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THE DEFICIENCY INDEX OF A
THIRD ORDER OPERATOR

RICHARD C. GILBERT

Let L be a formally selfadjoint third order linear ordinary
differential operator defined on [r, x). Using a method of
Fedorjuk, asymptotic formulas are found for the solutions of
Ly = iσy, σ^O. These formulas are used to determine the
deficiency index of L when L has polynomial coefficients. As a
consequence, the deficiency index is determined for values of the
parameters involved for which it has not previously been de-
termined.

1. Introduct ion . The general form of a third order formally
selfadjoint linear ordinary differential operator L can be written

(1) Ly = (ib2y"y + [(2ιibf

2+ α,)yT + ib,y'+ (2'1/fe; + αo)y,

where α0, au bu b2 are real functions of x and b2(x) / 0. (See [4, Ch. 1,
§1.5]. We have assumed sufficient differentiability on the coefficients so
that the Dunford and Schwartz form can be written in the form
(1).) Unsworth [12] considered the case that b2(x) = 2, bx(x) = 2axa,
aι(x)= bxβ, ao(x)= cxΎ, l^x <°°. Using the asymptotic methods of
Devinatz [3], Unsworth deduced the deficiency index of L for various
values of the parameters α, b, c, α, β, γ. Pfeiffer [10] considered the case
b2(x)=l, bλ(x)= axa, α1(x) = 0, ao(x)=cxΎ. The purpose of the pres-
ent article is to obtain by the method of Fedorjuk [6] asymptotic formulas
for the solutions of Ly = iσy, σ^ 0, and to apply these formulas to
finding the deficiency index of L for the case b2(x)=l, bι(x)= axa,
αi( c) = bxβ, ao(x) = cxy. Although Fedorjuk applied his method only to
even order operators, it can be used for odd order operators as
well. Shirikyan [11] applied the Fedorjuk method to a certain class of
odd order operators. It turns out that the Fedorjuk method applied to
the above case yields the deficiency index for values of the parameters
different from Unsworth and Pfeiffer.

It is known that, except for a first order operator, a differential
operator of order n cannot have deficiency index (n,p) or (p, n), where
p < n. (See Atkinson [1] or Kogan and Rofe-Beketov [7], [8].) Further,
for an operator of order n = 2v-l it is known that the deficiency
numbers n+ and n_ satisfy the inequalities v ^ n+^2v — 1, v ~ 1 ̂  n_ ^
2v — 1, or the same inequalities with n+ and n_ interchanged. (See
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Everitt [5] or Kogan and Rofe-Beketov [8].) It follows that the defi-
ciency indices (2,1), (1,2), (2,2) and (3,3), obtained in this paper and by
Unsworth and Pfeiffer, are the only possible deficiency indices for a third
order operator.

2. Asymptotic formulas for the solutions of JLy =
iσy. We shall make the following assumptions on the coefficients α0, au

bu b2 of L. The need for the various assumptions will be seen as we go
along.

In all that follows in this article, it will be necessary in various places
to require that x is sufficiently large. We shall therefore assume once
and for all that x0 is chosen so large that if x ̂  x0, then x is sufficiently
large in all places where this is needed. We shall also often omit the
stipulation x ̂  x0 when it is clear from the context that this is needed.

ASSUMPTION I. bλ{x), b2(x) G C3[r, oo). ao(x), aλ{x) E C2[r, oo).
b2(x)/0 for x ̂  r, b2(x) = 1 + o(l) as x-»+oo. αo(x)^O for x^
r. Either ao(x) -» -h oo and a Ό(x) > 0 for x ̂  JC0, or else ao(x) -» - oo and
a'0(x)<0 for x ̂  x0.

ASSUMPTION II. l i m ^ ajaψ = d^ 3/22/3, bλ\af = o(l), b[/a0 =
, b2/aι

0

/3 = o(l).

ASSUMPTION III. Vϊlaψ = o(l), a'Jaψ = o(l), b'Uaf = o(l),

ASSUMPTION IV. b2 and b\laψ are absolutely integrable on [r, oo).
Let

(2) /(A,JC)= -A3+/m(x)fc21(x)λ2-61(jc)ft2-
1(jc)λ + m(jc)&21(x),

where

(3) m(x) = 2-1ib'2(x)+aι(x),

(4) n(jc) = 2-1ίί)ί(x)+α0(jc)-iσ.

Here σ is a real constant, σ?^0.
Let

(5) τ(x) = [a(l(x)b-2

ι(x)]m[l + (b[(x)-2σ)(2a»(x)ΓiYl\

where if z = pelβ, - π < θ ̂  ir, then we take z"3 = p l/3e'β/3. Then,
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τ3 = nbi\ and τ(x)τ* 0 for x ^ r.
Putting

(6) A = iητ(x),

then

(7) /(λ,x) = 0

becomes

(8) h(η,x) = 0,

where

(9) h(η,X)=η3-m(x)[b2(x)τ(x)]-1

V

2-bι(x)[b2(x)r2(x)Y1η + l.

An essential part of the Fedorjuk method is that we should have

(10) \imm(x)[b2(x)τ(x)}-1 = d + ieu
x—*°°

(11) Iimβ1(jc)[62(x)τ2(x)]1 - d2+ ie2,

where d + iex and d2+ie2 are complex constants. Then, as JC —>o°,
h(η,x) approaches a polynomial ho(η) with constant coefficients. We
also want ho(η) = 0 to have distinct roots. For reasons that will appear
later we further want as x-*o° that |αo(x)|->°° and that

(12) T(x)=alf3(x)[l + o(l)].

