to be arc-like (circle-like) if for each $\epsilon>0$, it can be covered by an ϵ-chain (ϵ-circular chain).

A space is homogeneous if for each pair p, q of its points there exists a homeomorphism of the space onto itself that takes p to q. Bing [2] [3] proved that a continuum is a pseudo-arc if and only if it is homogeneous and arc-like. L. Fearnley [9] and J. T. Rogers, Jr. [20] independently showed that every homogeneous, hereditarily indecomposable, circle-like
continuum is a pseudo-arc [11]. However, there are many topologically different homogeneous circle-like continua that have decomposable subcontinua [24] [25].

Let n_{1}, n_{2}, \cdots be a sequence of positive integers. For each positive integer i, let G_{i} be the unit circle $\left\{z \in R^{2}:|z|=1\right\}$, and let f_{t} be the map of G_{t+1} onto G_{t} defined by $f_{t}(z)=z^{n}$. The inverse limit space of the sequence $\left\{G_{i}, f_{i}\right\}$ is called a solenoid. Since each G_{i} is a topological group and each f_{i} is a homomorphism, every solenoid is a topological group [13, Theorem 6.14, p. 56] and therefore homogeneous. Each solenoid is circle-like since it is an inverse limit of circles with surjective bonding maps [17, Lemma 1, p. 147].

A solenoid can be described as the intersection of a sequence of solid tori M_{1}, M_{2}, \cdots such that M_{i+1} runs smoothly around inside M_{i} exactly n_{i} times longitudinally without folding back and M_{i} has cross diameter of less than i^{-1}. The sequence n_{1}, n_{2}, \cdots determines the topology of the solenoid. If it is $1,1, \cdots$ after some place, the solenoid is a simple closed curve. If it is $2,2, \cdots$, the solenoid is the dyadic solenoid defined by D . van Dantzig [7] and L. Vietoris [23]. Other properties involving the sequence n_{1}, n_{2}, \cdots are given in [4, p. 210]. From this description we see that every proper subcontinuum of a solenoid is an arc.

Solenoids appear as invariant sets in the qualitative theory of differential equations. In [21] E. S. Thomas proved that every compact 1-dimensional metric space that is minimal under some flow and contains an almost periodic point is a solenoid.

Every homogeneous plane continuum that contains an arc is a simple closed curve [4] [10] [15]. Hence each planar solenoid is a simple closed curve.

Each of the three known examples of homogeneous plane continua (a circle, a pseudo-arc [2] [18], and a circle of pseudo-arcs [5]) is circle-like. If one could show that every homogeneous plane continuum is circle-like, it would follow that there does not exist a fourth example [6] [12] [14, p. 49] and a long outstanding problem would be solved.

A topological transformation group (G, M) is a topological group G together with a topological space M and a continuous mapping $(g, w) \rightarrow g w$ of $G \times M$ into M such that $e w=w$ (e denotes the identity of G) and $(g h) w=g(h w)$ for all elements g, h of G and w of M.

For each point w of M, let G_{w} be the isotropy subgroup of w in G (that is, the set of all elements g of G such that $g w=w$). Let G / G_{w} be the left coset space with the quotient topology. The mapping φ_{w} of G / G_{w} onto $G w$ that sends $g G_{w}$ to $g w$ is one-to-one and continuous. The set $G w$ is called the orbit of w.

Assume M is a continuum and G is the topological group of homeomorphisms of M onto M with the topology of uniform convergence [16, p. 88]. E. G. Effros [8, Theorem 2.1] proved that each
orbit is a set of the type G_{δ} in M if and only if for each point w of M, the mapping φ_{w} is a homeomorphism.

Suppose M is a homogeneous continuum. Then the orbit of each point of M is M, a G_{δ}-set. According to Effros' theorem, for each point w of M, the coset space G / G_{w} is homeomorphic to M. By Theorem 2 of $\S 4$, if M has the additional property that all of its proper subcontinua are arcs, then G / G_{w} is a solenoid and, therefore, a topological group. Note that G_{w} is not a normal subgroup of G.

