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A BOUNDED OPERATOR APPROACH TO
TOMITA-TAKESAKI THEORY

MARC A. RIEFFEL AND ALFONS VAN DAELE

Let M be a von Neumann algebra. The Tomita-Takesaki
theory associates with each cyclic and separating: vector for
M a strongly continuous one-parameter group, Ju, of unitary
operators and a conjugate-linear isometric involution, J, of
the underlying Hubert space, such that JUMJ~U = M and
JMJ = M', where Mf denotes the commutant of M.

The present paper has two purposes. In the first half
of the paper we show that the operators Δu and J can, in
fact, be associated with any fairly general real subspace of
a complex Hubert space, and that many of their properties,
for example the characterization of Au in terms of the K.M.S.
condition, can be derived in this less complicated setting.
In the second half of the paper we show, by using some of
the ideas from the first half, that a simplified proof of the
Tomita-Takesaki theory given recently by the second author
can be reformulated entirely in terms of bounded operators,
thus further simplifying it by, among other things, eliminat-
ing all considerations involving domains of unbounded
operators.

1* Introduction* Our approach is motivated by the following

observation. Let M be a von Neumann algebra on a Hubert space
Jgt and let ω be a cyclic and separating vector for M. Let Ms denote
the collection of self-adjoint elements of M and let J%~ denote the
closure of Msω. Then 3tΓ is a real subspace of 3ίf which can easily
be shown to have the properties that 5tΓ{\i3Γ = {0} and 3Γ + %3T
is dense in έ%f (see Proposition 4.1). In [10] we found that the po-
sitions of J%Γ and %5ίΓ were closely related to questions concerning an
operator algebra and its commutant. In the present paper we find
that the operators Δu and J depend only on the relative positions of 3ίΓ
and %3^, and, in particular, can be defined in terms of the projections
on these two subspaces. More generally, the operators Δu and J
can be associated with any such real subspace, whether or not it
comes from a von Neumann algebra. Because of this, it turns out
that this subject is closely related to earlier work of Dixmier [4]
and Halmos [7] on pairs of subspaces of Hubert spaces. In fact,
we digress at the end of the next section to show that our approach
gives slightly simpler proofs of some of their main results.

In writing this paper we have addressed ourselves to those who
are already familiar with the original approaches to Tomita-Takesaki
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theory [13, 14, 16, 17] as well as recent simplifications [18, 19, 22].
But those who wish to learn the subject (and are familiar with the
early parts of [5]) will have no difficulty in reading this paper if
they simply disregard statements which refer to these earlier ap-
proaches or to unbounded operators.

The content of the next sections is as follows. The second sec-
tion treats pairs of subspaces of real Hubert spaces, while the third
treats one real subspace of a complex Hubert space. In the fourth
section we prove the main results of Tomita-Takesaki theory for the
case of a von Neumann algebra with cyclic and separating vector,
while in the fifth we treat left Hubert algebras.

Most of the research for this paper was conducted while we
were both visiting at the University of Pennsylvania. We would
like to thank the members of the Department of Mathematics there
for their warm hospitality during our visits. This research was
partially supported by National Sciences Foundation grants GP-30798X
and GP-28976.

2* Two subspaces* Since we will need to study real subspaces
of a complex Hubert space, we will frequently need to view a com-
plex Hubert space as a real Hubert space, by taking the real part
of its inner product. Thus, much of the information we need only
concerns pairs of subspaces in real Hubert spaces, and accordingly
it is this subject that we study in this section.

Let £ίf be a real Hubert space, and let SίΓ and £^ be two
(closed) subspaces of Sίf which satisfy the nondegeneracy condition
that JίΓ n & = {0} and 5fT + «£f is dense in Jg^ We can define a
(usually unbounded) operator, S, with (dense) domain ^Γ + £? by

S(ξ + v) = ζ - V

for ξ e Jst" and η e ^f. The operator S is well-defined because 3ίΓ Π
<g> = {0}. In fact it is a simple matter to check that S is a closed

operator because SίΓ and JS? are closed.
It is easily seen that if 3ίΓ is the closure of Mso) as in the

introduction, and if Jzf — %3$Γ, then we obtain exactly the usual
operator S of Tomita-Takesaki theory (see the appendix).

Returning to the general setting, we could form the polar de-
composition, S — JJί/2, of S, to obtain operators analogous to those
of Tomita-Takesaki theory, and we could immediately study these
operators further. But we prefer instead to show how to work in
terms of bounded operators only, so that S need not ever be defined.

DEFINITION 2.1. Let P and Q denote the orthogonal projections
onto ^Γ and Sf respectively. Let
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R=P+Q,

and let

JT = P-Q ,

be the polar decomposition of P — Q, where T is the positive oper-
ator and / is the partial isometry.

We now collect together some elementary properties of R, T
and J which will be used throughout this paper.

PROPOSITION 2.2. With R, T and J defined as above, we have
1. Both R and 2 — R are injective, and 0 ^ R ^ 2.
2. T = R1/2(2 - R)ι/\ and T is injective.
3. J is a self-adjoint orthogonal operator, so that J2 = 1.
4. T commutes with P, Q, R and J.
5. JP = (1 - Q)J, JQ = (1 - P)J

JR = (2- R)J.

Proof. (1) It is clear that 0 ^ R S 2. Suppose that i?f = 0.
Then

IIP5II2 + \\Qζ\\2 = <Pζ, ξ) + <Q£, £> - <Λff ί> = 0 ,

so that Pξ = 0 = Qf. Thus £ is orthogonal to both ^ T and ^ff and
so <J = 0 since 3ίΓ + =5̂  is dense. Hence R is injective. Now the
pair (J?ΓL, £fA ) also satisfies the nondegeneracy condition, and the
above argument can be applied to the projections 1 — P and 1 — Q
to show that 2 — R is injective.

( 2 ) A simple calculation shows that

T% = P - PQ - QP + Q = R(2 - R) ,

so that Γ = J?1/2(2 - i?)1/2. Then T is injective since both R and 2-R
are.

(3) Since P — Q is self-adjoint, J must be self-adjoint. Since
T is injective, J must be injective. Thus J2 = 1.

(4 ) Since P — Q is self-adjoint, T and J commute. Now

T2P - P(P - Q)Ψ = P(l - Q)P = PΓ 2 ,

so that P commutes with T2 and hence with T. Similarly Q and
T commute. Thus R and T commute.

(5 ) TJP = (P - Q)P = (1 - Q)(P - Q) = (1 - Q)ΓJ= Γ(l - Q)J.
Since T is injective, it follows that JP = (1 — Q)J. The second rela-
tion follows by taking the adjoint of both sides of this relation.
The third relation follows by adding the first two.
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We remark that property (5) shows that J3ίΓ — £fL and
^ T 1 , so that / carries the pair (3ίΓ, £?) to the pair (£fL

Under this transformation R is replaced by 2 — R, while T is left
invariant since it commutes with J.

It is interesting to see how our operators R, T and / are related
to the operators S, F, A and J of the usual theory, but since we
will not need to use these relations we have relegated a discussion
of this matter to the appendix of this paper. Let us mention here
only that the operators J coincide, while A = (2 — R)R~ι.

Finally, we remark that all of these operators are closely related
to the operators A and B on pages 390 and 391 of [4], while property
2 should be compared with Proposition 3 of [4]. Also, our operator
R, or at least R/2, does make a fleeting appearance in Takesaki's
monograph [13] in the form of the operator K defined on page 32
of [13].

We would now like to characterize the operator J. We will not
need this characterization later, but it is interesting to see how such
a characterization is obtained in our context. A characterization
within the context of Tomita-Takesaki theory, with J defined in
terms of the polar decomposition of S, has been given by Araki [1]
and Woronwicz [21] (see also p. 254 of [20]), and their proofs, in-
volving unbounded operators, can easily be adapted to the present
context. But actually, the desired result already essentially appears
as Theorem 1 of [4], with a proof involving only bounded operators.
We give here a proof which is slightly simpler than Dixmier's, in
that it involves only the canonically defined operators introduced
above, and does not involve first choosing an arbitrary isometry of

onto ώ^ 1 as he does.