In I and II we have assumed ao(x)—>±oo9fc2=l + o (1), b[/ao= o (1)
in order that (12) and | ao(x) | -> °° might be true. In order to explain the
remaining assumptions in I and II, let us note that if (10) and (11) are to
be true, we must have

(13)

(14) \im (a1jalli)=d,
X—>oo

(15) lim(bja?)=d2,
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and e2 = 0. But then (13) and our assumptions that |αo|—>°° and
b2 - 1 + o(l) imply that eλ = 0. Further, (15) and the assumptions on α0

in / and the assumption that b'Jaψ is absolutely integrable on [r, oo) in IV
imply that d2 = 0. Thus, we have explained the reasons for all the limit
assumptions in I and II.

From Assumptions I and II we have that

(16) m(x)[b2(x)τ(x)Γ = d^fι(xl

(17) bx{x)[b2{x)τ\xψ = f2{x),

where /i(x) = o(l), f2(x)= o(l), and /I(JC) and f2(x) are continuously
differentiable on [r, oo). It follows that

(18) h(η,x)=ho(η)-η2fί(x)-ηf2(xl

where

(19) ho(η)=η3-dη2+l.

Since we have assumed in II that d^ 3/22/3, hQ(η) = 0 has three distinct
nonzero roots. If d < 3/22/3, then ho(η) = 0 has one real negative root
and two complex conjugate nonreal roots. If d > 'ill212', then ho(η) = 0
has three distinct real roots, one of which is negative and the other two
positive. We denote the roots by 1701, 1702, τ?03, where ηoι < η02 < η03 in
the case of three real roots, and 1701 is real and Im 1702 > 0, Im 1703 < 0 in the
case of one real root. In the case of three real roots, h'(ηoι)>O,
hr(η02)<0y hf(η03)>0. In the case of one real root, h'(ηoι)>O. In
every case, hf(ηOk)^ 0, k = 1,2,3.

According to Bellman [2, p. 26], for x ^ x0, (8) has three distinct
roots ηk(jc), k = 1,2,3 which are given by the formula

(20)

where Ck is a small circle around ηok. r]k(x) is continuously differenti-
able, and

(21) Vk(x)=ηok[l + o(l)].

We have that hv(ηk(x),x)^0, and that ηk(x)^0, for x ̂  χ0. From (6)
one sees that (7) has for x ^ x0, three distinct continuously differentiable
nonzero roots λk(x) given by

(22) λ k (x)=iτ, k (x)τ(x) , fc = 1,2,3,
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and

(23) λk(x)= iaι

o»(x)ηok[l + o(l)].

We have that /A(λ k(jc),x)^O.

ASSUMPTION V. (6ί)2/αJ/3, (&")2/αo, (a[)2/a0, (b[)2/a5

0

β

9 (b'tf/al*,
(a'oYlal13, b\\aψ, b"[\aψ, a'[laψ, &'ί/α0, b"{laA£, a'^aT are all absolutely
integrable on [r, <*>).

ASSUMPTION VI. For each pair /, fc, one of the following is true:
(a) R e ( λ , ( * ) - λ f c ( x ) ) ^ 0 for x ^ xo;
(b) Re (λ, (JC ) - λk (x)) ̂  0 for x ^ JC0, and

f Re(λj(x)-λk(x))dx= -oo;
Jxo

(c) Re(λ ; (x) ~ λk (x)) dx is convergent.

Using Assumptions I-VI, it is now possible to obtain asymptotic
formulas for the solutions of the equation

(24) Ly = iσy.

Let w be the column vector with components HΊ = y, w 2 = y \ w3 =
ίb2y"+ tfiy'. (24) is then equivalent to the system

(25) w' = A(JC)W,

where

/ 0 1 Ox

(26) A ( J C ) = I 0 imb~2

l - ib~2

ι .
\ - n -ibx 0 /

The eigenvalues of A(x) are the roots of (7), i.e., λk(jc), k = 1,2,3.
Let us now make the transformation

(27) w = T0(E + T2)z,

where z is a column vector with components zu z2, z3, and To and T2 are
matrices to be determined, and E is the identity matrix. Then, (25)
becomes
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(28) z' = Λoz + (Λo T2 - T2A0 - To1 T'0)z + B (x )z,

where

B(x) = (E + T2y
ι[(T2

2A0+ T2ToιTo)(E + T 2 ) -

Ao=To1ATo.
and

Λo— i o

We shall show that we can choose To and T2 such that for x ^ JC0, To1 and
(E + T2)~ι exist, a id ToιATo and Λ 0 Γ 2 - T2Λ0- To1 TO are diagonal. To
that end, we choose To to be a matrix whose columns are eigenvectors for
A, namely,

/ I 1 1 x
(30) Γo= I A, λ 2 λ 3

\[ib2λι + m]λι [ib2λ2+m]λ2 [ib2λ3 + m]λ} I

x{λλ,x) -iλ,b2IFk{λux) - l / F A ( λ , , x ) \
(31) 7 V = n/A2Fλ(λ2,x) - ίλ2fc2/Fλ (\2,x) - l /F A (λ 2 ,x) ,

V «/λ3Fλ (A3,JC) - iλ,62/Fλ (λ,,x) - 1/FA (λ3,x) /

where

(32) F ( λ , x ) = ι V ( λ , x ) .