Throughout this paper R^{2} is the Cartesian plane. For each real number r, we shall denote the horizontal line $y=r$ and the vertical line $x=r$ in R^{2} by $H(r)$ and $V(r)$ respectively.

Let P and Q be subsets of R^{2}. The set P is said to project horizontally into Q if every horizontal line in R^{2} that meets P also meets Q.

We shall denote the boundary and the closure of a given set Z by $\mathrm{Bd} Z$ and $\mathrm{Cl} Z$ respectively.
3. Preliminary results. In this section M is a homogeneous continuum (with metric ρ) having only arcs for proper subcontinua.

Let p and q be two points of the same arc component of M. The union of all arcs in M that have p as an endpoint and contain q is called a ray starting at p.

The following two lemmas are easy to verify.
Lemma 1. Each ray is dense in M.
Lemma 2. If an open subset Z of M is not dense in M, then each component of Z is an arc segment with both endpoints in $\mathrm{Bd} Z$.

Let ϵ be a positive number. A homeomorphism h of M onto M is called an ϵ-homeomorphism if $\rho(v, h(v))<\epsilon$ for each point v of M.

Lemma 3. Suppose ϵ is a given positive number and w is a point of M. Then w belongs to an open subset W of M with the following property. For each pair p, q of points of W, there exists an ϵ homeomorphism h of M onto M such that $h(p)=q$.

Proof. Define G, G_{w}, and φ_{w} as in $\S 2$. Since M is homogeneous, the orbit of each point of M is M. Therefore φ_{w} is a homeomorphism of G / G_{w} onto M [8, Theorem 2.1].

Let π_{w} be the natural open mapping of G onto G / G_{w} that sends g to $g G_{w}$. Define T_{w} to be the mapping of G onto M that sends g to $g(w)$. Since $T_{w}=\varphi_{w} \pi_{w}$, it follows that T_{w} is an open mapping [22, Theorem 3.1]. Note that the following diagram commutes.

Let U be the open subset of G consisting of all $\epsilon / 2-$ homeomorphisms of M onto M. Define W to be the open set $T_{w}[U]$. Since the identity e belongs to U and $T_{w}(e)=w$, the set W contains w.

Assume p and q are points of W. Let f and g be elements of U such that $T_{w}(f)=p$ and $T_{w}(g)=q$. Since $f(w)=p$ and $g(w)=q$, the mapping $h=g f^{-1}$ of M onto M is an ϵ-homeomorphism with the property that $h(p)=q$.

For each positive integer i, let A_{i} be an arc with endpoints p_{i} and q_{1}. The sequence A_{1}, A_{2}, \cdots is said to be folded if it converges to an arc A and the sequence $p_{1}, q_{1}, p_{2}, q_{2}, \cdots$ converges to an endpoint of A.

Lemma 4. (Bing [4, Theorem 6, p. 220]). There does not exist a folded sequence of arcs in M.

Lemma 4 follows from a simple argument (shorter than Bing's) involving Lemma 3 and the fact that M does not contain a triod.

A chain $L_{1}, L_{2}, \cdots, L_{n}$ in M is said to be free if $\mathrm{Cl} L_{1} \cap \mathrm{Cl} L_{n}=\varnothing$ and $\mathrm{Bd} \cup\left\{L_{i}: 1 \leqq i \leqq n\right\}$ is a subset of $\mathrm{Cl}\left(L_{1} \cup L_{n}\right)$.

Lemma 5. (Bing [4, Property 17, p. 219]). Let A be an arc in M with endpoints p and q. For each positive number ϵ, there exists a free ϵ-chain $L_{1}, L_{2}, \cdots, L_{n}$ in M covering A such that p and q belong to L_{1} and L_{n} respectively.

A continuum is decomposable if it is the union of two proper subcontinua; otherwise, it is indecomposable.

Lemma 6. If M is decomposable, then M is a simple closed curve.

Proof. Since M is the union of two proper subcontinua (arcs), M is locally connected. Since M is homogeneous, it does not have a separating point. Hence M contains a simple closed curve [19, Theorem 13, p. 91]. It follows that M is a simple closed curve.