PROPOSITION 2.3. The operator J defined above is the unique
self-adjoint orthogonal operator with the following properties:

(1) JJT - ^f1 (so J^f = JST1).
(2) (Jζ, ζ> ̂  0 for all ξe^T, while

(Jη, rf) ^ 0 for all rjz^.

Proof. We already know from part 5 of Proposition 2.2 that J
satisfies the first property. Now from this

PJP = P(l - Q)J = P(P - Q)J - PT .

But P and T are positive operators which commute, and so PT ^ 0.
Thus PJP ^ 0. A similar calculation shows that QPQ ^ 0. It fol-
lows that J satisfies the second property also.

Suppose now that K is another self-adjoint orthogonal operator
on £έf for which properties 1 and 2 above hold, so that
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KP = (1 - Q)K , PKP ^ 0 , and QKQ ^ 0 .

We must show that K = J. Now

so that Jif commutes with P. A similar calculation shows that JK
also commutes with Q. Thus /if commutes also with R, T, and J.
In particular, if and J commute with each other. Now

RT(KJ) = (P + Q)(P - Q)K
= (P(l - Q) - Q(l - P))J5Γ = PKP - QίΓQ ^ 0 .

But RT is injective and positive, while KJ is orthogonal, so by the
uniqueness of polar decompositions KJ = 1, so K = J.

We remark that both in the application of this result to Tomita-
Takesaki theory and in the setting of the next section we will have
J*f = i5ίΓ. Thus the requirement that QKQ <; 0 in property 2 above
will follow from the requirement that PKP ^ 0. Also, while the
above proposition at first only yields Re (Jξ, ξ) ^ 0 for ζ e 5ίΓ, we
also know that (Jξ, ξ) is real since J3ίΓ = i^Γ1-, so that again
<Jξ, ξ> ^ 0.

In concluding this section we digress to indicate how the above
approach can be used to give a proof of perhaps the most useful
version of the main theorem of Halmos' paper [7], namely his
Theorem 3. Our proof is simpler than his proof in that again it
involves only the canonically defined operators introduced above, and
does not involve first choosing an arbitrary isometry from 3ίΓ to
SfL and then later compensating for this choice. Also our proof
makes clear that the theorem is true for the case of real as well
as complex scalars. We will not need this theorem later in this
paper, but recent applications of this theorem where it is essential
to be able to work with real scalars can be found in [6, 9], and our
familiarity with this theorem helped us to arrive at some of the
points of view used in the present paper.

THEOREM 2.4 (Theorem 3 of [7]). Let £ίf be a Hubert space
(real or complex), and let 3f and ^f be two (closed) subspaces of
έ%f which are in general position, that is, the intersection of any
two of ^T, ^ ^ T 1 , £fL is {0}. Then there is a Hilbert space ^
an operator, C, on ^£ such that 0 ^ C <; 1 and C and 1 — C are
injective, and an orthogonal (or unitary) operator from 3ίf onto
Λ Θ - ^ which carries 3ίΓ to the graph of C and £f to the graph
of -C.
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Proof. Since 3ίΓ and £? are in general position, the nondegen-
eracy conditions used earlier are satisfied, so we can define the oper-
ators P, Q, R, T and J as before, satisfying the properties of Proposi-
tion 2.2. But we now have more information. Specifically, the pair
(J??"1, Jίf) also satisfies the nondegeneracy condition, and from parts
2 and 3 of Proposition 2.2 applied to this pair it follows that (1 — P) —
Q = 1 — R is injective.

Let ^f be the range of the spectral projection for R corre-
sponding to the interval [1, 2], From the fact that JRJ= 2 — iϋ,
it is easily seen that J^ is the range of the spectral projection of
R corresponding to the interval [0, 1], Moreover, since 0 ^ R <i 2
and since, as just shown above, 1 is not an eigenvalue for R, we
must have that J^/£ = ^ C 1 .

From the definition of ^/ί we see that the restriction of
(2 - R)1/2R-1/2 ( = J1/2) to ^ is a bounded operator on ^ C which we
will denote by C. In fact it is clear that 0 <; C <Z 1 and that C and
1 — C are injective.

We claim that

It is sufficient to prove the first of these equalities, since interchanging
SίΓ and £f, and hence P and Q, changes J to — J but has no effect
on R and so on C or ^ ^ Consider first ξe^^fί Then

(i2 + J(2 - R)1/2R1/2)ξ

= (1 + JC)Λ£ .

onto ^ C it follows thatSince i? maps ^ C

Consider next ξ e

2Pί = (R

which is in (1 +
into itself. Thus

Since J T =

We now define an isometry, U, from

Jy) = (ζ, v) for ς

^ so ζ = J)y for 27 6 ̂ ^ Then

- (J(2 -R)+ T)η - (JC + l)Tη ,

since T, being a function of Λ, carries

1 s (l

+ P^f 1, it follows that

to 0 ^£ by

Then
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= U(l + JC)^t = graph (C) ,

while a similar argument shows that UJ*f is the graph of — C.

As remarked in [7], the proof of the above result has as an
almost immediate corollary one of the main results of [4], namely

PROPOSITION 2.5 (Proposition 9 of [4]). Let (J%ΓU Sfi) be a pair
of subspaces in general position in a Hilbert space Sίfu for i — 1, 2.
Let Ri be the sum of the projections on Jstl and ^ . Then the two
pairs of subspaces are unitarily equivalent if and only if Rx and
R2 are unitarily equivalent.

3* One real subspace* Let 5ΐ~ be a (closed) real subspace of
a complex Hilbert space Sίf such that 3ίT Π %3tΓ = {0} and 3tΓ +
iJΓ~ is dense in 3ίf. In this section we will apply the results of
the previous section to the pair (^7 iJ%") of real subspaces of £Zf.
To do this we view έ%f as a real Hilbert space by equipping it with
the real part of its inner-product. We can then let P and Q be the
real linear projections on SίΓ and i5ίΓ respectively, defined by means
of the real inner-product on έ%f, and so we can define the operators
R, T and J as in the previous section. Because of our special choice
of subspaces, these operators will have additional properties:

PROPOSITION 3.1. The operators R and T are complex linear
and positive. Furthermore, J is a conjugate linear isometry, so
that (Jξ, 7]} = {Jη, ξ} for ξ,Ύ]z£ί?.

Proof. Simple calculations show that iP = Qί, and hence that
R is complex linear, while P — Q is conjugate linear. Then from
the construction of polar decompositons T will be complex linear,
while J is conjugate linear. We know that

Re <Jξ, 7j) = Re (ξ, Jη) = Re {Jη, 0 .

This, together with the conjugate linearity of J, shows that (Jξ, η) =
(Jη,ξ) for ξ,ηe^.

We remarked in the previous section that the modular operator,
Δ, of the usual Tomita-Takesaki theory is related to R by Δ =
(2 — R)R~\ Furthermore, a major role in that theory is played by
the one-parameter unitary group Δu. Because £$f is now complex,
we can expect to be able to define this group in our context also.
We now show, in fact, that this can be done directly in terms of
R. We will then derive various properties of this group, and show
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that it is characterized by the K.M.S. condition even in our setting,
all this using only bounded operators.