Then, for x ^ x0,

(33) Tό'ΛΓo = Λo = diagonal [λ,].

We note that

(34) lim a 02l\x )Fλ (A, (x), x) = ih ί(η0 j) = p0/ exp [iθOs ],

where - π < θ0, έ π, pOj > 0. Let

(35) aό2'\x)Fλ (λi(x),x)=Pi(x)exp[iθi(x)],

where Pj{x) and θ,{x) are chosen so that limx^pj(x) = pOl, and
limx-*oo #,(#)= ^0;. We choose that branch of log such that for x =ϊ JC0,

(36) logFA (λ,(x),x) = (2/3)Log| ao(x)\ + Logp,(x)+ iθy (x).

Then, for l , i ϊ χ0,
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(38) j* [(d/ds)logF,(λ,(s),s)]ds = log Fκ(λ,(x),x)-log Fκ(λ,(t),t),

(39) exp[(l/2)logFΛ(λ,(x),x)] = [1 + 0

Now we note that the elements (To'Tό)^ of the matrix TV To* are
given for x ^ x0, by

(Γ 0 - 1 Γ^ = (l/2)[FAA(λ ;(αc),x)λXx)+FAx(λ/(jc),x)

or,

(To' To), = (1/2) (d/dx) log FA (A, (x),x)

and

ifcJAtA, + iftί)+ m'λkλ, + n']
( 4 2 ) x[(A t -A ; )F A (A,(x),x)r,

Let

(43) λγ=-(T-o

ιT'o)ih

(44) Λ, = diagonal [A}'>].

We note that the Aj])(x) are continuous for x =Ξ x0. Let the matrix
T2 be defined by the equations

(45)

(46) (T2)jk = - (To1 Γ0)/k (λk - λ; ) \ k ¥• /.

T2 has been defined so that A0T2- T2A0- TQ1TO is a diagonal matrix;
indeed,

(47) ΛoΓ 2-Γ 2Λo-Γo- 1Γί = Λ1.

Thus, To and T2 in the transformation (27) have been chosen so that
for x g jc0, equation (28) is
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(48) zf = (A0 + A1)z+Bz.

We shall now show that for x ^ x0, B(x) exists and is continuous,
and || 2? (x) || is integrable on [JC0, °°) To do this will require a series of
lemmas whose proofs are mostly straightforward or else contained in
Fedorjuk [6] and are therefore omitted. For x ̂  JC0, let

(49) A(x) = max|A ;(jc)|.

Then,

In the following, the capital letters C and D denote suitably chosen
positive constants.

LEMMA 1. D,|αί/3(Λ;)|g λ(χ)^D2\ai

o

l3(x)\.

LEMMA 2. C,λ(x)^|λ,-(x)- λk(x)\£ C2λ(x), /V k.

Let

(50) α(x)

(51) /3(x)

(52) δ(x) = max{\b'2\,\m'\/\al%\b[\/\aiη,\n'\/\a0\},

(53) y(x)

LEMMA 3. a(x)^Cδ(x).

LEMMA 4. β(x)^Cγ(x).

LEMMA 5. C A ^ x ^ l F ^ O c ) , * ) ! ^ C2λ
2(x).

LEMMA 6. \F,(λ,(x),x)\£Cλ3(x)a(x).

LEMMA 7. | [λt (jt) - A, (x )]FA (A, (x ), x ) ( g Cλ 3(x).

LEMMA 8. | [ λ t ( x ) - λy(x)]2Fλ(λy(x),x)| ^ CA4(x)

LEMMA 9. | FAA (A, (x), x) | g Cλ (x).
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LEMMA 10. |FAx(A;(x),x)|g Cλ\x)a(x).

LEMMA 11. \λ'/(x)\^Ca(x)λ(x).

If A = (Ay(k)")t=i is an n x n matrix, we define the norm ||Λ || by
= nmaxp \A,k\.

LEMMA 12. | Λ , ( J C ) | | ^ Ca(x).

LEMMA 13. tl^O'(Λ;)TO(Λ:)| |^ Ca(x).

LEMMA 14. | |Γ 2 ( j t ) | | ^ Cα(x )/λ(x).

LEMMA 15. \\T'2(x)\\^ C{a2(x)+ β(x)]/λ(x).

LEMMA 16. [E + Γ2(x)]"' exists and is continuous for x S x0, and

LEMMA 17. B(x) exists and is continuous for x g x 0 , and \\B(x)\\^
C[a2(x)+β(x)]/λ(x).

We note that Lemmas 16 and 17 depend on the fact that
limx_ooα(x)/λ(jc) = 0, which follows from Assumptions II and III.