4. Principal results.

Theorem 1. If M is a homogeneous continuum and every proper subcontinuum of M is an arc, then M is circle-like.

Proof. According to Lemma 6, if M is decomposable, then M is a simple closed curve and therefore circle-like. Hence we assume that M is indecomposable.

By Lemmas 4 and 5, there exists a free chain $L_{1}, L_{2}, \cdots, L_{\alpha}(\alpha>5)$ in M such that $N=\mathrm{Cl} \cup\left\{L_{i}: 1 \leqq i \leqq \alpha\right\}$ is a proper subset of M and $N-\mathrm{Cl} \cup\left\{L_{i}: 3 \leqq i \leqq \alpha-2\right\}$ contains every arc in N that has both of its endpoints in $\mathrm{Cl} L_{1}$ or $\mathrm{Cl} L_{\alpha}$. (This chain is formed from another free chain by unioning links to make L_{2} and $L_{\alpha-1}$ sufficiently long and narrow.) Let B be the union of all components of N that meet $\mathrm{Cl}\left(L_{3} \cup L_{\alpha-2}\right)$. By Lemma 2, each component of B is an arc with one endpoint in $\operatorname{Bd} L_{1}$ and the other endpoint in $\operatorname{Bd} L_{\alpha}$. Note that B is a closed set. Since M is indecomposable, each component of B is a continuum of condensation.

Since B contains no folded sequence of arcs, we can assume that B is the intersection of M and the plane R^{2} and that the following conditions are satisfied:
I. A component C of B is $\{(x, y): 0 \leqq x \leqq 6$ and $y=0\}$.
II. Each component of $B-C$ is a horizontal interval above $H(0)$ (the x-axis) and below $H(1)$ that crosses both $V(1)$ and $V(5)$.
III. The sets $\mathrm{Cl}\left(L_{1} \cup L_{2} \cup L_{\alpha-1} \cup L_{\alpha}\right)$ and $\{(x, y): 1 \leqq x \leqq 5\}$ are disjoint.
(Bing's theorem [2, Theorem 11], involving sequences of refining covers that induce a homeomorphism, can be used to define this embedding of B in R^{2}. Each cover of B consists of finitely many free chains that correspond to disjoint straight horizontal chains with rectangular links in R^{2}.) Note that $B \cap\{(x, y): 1<x<5\}$ is an open subset of M.

Let ρ be a metric on M whose restriction to B agrees with the Euclidean metric on R^{2} [1, Theorems 4 and 5].

There exists a positive number d less than 1 such that $M \cap H(d)=$ \varnothing and the following condition is satisfied:

Property 1. Every arc in M that has its endpoints in $\{(x, y): x=3$ and $0 \leqq y<d\}$ meets both $\{(x, y): x=1$ and $0 \leqq y<d\}$ and $\{(x, y): x=5$ and $0 \leqq y<d\}$.

To see this we assume Property 1 does not hold for any positive number d. For each positive integer i, let W_{i} be an open set in
$M \cap\{(x, y): 1<x<5\}$ that contains $(3,0)$ such that for each pair p, q of points of W_{i}, there exists an i^{-1}-homeomorphism of M onto M that takes p to q (Lemma 3). For each i, there exists an arc A_{i} in M with endpoints p_{i} and q_{i} in $W_{i} \cap V(3)$ such that the horizontal interval Γ_{i} from p_{i} to $V(1)$ is in A_{i} if and only if the horizontal interval Δ_{t} from q_{i} to $V(1)$ is in A_{r}.

For each i, let h_{i} be an i^{-1}-homeomorphism of M onto M such that $h_{i}\left(p_{i}\right)=q_{i} . \quad$ Since each h_{i} maps Γ_{i} approximately onto Δ_{i}, for each i, there exists a point a_{i} of A_{i} such that $h_{i}\left(a_{i}\right)=a_{i}$.