According to Proposition 2.2 both R and 2 — R are injective,
while 0 ^ R ^ 2. It follows that the spectral measures for R and
2 — R are both concentrated on the open interval (0, 2). Now for
any real t the function λ H-» Xil is well-defined, bounded and con-
tinuous on this open interval, and so by spectral theory we can
define Ru and (2 — R)u. Furthermore, from spectral theory we also
see that in this way we obtain two commuting one-parameter unitary
groups which are strongly continuous (see Lemma 3.6). From the
fact that JRJ = (2 — R) it follows easily that

JRUJ =(2- R ) ~ u

for all real t, where the minus sign in the exponent of (2 — R) is
caused by the conjugate linearity of J. While we do not define the
operator Δ9 we will nevertheless use the notation Δu so as to con-
form with the usual notation of the Tomita-Takesaki theory. We
define this unitary operator by

DEFINITION 3.2. For each real t let

Δu - (2 - RψR-il ,

so that {Διt} is a one-parameter unitary group.

PROPOSITION 3.3. For any real t

JΔU = ΔUJ and

Proof. The first equation follows directly from the fact that
JRUJ — (2 — R)~~u. Now since Δu is a function of R, it commutes
with R and T, and so with TJ. It follows that Δu commutes with
both P and Q, and in particular that Δil3ίΓ Q <3Γ. Since this last
relation is also true for Δ~u, it follows that ΔuJ3ίΓ —

We can now turn to our characterization of the group Δu in
terms of the K.M.S. condition. We will not need this characteriza-
tion later, but we feel that it is important to include it at this
point so that it is clear that the K.M.S. property is really concerned
just with real subspaces of a complex Hubert space, and does not
essentially involve the presence of YOΠ Neumann algebras.

DEFINITION 3.4. A strongly continuous one-parameter unitary
group, Ut, on the Hubert space Sίf is said to satisfy the K.M.S.
condition with respect to the real subspace, ,_̂ 7 of §ίf if for any
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ξ, η e SΓ there is a complex-valued function, /, defined, bounded and
continuous on the strip — 1 <; Im (z) ^ 0, analytic in the interior,
and with boundary values given by

f(t _ i) = (V

for all real t.
We remark that such a function / is unique. Indeed, if there

were another such function, g, with the same boundary conditions,
the difference / — g would vanish on the reals. Then the Schwartz
reflection principle would yield a function analytic on the strip
— 1 <5 Im (z) <; 1 and also vanishing on the reals. Such a function
must vanish everywhere, so that / = g.

The fact that

f(t - i) = (V, Utξ) = ifit))~

makes it possible to obtain a condition which is equivalent to the
K.M.S. condition but which is often easier to verify.

PROPOSITION 3.5. A strongly-continuous one-parameter unitary
group Ut satisfies the K.M.S. condition with respect to the real
subspace J%Γ of £έf if and only if for any ζfηe 3ίΓ there is a
function, /, defined, bounded and continuous on the strip — 1/2 <;
Im iz) ^ 0, analytic in the interior and such that

fit) = (Utζ, V) for all real t

and

fit — i/2) is real for all real t.

Proof. That these conditions imply the K.M.S. condition is seen
by simply applying the Schwartz reflection principle along the line
Im iz) = — 1/2. Conversely, suppose the K.M.S. conditions are satis-
fied. If / is a "K.M.S.-function" as in Definition 3.4 such that
fit — i) = if(t))~, then we can define another function, g, on the strip
- 1 ^ Im(z) ^ 0 by

Then g will satisfy the same properties and have the same boundary
values as /, and so by the uniqueness remarked above we will have
g=f. Then

fit - i/2) = git - i/2) = if it - i/2))- ,

so that / is real on the line Im iz) = — 1/2.
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This second version of the K.M.S. condition was inspired by-
Combes' treatment of the K.M.S. condition for weights [2].

We will now begin to show that for a given real subspace J3?7
the group Δu defined earlier satisfies the K.M.S. condition with re-
spect to 3^Γ. For this we need the following lemma, which will also
be used in later sections.

LEMMA 3.6. For any complex z with Im (z) ̂  0 we can define
the bounded operator Rίz. The function z h-> Rig is strong-operator
continuous on Im (z) :g 0, is analytic on Im (z) < 0, and is uni-
formly bounded on horizontal strips of finite width. Similar results
are true for (2 — R)iz.

Proof. For any complex z with Im (z) <Ξ 0 the function λ —• λίz

is bounded and continuous on the open interval (o, 2) on which the
spectral measure of R is supported, and so we can form Rίz. Since
IXizi ^ 2 - I m U ) if λ e (0, 2) and Im (z) ^ 0, it follows that Rίz is
uniformly bounded on horizontal strips of finite width. Now let
ξ e £ίf, and let {Eε} be the spectral resolution for R. Then the re-
striction of 22 to (1 — Eε)S^f has its spectrum in (ε, 2), and so has
bounded logarithm. It follows that the function Riz(l — Eε)ξ is
actually analytic in the entire complex plane. Now (1 — Eε)ξ con-
verges to ξ as ε goes to 0, since R is injective. Thus Riz(l — Eε)ξ
converges to Rίzξ, in fact uniformly on horizontal strips where
Im (z) <̂  0, since Rίz is uniformly bounded there. It follows that
Rίzξ is continuous for Im (z) <̂  0, and analytic for Im (z) < 0.

PROPOSITION 3.7. The one-parameter unitary group Δu defined
in Definition 3.3 satisfies the K.M.S. condition with respect to

Proof. Let ξ, η e ST. We would like to set f(z) - (Δizξ, rf) but
this is undefined. However, we can take advantage of the fact that
ξ 6 3ίT to extend Δuξ analytically to the strip -1/2 ̂  Im (z) ̂  0. For

2ξ - 2Pζ = (R+ TJ)ζ - R1/2(Rί/2 + (2 - R)

so that

ζ = Rι/2ζ if 2ζ = (R1/2 + (2 - R)ι/2J)ζ .

Thus

Δuζ = ΔuRι/% - (2 - 22)"22-"+1/2ζ ,

and so we can set

f(z) = <(2 - R)izR-iz+1/%, V) .

From Lemma 3.6 together with the fact that multiplication of oper-
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ators is strongly continuous on bounded sets, we see that the func-
tion is defined, bounded and continuous on the strip —1/2 <J Im (z) ̂  0,
and analytic in the interior. It is clear that

f{t) = (Δ*% η) .

It remains to show that f(t — i/2) is real. But

f(t - i/2) = <(2 - Λ)"(2 - R)1/2R-%, rf)

= <J«(2 - R)ί/2ζ, y) = <(2 - R)1/2ζ, Δ-»rί) ,

while

2(2 - R)1/2ζ = (2 - R)1/2(R1/2 + (2 - R)ι/2J)ζ

= (Γ + JB)£ = J(2V + R)ξ = 2JPξ = 2/f .

Thus

which is real, since JξeiSΓ1 by Proposition 2.3 while Δ

THEOREM 3.8. The group Δiι is the unique strongly continuous
one-parameter group of unitaries on Sίf which carries SίΓ onto

and satisfies the K.M.S. condition with respect to JίΓ.

Proof. Let Ut be a strongly continuous one-parameter group
of unitaries on £ίf which carries 3ίΓ onto 3ίΓ and satisfies the
K.M.S. condition with respect to J?T We will show that Ut — Δu

for all t.
Recall that rj e ££* is said to be an entire vector for {Ut) if

there is an entire Sίf-valued function, h, such that h(t) = Ut7j for
all real t. Such vectors are dense in £ίf. We recall the proof so
that we can see that, in fact, J5tr will contain a collection of entire
vectors dense in 3tΓ. For rj e SίΓ let

e~nt2Utηdt .

Then Ύ]neSΓ since exp(—nt2) is real and since SΓ is closed and is
carried into itself by Ut. It is easily seen that {η%} converges to rj.
Finally, each ηn is an entire vector, since

hn(z) = (w/ττ)1 / 2Γ e~Mt~z)2Utηdt

is entire, and hjβ) = Uj]n for all real s.
Now let η be an entire vector for {Ut) in St] and let h be the

entire function such that h(t) = Utrj for real t. Then for fixed real
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t the functions h(t + iz) and Uth(iz) are both entire, and agree for
purely imaginary z. They are thus equal, and so in particular

h(t + is) = Uth(is)

for all real s and t. Since Ut is unitary, this makes it clear, in
particular, that h is bounded on horizontal strips of finite width.