LEMMA 18. | |B(JC) | | is integrable on [xo?°°)

We note that Lemma 18 follows fromLemma 17, and Assumption V.
It is now possible to show that (48) has three linearly independent

solutions which satisfy certain specified boundary conditions at
infinity. To that end, we observe that a fundamental matrix Z0(x0, x) for
the homogeneous equation

(54) z ' = (Λ0 + Aι)z, x^Xo,

is given by

(55) Zo(jto,x)= diagonal [exp Γ (λ,(ί)+λ ;

( I )(/)) * ] .
L J XO J

Putting

(56) Z(x)=U(x)Zo(xo,x),

we find that Z(x) is a matrix solution of (48) for x ^ x0 if U(x) satisfies
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(57) U(x)=C + (KU)(x), x ^ JCO,

where C is an arbitrary constant matrix, and K is a linear operator on
matrices U(x) such that

(58) (KU(x))jk= Γ (Zo(t,x)B(t)U(t)Zo(x,t))ikdt9
Jxjk

xjk being an arbitrary number in the interval [xo?00].
Let M be the Banach space of continuous matrices V(x) on [x0, °°),

with || V\\M = supxsχo|| V(JC)|| < oo. For reasons that will appear in Lem-
mas 19 and 20 below, if Assumption VI (a) or (c) holds, we take xjk = o°; if
Assumption VI (b) holds, we take x]k - x0. Also, we take C = E.

LEMMA 19. If x0 is sufficiently large, then K: M-+M, and | | K | | M =
1/2.

Proof From (58) it follows that if V G M and if x ^ x0, then

\((KV)(x)),k\^

(59)
X

By (41), (43) and (38),

= (1/2) [log FΛ (λy (x), x) - log Fλ (A, (/), ί)]

(60) - (1/2)[log FA (A* (x),x)~ log FΛ (λ t (/), t)}

b[(s){[Fλ(λi(s),s)Γ-[Fκ(λk(S),s)Γ}ds.

It now foΠows from (36), (49), Lemma 1, Lemma 5, and Assumption IV

that I j"X(λ'I)(s)-λi1)(s))ίί5 is bounded for ί, x ^ JC0. Hence, if V G M,

then
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\((KV)(x))jk

(61)

x δ

By our choice of xjk, if Assumption VI (a) or (b) holds, exp Re(λ;(s) -

λk(s))ds^l. If Assumption VI (c) holds, then J Re(λ, ( s ) -

λk(s))ds ^ Ci for ί, x § xOj and therefore exp Re(λ y(s)- λk(s))ds S

expCi. It follows from (61) that

(62) \((KV)(x))ik\^cΓ \\B(t)\\dt\\V\\M, x^x0.
Jxo

Hence,

(63) \\(KV)(x)\\ = 3max\((KV)(x))lk\*3cΓ \\B(t)\\dt\\V\\M.

roc

If we now choose x0 so large that ||JB(f)||A ^ 1/6C, then ||X||M =
Jxo

111. This proves Lemma 19.

LEMMA 20. // x0 is sufficiently large, equation (57) has a unique
solution U(x)EM. It is true that \\(KU)(x)\\ = o(l) as x -»«>. [/(*)
can be written in the form

(64) [ / ( * ) = £ + o(l), jcgjco.

Proo/. The existence and uniqueness of U(x) follows from Lemma
18 and Banach's contraction mapping theorem or successive
approximations. To prove that ||(Kl7)(x)|| = o(l), we observe that if
Assumption VI (a) or (c) holds (so that we take x}k = °o)? then from (61),

\((KU)(x))jk \ ^ c Γ \\B(t)\\ dt \\U\\M = o ( l ) . If Assumption VI (b) holds
J X

(so that we take xjk = x0), then from (61),

+ jj\B(t)\\dt]\\V\\M,

where x ^ xx g xQ. From this inequality it is seen that \{(KU){x))jk \ =
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o(l) also when Assumption VI (b) holds. (64) follows from (57) and the
fact that | | ( J K Ί / ) ( J C ) | | = O{\). This completes the proof of Lemma 20.

THEOREM 1. Under Assumptions I-VI, the equation Ly = iσy, x ^
r, σ/ 0, has three linearly independent solutions yk, k = 1,2,3, of the form

(65) y , = [ l +

vv/iere ί/ιe λ k(ί) are giuen by equation (22).

/. By (56) and (64), there is a solution matrix Z(x) for (48) of

the form

(66) Z(x) = [E + o(l)]Z0(xθ9x% x ^ x0.

If x0 is sufficiently large, det[£ϊ + o(l)] ^ 0 for x ^ x0 and therefore Z(x)
is a fundamental matrix for (48). By (66) and (27) a solution matrix for
(25) is given by

(67) W(x)= T0(x)[E + T2(x)][E + o(l)]Z0(x0,x), x^x0.

Since [E + T2(x)]~1 exists by Lemma 16 and Tόι(x) exists by (31), W(x) is
a fundamental matrix. By Lemma 14 and the fact that
limx_^ooa(x)/A(x) = 0, we see that

(68) W(x) = T0(x)[E + o(l)]Z0(X(h JC), JC ^ JC0.

Let y^(x)= w u (x) , k = 1,2,3, where WU(JC) is the element in the first
row and fcth column of W(x). Then, by the equivalence of (24) and
(25), yk is a solution of (24), and by (68) and (30),

(69) yk = [l + o(l)] e x p Γ [λk(t)+λ

F r o m t h e e q u a t i o n s y k = w f c l , y f = w k 2 , y l = — ( i b 2 ) ι m w k 2 + (ib2)
 ι w 3 , w e

see that W(yl9 y2, y3)(x) = det W(x) έ 0, x ^ χ0, where W(yu y2, y3) is the
Wronskian of yu y2y y3. Hence, yu y2r y3 are linearly independent for
x ^ JCO. By (43), (41), (38), (39), (49), Lemma 5, Lemma 1 and Assump-
tion IV we see that

(70) expΓ λk

1

x ^
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(65) now follows from (69), (70) and the fact that | αo|—>°°, so that
aG(x)>0 or ao(x)<O for x ^ x0. This finishes the proof of Theorem 1.