For each i, let B_{i} be the arc in A_{i} from p_{i} to a_{i}. Note that for each i, the diameter of B_{i} is greater than 1 and $B_{i} \cap h_{i}\left[B_{i}\right]$ consists of the point a_{i}.

Let a be a limit point of the sequence $\left\{a_{i}\right\}$. Assume without loss of generality that $\left\{a_{i}\right\}$ is a convergent sequence in $E=\{v \in M: \rho(v, a)<$ $1 / 2\}$.

For each i, let E_{i} be an arc in $B_{i} \cap \mathrm{Cl} E$ that goes from a point b_{i} of $\operatorname{Bd} E$ to a_{i}. Assume without loss of generality that $\left\{b_{i}\right\}$ converges to a point of $\mathrm{Bd} E$ and $\left\{E_{l}\right\}$ converges to an arc F in $\mathrm{Cl} E$. Since each h_{t} is an i^{-1}-homeomorphism, $\left\{E_{i} \cup h_{i}\left[E_{i}\right]\right\}$ is a folded sequence of arcs converging to F. This contradiction of Lemma 4 completes our argument for Property 1.

For $i=1$ and 2, let

$$
D_{i}=M \cap\{(x, y): i \leqq x \leqq 6-i \quad \text { and } \quad 0 \leqq y<d\}
$$

Let ϵ be a given positive number less than $\rho\left(D_{2}, M-D_{1}\right)$. We shall complete this proof by defining an ϵ-circular chain that covers M.

By Lemma 1, there exists an arc A in M that is irreducible with respect to the property that it contains $\{(5,0),(6,0)\}$ and intersects $\{(x, y): x=5$ and $0<y<d\}$. According to Property $1, A$ intersects $\{(x, y): x=4$ and $0<y<d\}$.

Let W be an open set in $D_{1}-A$ containing (4,0) such that for each pair p, q of points of W, there exists an $\epsilon / 50$-homeomorphism of M onto M that takes p to q (Lemma 3).

Let c be a number $(0<c<\epsilon / 50)$ such that $M \cap H(c)=\varnothing$ and $M \cap\{(x, y): x=4$ and $0 \leqq y<c\}$ is in W. Since W and A are disjoint, c is less than d.

For $i=1$ and 2, let

$$
C_{i}=M \cap\{(x, y): i \leqq x \leqq 6-i \quad \text { and } \quad 0 \leqq y<c\} .
$$

Let δ be the minimum of ϵ and $\rho\left(C_{2}, M-C_{1}\right)$. Let U be an open subset of C_{1} containing $(2,0)$ such that for each point q of U, there exists a δ-homeomorphism of M onto M that takes (2,0) to q (Lemma 3).

Define S to be the ray in M that starts at $(2,0)$ and contains A. Let $\left\{s_{i}\right\}$ be the sequence consisting of all points of $S \cap\{(x, y): x=3$ and $0 \leqq y<d\}$ and having the property that for each i, the points s_{i} precedes s_{i+1} with respect to the linear order on S.

Define T_{1} to be an arc containing A in S that starts at the point $t_{1}=(2,0)$ and ends at a point t_{2} of $U \cap V(2)$. Let h be a δ homeomorphism of M onto M that takes t_{1} to t_{2}.

We proceed inductively. Assume an arc T_{n} is defined in S with endpoints t_{n} and t_{n+1} in $C_{2} \cap V(2)$. Let y be the number such that $h\left(t_{n+1}\right)$ belongs to $H(y)$. Define T_{n+1} to be the arc in S with endpoints t_{n+1} and $t_{n+2}=(2, y)$. Since h is a δ-homeomorphism, t_{n+2} belongs to C_{2}. Note that since each T_{n} has diameter greater than 1 , the ray S is the union of $\left\{T_{n}: n=1,2, \cdots\right\}$.

Define β to be the largest integer such that $\left\{s_{i}: 1 \leqq i \leqq \beta\right\}$ is a subset of T_{1}. The δ-homeomorphism h maps each T_{n} approximately onto T_{n+1}. Hence, for each n, the arc T_{n} contains $\left\{s_{i}:(n-1) \beta<i \leqq\right.$ $n \beta\}$. Furthermore, β has the following property:

Property 2. For each positive integer i, the point s_{i} belongs to C_{2} if and only if $s_{t+\beta}$ belongs to C_{2}.