Let ξ be another vector in 3ίΓ. We would like to show that

for this will then imply that Ut = Au since JJ%Γ and SΓ are total
in £ίf. To show this we must extend this function analytically by
means of the function h defined above, and by the device used in
the proof of Proposition 3.7. Specifically, define ζ as in that proof
so that ξ = Rι/%, and set

g(z) = (h(z), J(2 - RyR-^%y .

Then, as in the proof of Proposition 3.7, g is defined, bounded and
continuous on the strip — 1/2 <̂  Im (z) ^ 0, and analytic inside. Fur-
thermore,

g(t) = < Utη, J

which is real since Ufle^Γ while J^ξeίJyΓ1 by Proposition 2.3.
On the other hand

g(t - i/2) = (h(t - i/2), Λί"(2 - R)l/X)
= (h(t - i/2), J "O ,

since (2 — R)u% = Jξ as seen in the proof of Proposition 3.7. Now
if the K.M.S. condition for {Ut} is applied to the pair {η, Δuξ), we
obtain a function, /, defined, bounded and continuous on the strip
and analytic on the interior such that f(t — i/2) is real and

for real t. Thus / agrees on the #-axis with the entire function
(h{z), Δuξ), and so must agree with it everywhere on the strip. It
follows that (h(z\ Δisξ) is real for z — t — i/2. In particular this
must be true for s — t, so that g(t — i/2) is real for all real ί.

Thus the function g is defined, continuous and bounded on the
strip —i/2 ̂  Im (z) ^ 0, analytic in the interior, and real-valued on
the boundary of the strip. But such a function must be constant,
because repeated applications of the Schwartz reflection principle will
yield an extension to a bounded entire function. Thus

<Uty, J"Jξ} = <η, Jξ> ,
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so that Ut = Δu for the reasons indicated above.

In fact, the following stronger form oί the uniqueness property
can be obtained. (We are indebted to J. Naudts for this result.)

THEOREM 3.9, Let Ut be a strongly continuous one-parameter
group of unίtaries on a Hilbert space έ%f. Suppose that J%^ is a
real submanifold of βέf such that Ut satisfies the K.M.S. condition
for 5?l- Then Ut also satisfies the K.M.S. condition with respect
to the smallest real subspace, 3Γ, invariant under Ut and con-
taining 3tl. Furthermore 3Γ Π %3ίΓ — {0}, so that if we let 3ίfx

denote the closure of 3Γ + i3Γ, then we can define Δu on ^ίfx using
Then Jgf is invariant under Uu and Ut = Δil on

Proof. Let 3^[ denote the set of vectors ξ e Sίf such that for
every η G 3^1 there is a K.M.S. function for the pair {ξ, η) as in
Definition 3.4. Then 3t[ is obviously a real submanifold of Sίf, and

Let ζeSt[ and η e <βΓ0, and let / be the K.M.S. function for the
pair (£, rj). For fixed real B define g on the strip —1/2 <̂  Im(^) ^ 0
by g(z) = f(z + s). Then

and g(t — i/2) is real, so that g is a K.M.S. function of the pair
(Usξ,η). Thus ^ 7 is invariant under Ut.

We claim that 3έ^ is also closed. Indeed let ξn be a sequence
in 3έϊ, let ηe^l and let fn be the K.M.S. function (on - 1 ^
Im (z) ̂  0) for the pair (ξn, ή). Assume that ξn converges to ξ e Sίf.
Applying the maximum modulus principle on the strip (p. 245 of
[11]) to the function fn — /m, we find that

so that {/J is a uniformly Cauchy sequence on the strip. Thus this
sequence converges uniformly t o . a function, /, which is defined,
bounded and continuous on the strip and analytic on the interior.
Furthermore

fit) = limΛ(ί) = lim (Utξn, v) = <Utξ, rf) ,

and similarly

fit - i) = (f(t)r

Thus / is a K.M.S. function for the pair (ξ, ή), so that ξeJfΊ.
Since 3ΓX is a real closed subspace of Sίf which contains
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and is invariant under Utf it must contain ST. Thus we have shown
that if ξ e 3fΓ and rj e J%1 then there is a K.M.S. function for the
pair (ξ, rj). But we can then repeat the arguments above to show
that there is a K.M.S. function for any ζ9τje <βf, so that Ut satisfies
the K.M.S. condition for 3ίT.

To complete the proof it is sufficient to show that J%Γ U %3tΓ —
{0}, as the rest will then follow from Theorem 3.8. Suppose now
that ? e x n %3fΓ, and let / be the K.M.S. function for the pair
(f, ί). Then if will be the K.M.S. function for the pair {iξ, ξ), so
that both / and if are real on the line Im (z) = —1/2. Thus /
vanishes on this line and so everywhere, and so 0 = /(0) = (ξ, ξ), so
that ζ = 0.

We remark that the condition that Ut carry 3Γ into 3ίΓ cannot
be dropped in Theorem 3.8. For otherwise it would follow from
Theorem 3.9 that every subspace 3T, of 3ίΓ such that ^ + i ^ is
dense would define the same group Δu, which is impossible.

We also remark that the more general characterization whose
proof begins in the bottom paragraph of page 239 of [8] can pre-
sumably be carried over to the present setting.

Finally we confess that while it is our feeling that J and Δu

are giving information about the relative positions of SΓ and i^Γ,
it is not clear to us in what sense this is really true. In particular,
the characterization of Δu by means of the K.M.S. condition can
hardly be called "geometric" and it would be nice to have a char-
acterization which was more geometric.

4* von Neumann algebras* In this section we give a proof
of the main results of Tomita-Takesaki theory for the case of a von
Neumann algebra with a cyclic and separating vector. The proof
we give is obtained essentially by reformulating the proof given in
[19] in terms of the bounded operators which we studied in the
previous two sections.

Let M be a von Neumann algebra acting on a Hubert space £ίf,
and let ω be a cyclic and separating vector for M. Let M' denote
the commutant of M, and let Ms and M[ denote the set of self-adjoint
elements in M and Mf respectively.

PROPOSITION 4.1. Let JίΓ denote the closure of M8ω. Then
is a (closed) real subspace of ί%f such that 3ίf Π i3ίΓ — {0} and

+ %5ίΓ is dense in 3ίf. Moreover M'sω Q

Proof. Clearly 3^ + i^^ 2 Mco, and so is dense since a) is
cyclic. We know that Msco Π iMsco = {0} because co is separating,
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but this does not imply that ^Γ* Π %3ίΓ = {0} since JίΓ can be strictly
bigger than M8ω. But let us first show that M[ω £ iJ?ΓL. If x e M8

and x'eMΊ, then

(xω, x'ω) = (x'xω, ω) = (x'ω, xω) ,

so that {xω, x'ω) is real, and

Re (xω, ix'ω) = 0 .

Thus x'ω e i3ίΓL and M[ω £ i J T 1 . But then M'ω £ iJiT1 + J Γ 1

ΓΊ ί^T) 1 . Since ω is cyclic for Λf, it follows that
r, so that j r n %3tr = {o}.

One can, in fact, show that {M'sω)~ = i3ίΓL (see Theorem 1 of
[10]), but we will not need this result here.

Since the above proposition says that 3ίΓ as defined above satis-
fies the nondegeneracy conditions used in the previous sections, we
can use J%* to define operators R and T, and especially J and Δu.
The main results of the Tomita-Takesaki theory are:

THEOREM 4.2. // J3ίΓ is defined in terms of M as above, and
if J and Δu are defined by 5ίΓ, then

(1) JMJ=Mr,
( 2 ) ΔUMA-U = M for all real t.