3. Asymptotic formulas for the λk (x ). In this section we
take the coefficients of the operator L of equation (1) to be the following
on the interval [I, 0 0):

(71) b2(x) = l,

(72) bι(x)=axa, α<2γ/3,

(73) <*!(*)= foe*",

(74) ao(x)=cx\ γ > 0 , c^O.

LEMMA 21. If b/cυ3/ 3/22/3, then the coefficients of L given by
(71)-(74) satisfy Assumptions I-V with

(75) d = b/c 1/3

The proof is straightforward. We note that it is required in (74) that
γ >0 and c^ 0 in order that ao(x)-^ + °° or α()(jc)-> - oo (Assumption
I). The exponent γ/3 occurs in (73) in order that limx^x a J all3 = d
(Assumption II) with the possibility that d^ 0. The inequality a < 2γ/3
is required in (72) in order that bJal/3= o(l) (Assumption II).

LEMMA 22. If b/c1/3 < 3/22/3, the coefficients of L given by (71)-(74)
satisfy Assumptions I-VI.

Proof Since d = b/cυ3 < 3/22/\ hQ(η) = 0 has one real negative root
and two complex conjugate nonreal roots. Suppose 1702 = p + iq, 1703 ~
p - iq, q > 0. Then from (23) one sees that Assumption VI is satisfied;
in fact, (a) or (b) is true for each pair /, k. This proves the lemma.

If d>3/22 / 3, then ho(η) = O has three real roots. In this case in
order to check Assumption VI it is necessary to have asymptotic formulas
for the λk(x) which are more precise than (23). We obtain these by use
of (20).

LEMMA 23. Suppose the coefficients of L are given by (71)—(74) and
that b/cυ3/ 3/22/3. Then the roots λk(x) of (7) are given by
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λk(x) = iaι

o

l3{ηOk +[ηOk - υnd]{6c)-\iD)

+ ac-mvwχ-" + [-(7,0, - vnd) +

- ac~2l3[vl0+ υ2ld\{6cy\iD)χ-v

( 7 6 ) + O(D2χ-

[(5/3)(η0* - vnd)-3v22d
2

O(D2χ-η+

Σ
>=4

wn + 1,o(x)(ac-2 / 3)n + 1x- ("+ 1 )"

where n is an integer, n ^ 4, ίΛe rJS are constants which depend on ηOk and
are real when ηOk is real, wn+lfi(x) and wn+2,o(x) are complex functions
which are bounded as x —*• °°,

(77) v = 2γ/3 - a > 0,

D =

=o(l) as

If ηok is real,

Reλt(jc)= all3{[vnd - ηok](6c)"D

+ ac-2l3[vι0+ dv2ι](6c)-'Dx"

- [(5/3)(vnd - ηok)+ d2(3v22+

+O(D2x")+O(Dx -2v)

Σ ί O(Dsx(is)")+ O(Dxin+2)v)
/=4 s = l

ίr is true that

(80) o11 = ij§k[ΛS(τ,oOΓ.

(81) vnd-Vok=3[h'o(Vok)]-\

(82) ϋ1o=ηo*[/iί(i?o*)Γ1,
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(83) υ2x = η

(84) V22 = 2-1ηl

(85) V33 = 2-'η

Proof. From (5) and (71>-(74) we see that

(86) τ(x)=alβ(x)t(x),

(87)

As x —>oo,

(88) ί ( x ) = l + (6c)-'(iD)-(6c)- 2(iD) 2 + (5/3)(6c)-3(iD)3+ O(D4).

The functions /Ί(x) and f2(x) of (16)—(18) are given for x—>«> by

(89) /,(*) = d[-{6c)-\iD) + 2{βc)-\iDf-{UI3){6c)-\iDf+ O(D%

f2(x) = ac-mχ-"[l - 2(6c)-\iD)

+ 5(6c Y\iD Y - (40/3) (6c y\iD f+

Now, h~ι = /io'[l - (η/Λo)(''?/i + Λ)]"1- Let n be a positive integer. For
η G Ck and for x § x0,

= Λo-'f l + Σ (v/h0y(vfι+f2)1+(v/hor
l(vfl+h

7=1 \5=0

n + 1

Σ
5=0
Σ an+1,s(v)fm+i-^ -

Hence,

ηhηh-ι=ηhΌh?+Σ ΐ bis{η)f\fΓ
7=1 s=0

(92) + f Σ c+I,,(τ/, χ)/ί/r'-+ Σ
Ls=o 5=o

Substituting (92) into (20),



384 RICHARD C. GILBERT

n + 1

/=1 5=0

n + 1

(93) + Σ
s=0
n+2

where the vjs are constants which are real if ηok is real, and the functions
wn+i,s(jc) and wn+2,s(x) are bounded as JC-* -poo, if we substitute (93)
into (22), we obtain for x ^ JC0,

Γ 3

Λ f c (x)= icio \tηok -f X X VjSttιt
}2

(94)

+ *vn+1,0r/2"
+1 + Σ

5 = 1

n+2

We now use (88), (89), (90) to calculate asymptotic expansions for each of

the terms tηOk, tfif' Γ' We obtain

ίτjOfc = Vok + τjo* (6c Π i D ) - τ,0 t(6c)-2(/D)2 + (5/3)η0fe (6c )"3(ίX> )3

ί/, = d [ - (6c)- ](iD) + (6c)" 2 ( iD) 2 - (5/3)(6c)-3(iD)3+ O(U 4 )],

tf2 = ac'2liχ-"[l - (6c)-'(iD) + .O(D 2)], etc.