Define γ to be the least positive integer that has Property 2. Note that since s_{2} does not belong to C_{2}, the integer γ is greater than 1 .

Let K be $\left\{s_{1}: i=j \gamma+1\right.$ and $\left.j=0,1,2, \cdots\right\}$, and let L be $\left(S \cap D_{2} \cap V(3)\right)-K$.

Property 3. The sets $\mathrm{Cl} K$ and $\mathrm{Cl} L$ are disjoint.
To establish Property 3, we assume there is a point z in $\mathrm{Cl} K \cap$ $\mathrm{Cl} L$. Let Z be an open subset of M containing z such that for each pair p, q of points of Z, there exists a δ-homeomorphism of M onto M that takes p to q (Lemma 3).

Let s_{i} and s_{n} be points of $Z \cap K$ and $Z \cap L$, respectively, and let f be a δ-homeomorphism of M onto M such that $f\left(s_{i}\right)=s_{n}$. Let θ be the smallest positive integer such that $s_{n-\theta}$ belongs to K. The existence of f implies that θ has Property 2. Since θ is less than γ, this is a contradiction and Property 3 is established.

Note that since $M=\mathrm{Cl} S$ (Lemma 1), $\mathrm{Cl}(K \cup L)=D_{2} \cap V(3)$.
Let I be the arc in S that goes from s_{1} to $s_{\gamma+1}$. By an argument similar to Bing's [4, Property 17, p. 219], there exists a free $\epsilon / 50$-chain $P_{1}, P_{2}, \cdots, P_{\lambda}$ in M covering I such that
(i) $\quad s_{1}$ and $s_{\gamma+1}$ belong to P_{1} and P_{λ} respectively,
(ii) $\quad P_{1} \cup P_{\lambda}$ is in C_{2},
(iii) each component of $H=\cup\left\{P_{1}: 1 \leqq j \leqq \lambda\right\}$ that meets $\mathrm{Cl} P_{1}$ also meets P_{1} and $V(5)$, and
(iv) each component of H that meets $\mathrm{Cl} P_{\lambda}$ meets P_{λ} and $V(1)$.

From Property 1 we get the following:
Property 4. Each component of H meets both P_{1} and P_{λ}.
Let P_{μ} be an element of $P_{1}, P_{2}, \cdots, P_{\lambda}$ that contains the point $(4,0)$. Since W intersects each component of C_{2}, there exists a finite sequence $g_{1}, g_{2}, \cdots, g_{\sigma}$ of $\epsilon / 50$-homeomorphisms of M onto M such that $\mathrm{Cl} K$ projects horizontally into $\cup\left\{g_{t}\left[P_{\mu}\right]: 1 \leqq i \leqq \sigma\right\}$. Assume without loss of generality that no proper subsequence of $g_{1}, g_{2}, \cdots, g_{\sigma}$ has this horizontal projection property.

Note that each $g_{i}\left[P_{\mu}\right]$ is a subset of D_{1}.
From Properties 1 and 4 we get the following:
Property 5. For each $i(1 \leqq i \leqq \sigma)$, if T is a component of $g_{t}[H]$, then $T \cap g_{t}\left[\mathrm{Cl} P_{\mu}\right]$ is a nonempty set that projects horizontally to a point of $D_{2} \cap V(3)$.

For each $i(1 \leqq i \leqq \sigma)$, let X_{t} be the set consisting of all points in $g_{l}\left[P_{\mu}\right]$ that project horizontally into $\mathrm{Cl} K$, and let Y_{i} be the union of all components of $g_{i}[H]$ that meet X_{i}.