The main difficulty in proving the above theorem seems to stem
from the paucity of information we have relating the subspace 3ίΓ
to the action of the elements of M on £ίf. In fact, the only such
piece of information we seem to have is the following lemma, whose
proof is obtained by modifying the proof of Sakai's linear Radon-
Nikodym theorem [12].

LEMMA 4.3. Let xf eM[. Then for any XeC with Re(λ) > 0

there is a unique xe Ms such that

(yω, x'ω) = Re (X(yω, xω}) for all y e Ms.

Proof. By real linearity we may assume that Re (λ) = 1 and
that 0 <; xf ^ 1. Define normal functionals ψ and ψx on M for any
xeMs by

ψ(y) = <yω, x'ω> , ΨM = Re {X(yω, xω))

for y 6 M$. Clearly ψ and ψx are in the self-adjoint part of the
predual of M. What we need to show is that there is some x e Ms

such that f = ψx. Let
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V = {ψx:xeM8 and | |g| | ^ 1} .

Since x \-> ψx is clearly continuous for the w*-topology on M and the
weak topology on the predual of M, it follows that V is weakly
compact. Also V is clearly convex. We need to show that ψ e V.
Suppose that f ? F , Then by the Hahn-Banach separation theorem
there is an h e M8 such that

*() Ψ() f o r all a?6ikfβ, ||a?|| ^ 1.

This means that

Re (X(hω, xω)) < (hω, x'ω)

for all xeM8, \\x\\ ^ 1. Now let h = u\h\ be the polar decomposi-
tion of h. Since h is self-ad joint so is u, and u and \h\ commute.
Let x = u. Then

Re (λ<Λω, uω}) < <feα>, α?'ω> = Qι{x')ι/2ω,

^ <|fe|(α?')1/2(£), (α?')1/2Λ>> = <\h\x'ω, ω}

<: (\h\ω, o)} = (hω, uω) = Re (X(hω, uω))

(since Re (λ) = 1). This is a contradiction.

COROLLARY 4.4. For any x' eMr there is an xeM such that

JTx'ω = xω , JTx'*ω = #*ω .

Proof. Suppose first that xf e M[. If we apply Lemma 4.3 with
λ = 1 we obtain an x e Ms such that

Re (yω, xω) = (yω, x'ω) for all y e Ms.

This means that xω is the orthogonal projection of x'ω onto
(for the real inner product), that is, Px'ω = xω. Now x'ω e ί
so that Qxfω = 0. Thus

JϊVω = (P - Q)α/ft> = xω .

The general result now follows by conjugate linearity.

LEMMA 4.5. Let xf eM'. Then for any XeC with Re (λ) > 0
there is an xeM such that

TJx'JT = λ(2 - R)xR + XRx(2 - R) .

Proof. By linearity we may assume that x'eM'$. Then accord-
ing to Lemma 4.3 (with x replaced by x/2) there is an xeM8 such
that
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(yω, x'ω) — X(yω, xω) + X(xω9 yω)

for all y eMs. It is clear that this relation will hold for arbitrary
yeM if we change the third y to y*. If we then substitute z*y
for y, where y, zeM, we obtain

(yω, x'za)) = X(yω, zxco) + X(yxω, zω) .

Now let y' and z' be arbitrary elements of M. By Corollary 4.4
there exist y, zeM such that

JTy'ω = yω , JTz'ω = zω .

Substituting these expressions for yω and zω in the above equation
and rearranging, using Proposition 3.1, we obtain.

(1) (z'ω, TJx'JTy'ω) = X(TJzxω, y'ω) + X(z'ω, TJyxω) .

Now for any ueMs we have Puω — uω, so that

TJuω = (P - Q)uω = (2 - P - Q)w# = (2 - i2)̂ ft> .

Similarly for uf e M[ we have Qu'ω — 0 so that

TJu'ω = (P - Q)u'ω = (P + QKα> = Ru'ω .

Using the fact that R is linear while TJ is conjugate-linear, we see
that

TJuω = (2 - #)u*ω , ΓJu'ω = i2u'*α>

for any ueM and %' eiW'. It follows from this, Corollary 4.4 and
x* = α?, that

ΓJ^a ίϋ = (2 - R)x*z*ω = (2 - R)xJTz'*ω

= (2 - R)xRzfω .

Similarly TJyxω — (2 — R)xRyfω. Substituting these expressions in
(1), we obtain

<z'ω, TJx'JTy'ω) = λ<(2 - R)xRz'ω, y'ω) + λ<s'α>, (2 - R)xRy'ω) ,

Since ft) is cyclic for ikΓ, and T/' and 2' are arbitrary elements of
Λf, we obtain the desired equation.

We will now "solve" the operator equation obtained in the above
lemma for x in terms of xf. We could do this by reformulating the
proof in [19]. But instead we will take into account an argument
of U. Haagerup which makes the proof slightly more direct. This
is based on the following easy lemma.
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LEMMA 4.6. Let X = eiφ/2 where —π<φ<π. Let f be a com-
plex-valued function defined, bounded and continuous on the strip
I Re (z) \ <̂  1/2 and analytic inside this strip. Then

+ 1/2) + λ/(iί - l/2))dί .

Proof. Define g(z) — πeίφz (s\riπz)~ιf{z). Then g has a simple
pole at z = 0 with residue /(0). Furthermore # tends to zero at
infinity within the strip because / is bounded and —π<φ<.π.
Therefore we can apply Cauchy's integral formula, integrating along
the boundary to obtain

l/2)idt - ^g(it -

Now sin π(it + 1/2) = cos πit = (eπt + e~πt)/2, while

χe-φt a n ( j eiφ«t-im = Xe-όt ^

and from this the desired formula follows.

LEMMA 4.7. Let λ = eiφ/2 where —π<φ<π, and let x and xf

be as in Lemma 4.5. Then

x = ΓV^'ίβ** + e-^Δ^Jx'JΔ-^dt .

Proof. Let ξ,ηe£έ?, and define / for | Re («) | ̂  1/2 by

/ ( 0 ) = <iΓ z + 1 / 2 (2 - R)z+1/2xRz+1/\2 - R)'z+1/% 7]} .

Then from Lemma 3.6 it follows that / satisfies the requirements
of Lemma 4.6. Moreover

Xf(it + 1/2) = X(JU(2 - R)xRA-itξ9 rf)

Xf(it - 1/2) = X(AuRx{2 - R)Δ"i% y) ,

so that from Lemma 4.5

Xf(it + 1/2) •+ Xf(it - 1/2) - (JuTJxrJTA-% η) .

On the other hand

/(0) = (R1/2(2 - R)1/2xR1/2(2 - R)ι/% η} = (TxTξ, η)

Thus from Lemma 4.6 we obtain

{TxTξ, v) = (+V"(β** + e-'TWTMJTJ-nς, η)dt .
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The desired equation now follows from the fact that T is injective
and so has dense range.

We can now come close to proving the main theorem.

LEMMA 4.8. For every x' e M' and every real t we have

ΔιtJxfJΔ-u e M.

Proof. Let x e M be related to xf as in Lemma 4.5, and let y'
be any element of M'. Then yΫ commutes with the right hand side
of the equation of Lemma 4.7. Thus if ξ, rj e 3ίf and if we define
g by

g(t) = (y'Δ«Jx'JΔ-uξ9 V> - {

then we have

( + V = 0

for all φ with — π < φ < π. But then g itself must vanish. To see
this, let

for I Re (z) | < π. Then in this region / will be analytic. But it
vanishes for real z, and so vanishes everywhere. In particular it
vanishes for z = is for any real s. But then from the injectivity
of the Fourier transform it follows that g vanishes. Since this is
true for all ξ,ηe Sίf, we obtain the desired result.

Setting t = 0, we see in particular that JM'J £ M. To com-
plete the proof of the main theorem it is sufficient to verify that
JMJ £ Mf. One way to verify this is to show that the J obtained
by interchanging the roles of M and M' is the same as the J used
above. It is easily seen that this is true if {M'8ω)~ — %J3ΓL, and
this latter follows from Theorem 1 of [10]. However, we give now
a more direct verification of the fact that JMJ £ M'.