Substituting into (94), we obtain (76). (79) follows immediately from
(76). From the way in which (93) was derived, we see that vu =

(2πi)-1 I [η3h^-2η2h0]hό2dη. Hence,
Jck

ϋ11 = (2πi)-' ί [η2h?-(d/dη)(η3hϊι)]dη
Ja

= (27ΠT1 f η2h?dη = ηOk[hό(Vok)Γ.
Jck

This proves (80). (82)-(85) are proved similarly. (81) follows from (80)
and the fact that d = (ηlk+ l)ηόϊ This proves Lemma 23.
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Let

μ = min{^ + 1 + γ/3, γ} if aa/0
(95) .- πv ; = γ if aa = 0.

Then, as x ->co?

(96) D = O(xμ).

In the following we shall consider three cases. Case 1 is the case
that v = 2μ, which occurs if a = -4γ/3. Case 2 is the case v>2μ,
which occurs if a < - 4γ/3. Case 3 is the case v < 2μ, which occurs if
- 4 γ / 3 < α <2γ/3.

LEMMA 24. Suppose the coefficients of L are given by (71)—(74) and
that b/cι/3/ 3/22/3. // ηok is real, Reλfc(x) has the follow/ing asymptotic
expansions:

Case 1. v = 2μ {i.e., a= — 4γ/3). Then,

+ ac~2β[υm+ dv21](6cy'Dχ-2»
( 9 7 ) - [5(h'0(η0k)y> + d2(3v22+ dv33)](6c)'}D3

2. v>2μ (i.e., a < -4γ/3).

λk(x)=alβ{[h^ηm)]-ί(2cϊ1D
( 9 8 )

e >0.

Case 3. i/ < 2μ (i.e., -4γ/3 < a < 2γ/3). ΓΛen,

ReA»(x)=

(99)

where e > 0.
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Proof. (97) and (98) follow directly from (79). If we choose n so
large that nv > μ, then we also see that (99) follows from (79). This
proves Lemma 24.

LEMMA 25. If b/cυ3 > 3/22/\ b/cυ3 ϊ 3/21/3, and σϊ aa/2, then the
coefficients of L given by (71)-(74) satisfy Assumptions I-VΊ.

Proof. Since d = b/c1/3 > 3/22/3, ho(η) = 0 has three real
roots. Because d^ 3/21/3, hΌ(η01), h'0(η02), hό(η03) are all distinct. From
(78) and (95) we see that D = Cxx'μ[l + o(l)], where d ^ O because
σ^ aa/2. By Lemma 24,

From (100) and (74) it follows that Assumption VI is satisfied. This
proves Lemma 25.

LEMMA 26. Suppose the coefficients of L are given by (71)-(74) and
that b/cm = 3/21/3. Γ/ien the roots of ho(η) = 0 are ηm = 2~1/3(1 -3" 2),
η<>2 = 2"1 '3, r/03 = 2- I / 3 (l + 3" 2 ), αnrf

(101) h'0(ηoι)=hί(ηω)μhϊ(ηo2),

(102) ϋIO(i7oi) + dϋ2.(τ?oi) = 3"'2-2/3( - 2 + 3"2),

(103) ϋlo(τ7o,) + dv2l(η03) = 3->2-2/3( - 2 - 31'2),

(104) 3ϋ 2 2 (η 0 1 ) + dΌ33(η01) = 3- 2-2/3[250 - (143)31/2],

(105) 3ϋ 2 2 (η 0 3 ) + dϋ33(ηo3) = 3"'2-2/3[250 + (143)31/2].

The proof follows immediately from (80)-(85) and the fact that

LEMMA 27. Suppose that b/cm = 3/21/3, α < - 4 γ / 3 . Then, the
coefficients of L given by (71)-(74) satisfy Assumptions I-VI.

Proo/. Since α < - 4 γ / 3 , v + l + γβ>y. By (95), μ = γ. By
(78), D= -2σx~Ύ(l + o(l)). From (101) and (98) it follows that
Re[λ 2(x)- λ,(x)] and Re[λ 2(x)- A3(x)] satisfy (a), (b) or (c) of Assump-
tion VI. From (98), (101), (104), (105),

Re[λ3(jc)-
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where d ^ O . Thus, R e [ λ 3 ( x ) - A^JC)] also satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 27.

LEMMA 28. Suppose that b/clβ = 3/21/3, - 4 γ / 3 < a <2γ/3, σ^
aa/2, a 7^0. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions I-VI.