For each $i(1 \leqq i \leqq \sigma)$, the set Y_{i} is open in M. To see this assume that for some i, a point u of Y_{i} is in $\mathrm{Cl}\left(M-Y_{t}\right)$. According to Property $3, u$ does not belong to $g_{i}\left[P_{\mu}\right]$. By Property 5, there exists a sequence $\left\{J_{n}\right\}$ of arcs in $g_{i}[H]$ that meet $g_{i}\left[P_{\mu}\right]$ such that the limit superior J of $\left\{J_{n}\right\}$ is an arc in $g_{i}[H]$ that contains u and for each n, the set $J_{n} \cap g_{i}\left[P_{\mu}\right]$ projects horizontally to a point of $\mathrm{Cl} L$. It follows that $J \cap g_{i}\left[\mathrm{Cl} P_{\mu}\right]$ is a nonempty set that projects horizontally to a point of $\mathrm{Cl} L$. Since J is in the u-component of Y_{i}, this is a contradiction of Property 5. Hence Y_{i} is an open subset of M.

For each $i(1 \leqq i \leqq \sigma)$ and $j(1 \leqq j \leqq \lambda)$, let $Q_{i, j}=Y_{i} \cap g_{i}\left[P_{j}\right]$. It follows from an argument similar to the one given in the preceding paragraph that for each i, the set $\mathrm{Cl}\left(Q_{i, 1} \cup Q_{i, \lambda}\right)$ contains $\mathrm{Bd} \cup\left\{Q_{b, j}: 1 \leqq\right.$ $j \leqq \lambda\}$. Hence, for each i, the sequence $Q_{i, 1}, Q_{i, 2}, \cdots, Q_{i, \lambda}$ is a free chain in M.

Property 6. For each $i(1 \leqq i \leqq \sigma)$, the set $Q_{i, 1} \cup Q_{i, \lambda}$ projects horizontally into $\mathrm{Cl} K$.

Obviously, $Q_{i, 1}$ projects horizontally into $\mathrm{Cl} K$. Therefore, to establish Property 6, we assume there is a point t of $Q_{i, \lambda}$ that projects horizontally into $\mathrm{Cl} L$. By Property 3, there exists a positive number η less than ϵ such that $Q=\{v \in M: \rho(v, t)<\eta\}$ projects horizontally in $\mathrm{Cl} L$.

Let T denote the t-component of Y_{i}, and let w be a point of $T \cap Q_{i, 1}$ (Property 4). Since g_{i} is an $\epsilon / 50$-homeomorphism, T crosses $D_{1} \cap V(1)$ exactly γ times (Property 1). Since w belongs to $Q_{b, 1}$, it projects horizontally into $\mathrm{Cl} K$.

By Lemma 3, there exists an η-homeomorphism g of M onto M such that $g(w)$ belongs to $Q_{t, 1}$ and projects horizontally into K. Since the $g(w)$-component of Y_{i} is an arc segment in S that crosses $D_{1} \cap V(1)$ exactly γ times and is mapped approximately onto T by g^{-1}, the point $g(t)$ of Q projects horizontally into K. This contradiction of the definition of Q completes our argument for Property 6.

Let π be an integer $(5<\pi<\mu)$ such that P_{π} contains the point $(3+\epsilon / 10,0)$. Let ω be an integer $(\mu<\omega<\lambda-4)$ such that P_{ω} contains the point of $V(3-\epsilon / 10)$ that projects horizontally to $s_{\gamma+1}$.

Property 7. For each $n(1 \leqq n \leqq \sigma)$, the set $Q_{n, 1} \cup Q_{n, \lambda}$ does not intersect $\cup\left\{Q_{b,}: 1 \leqq i \leqq \sigma\right.$ and $\left.\pi \leqq j \leqq \omega\right\}$.

To see this assume there exist integers i, j, and n such that $\pi \leqq j \leqq \omega$ and a point p belongs to $Q_{i, j} \cap\left(Q_{n, 1} \cup Q_{n, \lambda}\right)$. According to Property 6, $\{p\} \cup Q_{b, 1} \cup Q_{b, \lambda}$ projects horizontally into $\mathrm{Cl} K$. By Property 3, there exists a positive number χ less than ϵ such that $\{v \in M: \rho(v, p)<\chi\}$ projects horizontally into $\mathrm{Cl} K$.