LEMMA 4.9. JMJ c M'.

Proof. Notice first that Jω = ω. This is because ω e SΓ Π iSέ^1,
so that Pω = ω and Qω = 0, so that Rco = ω = TJω and Tω = ω.

Now we know that JSΓ = iSΓ1 and Msω Q ̂  so that (Jxω, yco)
is real for all x,yeMs. Then

= (yω, Jxω) = (xω, Jyco)
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from Proposition 3.1. Since Jω = ω, this can be rewritten as

(y(JxJ)ω, ω) = (ω, x(JyJ)ω) .

But this last equation is linear in both x and y, and so holds actually
for all x, y eM. Then we can replace y by y(Jy'J) for any yr e M',
since we know that Jy'JeM. We obtain

(y(Jy'J)(JxJ)ω, ω) — (ω, xJyJy'JJω) .

Assuming still that x, y e Ms, we find that the left hand side becomes

(yjy'xω, ω) = (J(JyJ)xy'ω, ω} = (Jω, (JyJ)xy'ω)

= (x(JyJ)w, y'ώ) .

while the right hand side becomes ((JyJ)xω, y'ω). Since this is true
for all y' e M', and ω is cyclic for Mf, we have

x(JyJ)ω = (JyJ)xω

for all x, y eMs. By linearity this actually holds for all x, y eM.
Replacing x by #2 for zeM, we obtain

(JyJ)xzco = xzJyJa) — x(JyJ)za) .

Since this is true for all zeM and ω is cyclic for M, it follows that

(JyJ)x = a?(e7Ί/J) ,

so that JyJeM! as desired.

Proof of Theorem 4.2. From Lemmas 4.8 and 4.9 it follows that
JMJ = M', and so JM'J = ilί. Then from Lemma 4.8 it follows that

As an easy consequence of Theorem 4.2 together with the results
in § 3 we obtain the K.M.S. property for a faithful normal state on
a von Neumann algebra.

THEOREM 4.10. Let M be a von Neumann algebra, and let φ be
a faithful normal state on M. Then there is a unique strongly
continuous one-parameter group of ^-automorphisms, σt, of M that
satisfies the K.M.S. condition with respect to φ, that is, such that
for any x, y eM there is a complex-valued function, f, defined,
bounded and continuous on the strip — 1 ^ Im(#) ̂  0, analytic in-
side the strip, and with boundary values

f(t) = φ(yσt(x)) , f(t - i) = φ(σt(x)y)
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for all real t. If φ is of the form φ(x) — (xω, ω) where ω is a
cyclic and separating vector for M, then

σt(x) = ΔuxΔ~u ,

where Δu is the unitary group associated to the real subspace 3ίΓ ~
(Msω)~ as in §3.

Proof. We can assume that φ is of the form φ(x) = (xω, ω)
where ω is a cyclic and separating vector for M. Let 3ίΓ = (M8ω)~,
let Δu be the one-parameter group associated with 3Γ, and let σt(x) =
ΔitxΔ~~it. Then σt defines a strongly continuous one-parameter group
of *-automorphisms of M according to Theorem 4.2. Let us now
apply Proposition 3.7 to 3ίΓ. For any x, y eMs we have the pair
of vectors (xω, yω) in ^Γ, to which there corresponds a K.M.S. func-
tion / on the strip — 1 ^ Im (z) ^ 0 such that

f(t) = (Δuxω, yω) = {ΔίtxΔ~itωy yω)

= {yσt{x)ω, ω) = φ{yσt{x)).

(Recall that in the proof of Lemma 4.9 we saw that Rω — ω, so
that Δuω = ω for all ί.) Then

fit - i) = fit)' = Φ(σt(x)y) .

By linearity it follows that for all x, y eM there is a K.M.S. func-
tion, /, on the strip such that

f(t) = Φ(yσt(x)) , f{t - i) = ^«(a?)y) .

That is, σt satisfies the K.M.S. condition for φ.
Conversely, let at be a strongly continuous one-parameter group

of ^-automorphisms of M satisfying the K.M.S. condition for φ. As
is well-known, φ must be invariant under at. (In the K.M.S. con-
dition let y = 1, so that f(t) — f(t — i) for all t, so that, as before,
/ is constant.) Then there is a one-parameter unitary group, Uu

such that Utxω = at(x)ω for all xeM and all real t. So for any
pair x,yeMs there is a K.M.S. function / such that

f(t) = Φiyatix)) - (yat(x)ω, ω) = (Utxω, yω)

fit-i)^ fit)' .

It now follows from Theorem 3.9, with 3tl = Msω, that C/* = J".

5* Left Hubert algebras* In this section we treat the more
general case of left Hubert algebra. Since one of the axioms in
the usual definition of Hubert algebras [13,18] involves unbounded
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operators, we should start by giving an equivalent definition in which
this axiom has been reformulated so as not to involve unbounded
operators. But because we feel that this axiom appears somewhat
unnatural at first (for either approach), we prefer to introduce it
gradually. This has the added advantage of making clearer at
exactly what point of the development this axiom is needed.

NOTATION AND ASSUMPTIONS 5.1. Let sf be an involutive al-
gebra over C, with involution denoted by ζ —> ζ* for ζ e Ssf. We
suppose further that j y is equipped with a scalar product, ζ, η i->
<£, 7]} for ζ,ηe J < and with the corresponding norm. We will denote
the Hubert space obtained by completing jzf for this norm by Sίf.
We will assume that

(1) Left multiplication is continuous, that is, for any ζ e £*/ the
linear operator ζ —> ξζ for ζ e S>f is continuous, and so extends to a
bounded operator on £ίf, denoted by π(ξ).

(2) We have (ξζ, rf) - <ζ, ξ*η) for f, ζ, rj e Sf, so that the re-
presentation π of jzZ on Sίf is a ^-representation.

(3) The subalgebra Jzf2 of J ^ spanned by the elements ξη for
f, Ύ] e J^f, is dense in J ^ so that the representation π is nondegenerate.
We will let £?(*£f) = ττ(j^)", and call it the left von Neumann
algebra associated with S$C

Of course ττ(j^) will be strong operator dense in ^f{sf) by the
double commutant theorem. It is a trivial matter to verify that if
M is a von Neumann algebra with a cyclic and separating vector
ω, then the set S>f = Mω becomes an involutive algebra with the
above properties if it is equipped with the *-algebra structure it
inherits from M. Furthermore π(xω) = x for all x e M, so that
£?{Ssf) = M.

In the theory of left Hubert algebras an important role is played
by the analogue of the set M'ω. The appropriate candidate in the
present setting seems to be:

DEFINITION 5.2. Let sf' denote the set of vector rj£.c9ίf such
that there is a bounded operator, δ, on £ίf and another vector
η1 e ^tf such that

bζ = π{ξ)Ύ] , 6*ί - TΓφft for all ζ e Ssf.

Clearly h is unique since s^ is dense, and so we can denote it by
π'{rj). Furthermore ηγ is unique because π is nondegenerate, so that
we can denote it by rj7. Thus

π\r])ξ - π(ζ)V , ^(V)^ - π(ξ)Ϋ for all ξ e jtfi

It is not clear that s^ff contains any nonzero vectors, and in
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fact we will have to impose an additional axiom to insure this. But
we can first obtain the following important properties:

PROPOSITION 5.3. If rj e s/f then rf e j * " , and if η,ζe j * " then
π\rj)ζ e j&". Thus Ssff becomes a *-algebra with product defined
by ηoζ = πf{rj)Z and involutionb. Moreover, πr is a ^-representa-
tion of^/f on £ίf and

Proof. We show first that π'(s$?') £ £?(<$/)'. Let ηeSsf' and
ί, ζej^T Then

π'{r])π{ξ)ζ = π\η)ξζ = π{ξζ)y

= π{ζ)π{ζ)V = π(ξ)π'(y)ζ .