Proof. It follows from (78) that D = Cλx~μ{l + o(l)), where d ^ 0
because σϊ aa/2. By (101) and (99), Re[A 2 (x)- A2(JC)] and Re[A 2(x)-
A3(JC)] satisfy (a), (b) or (c) of Assumption VI. From (99) and
(101)-(103), R e [ λ 3 ( x ) - λ 1 ( x ) ] = C 2 J c ^ + γ / 3 ( l + o(l)), where d ^ O be-
cause a^ 0. Hence, R e [ λ 3 ( x ) - λx{x)\ satisfies (a), (b)or (c) of Assump-
tion VI. This proves Lemma 28.

LEMMA 29. Suppose that b/clβ = 3/21/3, α = - 4 γ / 3 , σ V
-22/3αc4/3/143. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions I-VI.

Proof Since a = - 4 γ / 3 , μ = γ. Hence, D = - 2 σ x γ ( l + o(l))
by (78). From (101) and (97) it follows that R e [ λ 2 ( x ) - λ^jc)] and
Re[λ2(x) - A3(x)] satisfy (a), (b) or (c) of Assumption VI. From (97) and
(101)-(105), R e [ λ 3 ( x ) - X,(x)] = d*~ 8 γ / 3 ( l + o(ϊ))9 where d ^ 0 because
σ V -22/3αc4/3/143. Hence, Re[λ 3 (jc)- A^JC)] satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 29.

LEMMA 30. Suppose the coefficients of L are given by (71)-(74) and
that b/cυ3 ^ 'ill213. If ηOk is real, Reλ k (x) has the following asymptotic
expansions:

Case A. Suppose a = 0. Then,

(106) Reλ,(x) = - σ[h'0

Case B. Suppose a^0.
(i) Suppose K2γ/3.
(a) If Ka<2γ/3, then

(107) Re λk (x) = aac ~2i\2h 'o(ηOk )]~ιx - « r / 3 ( 1

(b) If a = 1 and σέ a/2,

(108) Re λk (x) = (α - 2σ) [2Λ Ό(ηOk )Yιcmx ^ / 3(1 + o (1)).
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(c) // a < 1, (106) is valid.
(ii) If a< 2γ/3 ^ 1, (106) is valid.

The proof follows directly from Lemma 24 with calculation of μ and
D in the various cases.

4. The deficiency index of the operator L. In the
following, L2 will denote the space L2[l,°°), i.e., the space of complex-
valued functions on [I,0 0) which have Lebesgue square integrable
absolute values.

LEMMA 31. Suppose the coefficients of L are given by (71)-(74) and
that b/c1/3<3/22/3, so that ηok = uk + ivk, where v2>0 and v3<0. Then

the function /&(*) = #o 1/3(x)exp I λk (t) dt, x ^ JC0, has the following prop-
erties: Jxo

(i) Ifk=2 and c>0orifk=3 and c < 0, then fk EL2forσ>0
and for σ < 0.

(ii) // k = 2 and c < 0 or if k = 3 and c> 0, then fk £L2forσ>0
and for σ < 0.

Proof We shall give an intuitive proof which can be made precise
as in Naimark [9, §23]. We have by (23) that

- \c |- 1 / 3;r γ / 3 exp ί - vkc
lβ Γ Γβdt]

= |c|-1 / 3x"W 3exp[-i;kc

-» +00 if t> kC 1 / 3<0.

This proves (ii). Also,

|/k(jc)|2-|c|-2/3Jc^/3exp[-2z; f cc
1/3JX r»dt]

Γ fx 1
< •> -2/3 v γ/3 ~v»» I % . -1/3 /y/3 J* I

= I C JC ^ X P ~ ZUfcC I t (It \
L Jxo J

= (-2ι;fcc)-1(d/dx)expί-2ι;fcc
1/3Γ r»dtλ.

This proves (i).

LEMMA 32. Suppose the coefficients of L are given by (71)-(74) and
that b/cι/3 έ3/22β. If ηok is real, the function f(x) = αo"

1/3(x)
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exp I λk(t)dt, x =ϊ x0, has the following properties:

ί(ί) If 2γ/3> I andσϊ a/2, then f E L2forσ>0 and forσ <0.
(II) // 2γ/3^1, then f E L2 for σ/h'0(η0k)>0, and f£L2 for

Proof. Case A. Suppose a = 0. By (106),

-χ J*

From this last expression we see that (I) and (II) are true for Case A.

Case B. Suppose a^O. If 1< a <2γ/3, then by (107),

= (aaΓh'0(η0k)(d/dx)exv{aac-2ii[h'0(η0kψj* r "

Since j r-'-2^/3 ^ converges, we see that (I) is true if 1< a < 2γ/3. If
) xo

a = K2γ/3 and σ^ a/2, then by (108),

\f(x)\2~c-2i3χ-2^exp{(a-2σ)c-2l3[h'0(η0k))->jX

= (α-2σ)-1/iί(τ?0/i)

x(ί//ix)exp{(fl -

Since I Γ2y'3 dt converges, we see that (I) is true for α = 1 < 2γ/3 and
J xo

σ / a/2. If a < 1< 2γ/3 or if α < 2γ/3 ̂  1, then by Lemma 30, (106) is
valid and therefore (I) and (II) follow as in Case A. This proves Lemma
32.

Let n+ denote the dimension of the space of solutions of Ly = iσy,
x ^ r, which are in L2[r, oo) for σ > 0. It is known that n+ is independent
of σ. Let n_ denote the same number for σ < 0. We shall call n+ and
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n_ the deficiency numbers of L, and we shall call the pair (n+, n_) the
deficiency index.