Let P be the p-component of Y_{r}. Let Y be an arc in P that goes from a point q of $Q_{b, 1}$ to p. Since g_{i} and g_{n} are $\epsilon / 50$-homeomorphisms and $\pi \leqq j \leqq \omega$, the set $Q_{i, 1} \cup Q_{i, \lambda}$ and the p-component of $P \cap D_{1}$ are disjoint. Hence Y crosses $D_{1} \cap V(1)$ exactly ι times where ι is a positive integer less than γ.

By Lemma 3, there exists a χ-homeomorphism k of M onto M such that $k(q)$ belongs to $Q_{b, 1}$ and projects horizontally into K. The $\operatorname{arc} k[Y]$ crosses $D_{1} \cap V(1)$ exactly ι times. Since $k[Y]$ is in S and $\rho(p, k(p))<$ χ, the point $k(p)$ projects horizontaliy into K. It follows from the definition of K that ι is a multiple of γ, and this is a contradiction. Hence Property 7 holds.

For each $i(1 \leqq i \leqq \sigma)$ and $j(1 \leqq j \leqq \lambda)$, let $P_{i, j}=Q_{i, j}-\mathrm{Cl} \cup\left\{Y_{n}: 1 \leqq\right.$ $n<i\}$. By Property 7 , for each i, the subchain of $P_{i, 1}, P_{i, 2}, \cdots, P_{i, \lambda}$ that has $P_{i, \pi}$ and $P_{i, \omega}$ as end links is free in M.

For each $j(1 \leqq j \leqq \lambda)$, let $U_{J}=\cup\left\{P_{i, j}: 1 \leqq i \leqq \sigma\right\}$. The subchain \mathscr{C} of $U_{1}, U_{2}, \cdots, U_{\lambda}$ that has U_{π} and U_{ω} as end links is a free $\epsilon / 16$-chain in M.

Let D be the union of all components of $C_{2} \cap\{(x, y): 3-\epsilon / 5<x<$ $3+\epsilon / 5\}$ that meet $C l K$. According to Property $3, D$ is open in M. The diameter of D is less than $\epsilon / 2$. Each point of $U_{\pi} \cup U_{\omega}$ is within $\epsilon / 5$ of $V(3)$. By Property $6, U_{\pi} \cup U_{\omega}$ projects horizontally into $\mathrm{Cl} K$. Hence $U_{\pi} \cup U_{\omega}$ is in D.

Let τ be the largest integer less than μ such that U_{τ} intersects
D. Let ψ be the smallest integer greater than μ such that U_{ψ} intersects D. For each $j \quad(1 \leqq j<\psi-\tau)$, let $Z_{j}=U_{\tau+j}^{-}$. Note that $Z_{1}, Z_{2}, \cdots, Z_{\psi-\tau-1}$ is a free ϵ-chain in M.

Define $Z_{\psi-\tau}$ to be the union of D and all elements of $\mathscr{D}=\left\{U_{j}: \pi \leqq\right.$ $j \leqq \tau$ or $\psi \leqq j \leqq \omega\}$. Since $\mathrm{Cl} K$ projects horizontally into U_{μ} and \mathscr{C} is a free chain in M, each element of \mathscr{D} intersects D. Thus $Z_{\psi-\tau}$ is an open set in M of diameter less than ϵ. Note that $Z_{\psi-\tau}$ meets both Z_{1} and $Z_{\psi-\tau-1}$.

Since \mathscr{C} is free and $U_{\pi} \cup U_{\omega}$ is in D, the boundary of $\cup\left\{Z_{j}: 1 \leqq j<\right.$ $\psi-\tau\}$ is in $Z_{\psi-r}$. Since $C l K$ projects horizontally into U_{μ}, the set Z_{1} contains every boundary point of $Z_{\psi-\tau}$ that is to the right of $V(3)$ in R^{2}.