Since Jzf is dense and ττ(j^) generates ^ f ( j ^ ) , the result follows.
From the definition of <$/' it is clear that if rj e jy" then rf e

j # " and πr(r]b) = π'(η)*, as well as that ψ = rj. Now let η, ζ e
and ί 6 J^f. Then

From the definition of jy" it follows that π'(?j)ζ € J^ ' . We also see
from this that {ηoζf = Qorf and that π'OK) = π'{η)π'{ζ).

To the extent that jy" contains nonzero elements it will also
contain nonzero self-adjoint elements. Let η e j&" with η = η\ Then
for f 6 s$f we have

<̂ 7, f#ί> - <̂ 7, π(f)*f> - <π(ξ)y, f> = <^)f , f>

which is real since π'(η) is self-adjoint. If we let 3ίΓ denote the
(closed) real subspace spanned by the ξ*ζ for ξ 6 J^< then the above
says that ηeijsf1, where we are now using the corresponding real
inner product on £ίf. (In particular, we see that Szf' £ %5ίΓL +
3F1.) The following technical lemma shows, among other things,
that conversely if i^ΓL contains nonzero vectors, then so does

LEMMA 5.4. For any 7] e 3ίf there are elements a,b,ce

such that

(1) 0 ^ a S 1, 0 ^ c ^ 1, be = (1 - a)b

α(l - a) = δ6* and c(l - c) = 6*6 .

( 2 ) π(ξ)bτ] = ( 1 - a)ζ, ττ(f)(1 - c)i? = 6*?,
// in fact Tjei^Γ1, then

( 3 ) π(ξ)aη = 6f, π(ί)6*3? = cf /or f 6
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If rj e %51ΓL and η Φ 0, then bη Φ 0 and bη e

Proof. Let η e 3^. We use the closure of the graph of fπ*
π{ξ)Ύ] for ξejzf. Thus let Λ~ be the subspace of ^f φ ^f defined
by

Let J& be the projection onto ^Y\ and let the matrix for E be

b
E =

1 6* c
Since ^^* is invariant under the obvious action of j y on 0 ^
it follows that a,b,ce Sf{j>f)'m Then all the properties (1) follow
from the fact that E is a projection. For any ξ e J ^ we have
(ξ, π{ξ)η) e ^>7 so that E carries this vector to itself. Thus

aζ

Since b, ce £f(s*f)f, property (2) follows.
Suppose now that ηei^Γ1. Then <τ), ξ*ξ) is real for all

so that

<π(ζ)V, ί> ~ <f, ^(ί)^> ^ < ,̂ f#f> - <ί#ί, V) = 0 .

Then the sesquilinear form for this quadratic form in f must also
vanish, that is

(π(ζ)η, ζ> - <£, π(ζ)τ?> - 0 for all f, ζ 6

But this says that (π(ζ)η, - ξ j e . y Γ 1 for ξe J ^ so that E is zero on
this vector. Property (3) follows from this. Now from the first
part of property (2) it already follows that by e jy", since (1 — α)
is self-adjoint. But we could have bη = 0. This would mean that
(1 - a) = 0, so that 6 = 0 from property (1). But if ηei^T^, it
would then follow from property (3) that η = 0.

Thus to make sure that jtf" is large, we must make sure that
L is large. Since we also want to be able to use the results of

§ 2, a natural way to try to do this is to assume that 3Γ Π iJ^~ =
{0}. Notice that even before assuming this we know by polarization
that 3ίΓ + iJ%Γ contains all elements of the form ξζ for ξ, ζ 6 Jϊf,
and so is dense, since J^f2 is assumed dense. But a more compelling
reason for making the assumption that 3ίΓ Π i<5^ — {0} (besides the
development in §§ 2 and 3) is that it is easily seen that this condition
is implied by the requirement that the map ξ—*ξ\ and so its re-
striction to J^ 2 , has a closed extension, which is one of the usual
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axioms for a Hubert algebra. (The converse is true, but will only
become clear in the course of the proof below — see also the remarks
just before Lemma 2.3 of [18]). Thus we are ready to give a de-
finition of a left Hubert algebra which does not involve unbounded
operators.

DEFINITION 5.5. Let Ssf be an involutive algebra with scalar
product satisfying the axioms of Notation 5.1. Let 3ίΓ be the real
subspace of έ%f spanned by the ζ*ζ for ζ e JϊK We will say that
J^f is a left Hilbert algebra if SΓ Π iJΐΓ = {0}.

We can now define the operators J and Δu on Sίf using 3ίΓ as
in §3. Our aim is then to prove the analogue of Theorem 4.2. To
get started on this we need an analogue of Lemma 4.3. But in the
setting of left Hilbert algebras we have no analogue of Sakai's
Radon-Nikodym theorem or its variant, and so we will have to give
a very different proof. We remark that in the lemma below we
have interchanged the roles of M and M' used in §4, because to
avoid this we would have had to use right Hilbert algebras, which
is not the usual convention. In the process we have interchanged
λ and λ, and this will have the result that our later formulas are
essentially the same as those in §4.

LEMMA 5.6. Let ζ e 3ίΓ. Then for any λ e C with Re (λ) = 1
there is a unique rj e %3ίΓL such that

<?, ζ> = Re (X(V, ζ» for all ζ e i

Moreover if ζ is also in Jzf, then η e S?/f and rj* — η.

Proof. Define a bilinear form, B, on %5ίΓL by

B{η, ζ) = Re (λ<τ?, ζ» for V, ζ 6 i

Then B{Ύ], η) = Re (λ<^, 7]}) = (η, η}, so that B is a scalar product
inducing the original norm on %3ίΓL. Thus i3ίίL is a Hilbert space
for the scalar product B.

Now for any ξ e ̂ Γ the map ζ H+ (ξ, ζ> for ζ 6 ί^T 1 is a real
continuous functional on ί^Γ*1, and so there exists ηei^Γ1 such
that

(1) <£, O = B(y, ζ) = Re (X(y, ζ» for ζ e iST\

This proves the first assertion.
The important part of the lemma is the second assertion, that

if ξ 6 sf then η e jtf" and rf = η. So suppose now that ζ e Jzf. Let
α, 6, c be the operators in £f(j*f)f associated to η as in Lemma 5.4.
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What we will show is that now a is invertible, and that π'(η) = a~ιb.
To show that a is invertible we need to obtain estimates involving
the spectral projections of a.

Let e be any spectral projection of a, and let

ζ = ebb*η = β(l — a)aη .

We show first that ζ e jy". Using Lemma 5.4 we find that for any

while

bη = b*eπ{ξ$>y = b*e(l - α)

From the definition of jy" it follows that ζ e J^ff and ζb — 6*06)?.
Now equation (1) can be rewritten as

2<f, ζ> - X(V, ζ> + λ<ζ, ^> for ζ 6 ί

But we have seen that if ζ e s/' and ζb = ζ then ζeiJΓ1, so the
above equation holds for such ζ. By splitting elements of j&' into
their real and imaginary parts it follows that

2<ί, C> - X(V, C> + λ<ζ, v) for ζ e j ^ ' .

If we substitute the ζ defined above into this equation and take real
parts, we obtain, since Re λ = 1 and 66* = α(l — a).

<τ), b*ebη) + (ebb*7}9 η} = 2 Re (ζ, b*ebr])

= 2ne(ebζ,ebv) ^ | |β6ί| |2 + \\ebη\\*

= {ebζ, bξ) + (η, b*ebη) .

Using the inequality which results from this by cancelling identical
terms, we obtain

- a)aη, η) - <ebb*η, V> £ <ebζ, bξ)

- <π(ξ)eaη, π(ξ)aη} ^ | |π(f)||2<βα2^ η)

Now let ε > 0 be given and let e be the spectral projection for
a on the interval [0, ε]. Since εe ^ ae9 we obtain from the above
inequality

It follows that for small enough ε (specifically for ε < (1 +
we must have ear] — 0. Then for any ξλ e j y we have
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ebζ, = eπ^aη = π^eaη = 0 .