THEOREM 2. Suppose that the coefficients ofL are given by (71)-(74)
and that b/cυ3 < 3/22/3. // 2γ/3 > 1, n+=n. = 2. If 2γ/3 S i , n+ = 2,

Proof. By Lemma 22, the coefficients of L satisfy Assumptions
I-VI. By Theorem 1, Ly = iσy, x ^ 1, σ ^ 0, has three linearly indepen-
dent solutions yk given by (65). By Lemma 31, for c >0, y2E L2 and
y3 £: L2 for σ > 0 and for σ < 0; for c < 0, y2 £ L2 and y3 E L2 for cr > 0
and for σ < 0. By Lemma 32, if 2γ/3>l , yx E L2 for σ > 0 and for
σ < 0, σ ^ a 12; if 2γ/3 S i , yi E L2 for σ > 0, and y2 £ L2 for σ < 0,
because hΌ(ηOι) > 0. It follows that if 2γ/3 > 1, then n+- n_ = 2, and if
2γ/3Sl, then n + = 2. It also follows that if 2γ/3Sl, then n_ = 1,
provided we can show that for c > 0 and σ < 0 no nontrivial linear
combination of y1 and y3 is in L2, and for c < 0 and σ < 0 no nontrivial
linear combination of yλ and y2 is in L2. We deal with the case c >0,
σ < 0; the case c < 0 and σ < 0 is similar. It is sufficient to show that
y1 + By3 £ L2 if B^ 0. By Theorem 1, (23), and Lemma 30,

= [l + o(l)]expc1/3ι>3 f tyβ[l + o(l)]dt^>0 as x^+n.
J xo

Hence, for x g xu \yjy3 + B | 2 S K, where K is a constant. Thus

Γ | y i + βy 3 | 2 dx= Γ |y3|
2|yi/y3 + B | 2 Λ c S ί : Γ \y3\

2dx.
J XI J l l Jxi

It follows that y, + By3 fέ L2. This completes the proof of Theorem 2.

THEOREM 3. Suppose that the coefficients of L are given by (71)-(74)
and that b/cm> 3/2213.

Case A. Suppose 6/c'V3/21/). // 2γ/3>l, n+ = n_ = 3. //
g l , n+ = 2, n_ = 1.

Case B. 5κppose 6/c1/3 = 3/21/3 anda^ -4γ/3. //2γ/3 > 1, n+ =
n_ = 3. 7

C. Suppose 6/c1/3 = 3/21/3, -4γ/3< a <2γ/3, a ^ 0 . //
2γ/3 > 1, n+ = n_ = 3. 1/ 4γ/3 - 1 ̂  a < 2γ/3 < 1, ίΛen n+ = 2, n_ = 1.
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Proof. By Lemmas 25-29, the coefficients of L satisfy Assumptions
I-VI in all three cases, provided σ^ aa/2 and σ2 ^ -22/3ac*/3/143.
Hence, if we avoid these values of σ, Ly = iσy, x ^ 1, σ^ 0, has three
linearly independent solutions yk given by (65). By Lemma 32 we have
the following: (I) If 2γ/3 > 1 and σ^ α/2, then yl9 y2, y3 E L2 for σ > 0
and for σ < 0; (II) if 2γ/3 ^ 1, then for σ > 0, y l5 y3 E L2 and y2 £ L2,
while for or < 0, y2 G L2 and y1? y3 fέ L2. By (I) we see that if 2γ/3 > 1,
then n+ = n_ = 3 in all three cases. If 2γ/3 ^ 1, then n+ = 2 and n_ = 1,
provided we can show that no non-trivial linear cΘmbination of yι and y3

is in L2. Using (106), this can be proved for Case A as in the proof of
Theorem 2. In Cases B and C it is necessary to use (97)-(99). The
assumptions in Cases B and C enable one to do this as in the proof of
Theorem 2. This completes the proof of Theorem 3.

THEOREM 4. Suppose that the coefficients of L are given by (71-74)
(without the requirements that a<2y/3, γ > 0 ) . Then the deficiency
index of L is as follows for the indicated values ofthe parameters γ, a:

I. γ > 3 / 2 , α < 2 γ / 3 : (2,2) if b/cυ3< 3/22/3; (3,3) if b/cυ3> 3/22/\
6/c1 /V3/2V 3.

II. 0 < γ ^3/2, a < 2 γ / 3 : (2,1) ifb/cmέ 3/22/3 andb/cι/3/ 3/21/3.
III. γ^O, α ^ 0 : (2,1).
IV. 0 < α ^ l , α>2γ/3: (2,1).
V. 1< α, α > 2γ/3: (3,3) // α > 0; (2,2) i/ a < 0.

The statements for regions I and II follow from Theorems 2
and 3. Ill follows from the fact that n+ + n_ = 3 by Dunford and
Schwartz [4, XIII. 10. E.Π(5)] and from the fact that 2 ^ n+ and 1 ̂  n_ by
Everitt [5] or Kogan and Rofe-Beketov [8]. IV and V follow from
Unsworth [12]. This proves Theorem 4.

REMARK 1. Note that a = 2γ/3, γ > 0 , is the only portion of the
(γ, α)-plane not included in Theorem 4.

REMARK 2. The results of §7 of Pfeiffer [5] are included in
Theorem 4 except for the case c = 0.
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