Furthermore, each point of $\mathrm{Bd} Z_{\psi-\tau}$ that is to the left of $V(3)$ is in $Z_{\psi-\tau-1}$. To see this let s be such a.point. Let X be the arc in M that intersects $V(1)$ and is irreducible between s and $\mathrm{Cl} U_{\mu}$ (Lemma 1). By Property $1, X$ does not meet $U_{\pi} \cup U_{\omega}$. Since U_{μ} is an interior link in the free chain \mathscr{C}, the arc X is covered by \mathscr{C} and s belongs to $Z_{\psi-\tau-1}$.

It follows that $\operatorname{Bd} Z_{\psi-\tau}$ is in $Z_{1} \cup Z_{\psi-\tau-1}$. Therefore $Z_{1}, Z_{2}, \cdots: Z_{\psi-\tau}$ is an ϵ-circular chain that covers M. Hence M is circle-like.

Since every homogeneous circle-like continuum that contains an arc is a solenoid [4, Theorem 9, p. 228], Theorem 1 implies the following:

Theorem 2. A continuum M is a solenoid if and only if M is homogeneous and every proper subcontinuum of M is an arc.

References

[^0]13. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Volume 1, Academic Press, New York, 1963.
14. F. B. Jones, Homogeneous plane continua, Proceedings of the Auburn Topology Conference, Auburn Univ., Auburn, Ala., (1969), pp. 46-56.
15. -, Use of a new technique in homogeneous continua, Houston J. Math., 1 (1975), 57-61.
16. K. Kuratowski, Topology, Volume 2, 3rd ed., Monografie Mat., Tom 21, PWN, Warsaw, (1961); English transl., Academic Press, New York; PWN, Warsaw, 1968.
17. S. Mardesic and J. Segal, ϵ-mappings onto polyhedra, Trans. Amer. Math. Soc., 109 (1963), 146-164.
18. E. E. Moise, A note on the pseudo-arc, Trans. Amer. Math. Soc., 67 (1949), 57-58.
19. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962.
20. J. T. Rogers, Jr., The pseudo-circle is not homogeneous, Trans. Amer. Math. Soc., 148 (1970), 417-428.
21. E. S. Thomas, One-dimensional minimal sets, Topology, 12 (1973), 233-242.
22. G. S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc., 212 (1975), 393-400.
23. L. Vietoris, Ueber den höheren Zusummenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927), 454-472.
24. C. L. Hagopian and J. T. Rogers, Jr., A classification of homogeneous, circle-like continua, Houston J. Math., to appear.
25. J. T. Rogers, Jr., Solenoids of pseudo-arcs, Houston J. Math., to appear.

Received April 2, 1976 and in revised form February 15, 1977.
California State University
Sacramento, CA 95819

[^0]: 1. R. H. Bing, Extending a metric, Duke Math. J., 14 (1947), 511-519.
 2. ——, A homogeneous indecomposable plane continuum, Duke Math. J., 15 (1948), 729-742.
 3. -_, Each homogeneous nondegenerate chainable continuum is a pseudo-arc, Proc. Amer. Math. Soc., 10 (1959), 345-346.
 4. ——, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math., 12 (1960), 209-230.
 5. R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc., 90 (1959), 171-192.
 6. C. E. Burgess, A characterization of homogeneous plane continua that are circularly chainable, Bull. Amer. Math. Soc., 75 (1969), 1354-1355.
 7. D. van Dantzig, Ueber topologisch homogene Kontinua, Fund. Math., 15 (1930), 102-125.
 8. E. G. Effros, Transformation groups and C^{*}-algebras, Ann. of Math., 81 (1965), 38-55.
 9. L. Fearnley, The pseudo-circle is not homogeneous, Bull. Amer. Math. Soc., 75 (1969), 554-558.
 10. C. L. Hagopian, Homogeneous plane continua, Houston J. Math., 1 (1975), 35-41.
 11. - The fixed-point property for almost chainable homogeneous continua, Illinois J. Math., 20 (1976), 650-652.
 12. ——, Indecomposable homogeneous plane continua are hereditarily indecomposable, Trans. Amer. Math. Soc., 224 (1976), 339-350.