Thus eb = 0, so that e66* = eα(l — a) = 0, and so eα. = 0, since 1 — α-
has a bounded inverse on e£ίf. It will follow that a itself has a
bounded inverse once we show that zero is not an eigenvalue of a.
But suppose that aξ 1 = 0 for some ξ1eί%^ Then 6*^ = 0 since
66* = α(l - a), and so E(ξlf 0) = 0, that is, (&, 0) 6 ̂ \ where #
and *̂ /̂  are defined as in Lemma 5.4. It follows that (ξlf ζ) = 0
for all ζ e Jϊf, so that & = 0. Thus a'1 is bounded.

Then for every ξ1 e Jϊf we have

Since ηei^Γ1, this last number is always real, and so a~ιb is self-
adjoint. Then from the definition of s*fr it follows that η e S/f,
π\η) = aΓ% and rf = 07.

We are now in a position to imitate in the present setting the
steps in § 4 beginning at Corollary 4.4. We will let R, T, J and Δu

be defined in terms of the 3ίΓ defined above, which we have seen
satisfies the required nondegeneracy conditions.

COROLLARY 5.7. If ξe Jtf2 then TJζ e sxf' and (TJξf = TJξ*.

Proof. Suppose first that ξ e Jϊf2 n ̂ Γ If we apply Lemma 5.6
with λ = 1, we obtain an rj e %3ίίL Π J ^ ' such that

<f, ζ> = Re (η, ζ> for all ζ e i

This means that η is the orthogonal projection of ξ onto %3ΓL, so
77 = (1 — Q)f. Since Pζ = f, we have

ΓJf - (P - Q)f = (1 - Q)ξ = η .

The general result now follows by polarization and conjugate linearity.

LEMMA 5.8. Let ζej^ n^Γ. Then for any XeC with Re (λ) > 0
there is an ηe J&" such that rf> = η and

TJπ(ξ)JT = λ(2 - R)π\Ύ])R + \Rπ\η){2 - R) .

Furthermore JTξ = (λ(2 - R) + \R)η.

Proof. We may restrict ourselves to the case Re (λ) = 1. Then
by Lemma 5.6 (with η replaced by η/2), there is an η e j ^ " ΓΊ i
such that
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(1) <ί, ζ> - X(7], ζ> + λ<ζ, η) for all ζ e i

Since jy" £ iSTλ + ^T"1, this relation will hold for arbitrary|ζ e
if we change the third ζ to Q. If we then substitute ζ\°ζx for ζ,
where ζ2, ζL 6 J^ ' , we obtain

<ττ(f)ζ2, d> - λ<ζ2o)?, Q + λ<ζ2, ζ^η) .

Now let flf ζ2 e sf\ and let ζ< = TJf, for i = 1, 2. Then ζ, 6 jy"
and ζ = TJfί by Corollary 5.7. Substituting these in the above
equation and rearranging, using Proposition 3.1, we obtain

(2) <&, TJπ{ζ)TJQ -

Now for any ζ e J ^ ' with ζb = ζ we have ζ e %3ίΓL so that Qζ = 0
and thus

TJζ = (P- Q)ζ = (P + Q)ζ = Rζ .

Similarly, if ξ 3 G J / n J^" then Pξ3 = f 3 so that

TJζz - (P - Q)ζ3 = (2 - P - Q)fa - (2 -

Using the fact that R is linear while ΓJ is conjugate linear, we see
that for any ζ e j&" and any ζ3 e J ^ 2 we have

Rζ>, TJζ3 = (2 - R)ξ* .

It follows from this, Corollary 5.7 and )/ = ^, that

TJiζ.orj) = i2(^oζ5) - Rπ\η)TJζ\ = Rπ\rj){2

Substituting these expressions in (2) we obtain

<&, TJπ(ζ)JTζ2) =

Since ξί and f2 are arbitrary elements of jy 2 , and Sfι is dense in
Sίf, we obtain the first equation of the Lemma.

To obtain the second equation let ζλ e Ssf Π J>̂ 7 let ζL = TJζι as
above, and substitute this in (1). We obtain, after rearranging,

<&, TJζ) = λ<f1, TJ)7> + X(TJξlf V>

But, as above, TJζ, = (2 - #)£, and ΓJ57 = iZ^, since ^G^JT 1 . Thus

<f„ TJζ) = \(ξlf Rη) + λ<&, (2 - i2)/;> ,

from which the desired equation follows.

We remark that the first equation of the above lemma is the
analogue of Lemma 4.5, and we could continue as in §4 to show
that JAίt^f{s^)A-ίtJ^^?{j^y. But we need to prove more, namely
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t h a t if ζ 6 Jϊf then JΔuζ e Jtf' and

π'(JΔuξ) = JΔuπ(ξ)Δ-uJ,

and it is for this that we need the second equation of the above
lemma, as well as of the next lemma (the analogue of Lemma 4.7).

LEMMA 5.9. Let λ = eiφ/2 where —π<φ<π, and let ξ and η
he as in Lemma 5.8. Then

ΎJ = I e ~ φ t ( e π t + e~πt)~^
J —OO

Proof. The first formula follows from Lemma 5.8 and Lemma
4.6 just as Lemma 4.7 does from Lemma 4.5. To prove the second
formula, apply Lemma 4.6 to the function

for any & 6 Jg^ and argue as in the proof of Lemma 4.7, using the
second equation of Lemma 5.8.

LEMMA 5.10. Let ξoej*f and let ξ = ξ$ζQ. Then JuJξ e j * " for
all real ί, and

π\ΔuJξ) = Δ^Jπ^JΔ-" , {ΔuJζf = ΔuJξ .

Proof. Let λ = eiφ/* where —π<φ<π, and let η be defined
as in Lemma 5.8 in terms of ξ and λ. Now 0 = π(ζ)y — π\ή)ζ for
any ζ 6 J^ and so from Lemma 5.9 we obtain

0 =

for all φ with —π<φ<π. Arguing as in the proof of Lemma 4.8
we conclude that

π;(C)Λf"£ = ΔuJπ(ξ)JΔ-uζ for all real t.

Now ζ = £*, and so ττ(f) is self-adjoint, as is Δ~ίtJπ(ξ)JΔit. Then it
follows from the definition of sf' that ΔuJξ e j#", that {ΔuJξf =
Jί4Jf, and that

π'(ΔuJξ)ζ = 4"Jπ{ξ)JΔ-uζ for ζ 6 J ^

The argument from now on differs a little from that in [18] in
that we will focus earlier on showing that the role of J ^ ' is almost
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symmetric to that of j y (Jϊf' will be full while J*f need not be).

LEMMA 5.11. The *-algebra Jzf' equipped with the scalar product
from S$f is a left Hilbert algebra whose left von Neumann algebra
is

Proof. It is clear that j y ' satisfies properties 1 and 2 of Defi-
nition 5.1. Furthermore, setting t — 0 in Lemma 5.10 we find that
JSϊf2 £ j&". Since J ^ 2 is dense in 2ίf, it follows that j ^ " is also.
But to show that property 3 holds, we need to show that the identity
operator on 3^ is in the strong operator closure of ττ'(j^'). Now
since the representation π of *$/ on £%f is non-degenerate, we can
find a net ξt of elements of J ^ such that. π{ξ^) converges strongly
to the identity operator and ||π(<^)|| <* 1. The same will then be
true of π(ξ\ξ%). But if we let ζ, = J(ξ\ξ%), then, setting t = 0 in
Lemma 5.10 we see that ζi e s/' and that π\ζ%) = Jπ{ζ\ζ%)J, which
also converges to the identity. Thus (jy")2 = π(*S/')j%fr is dense in
βίf, so that property 3 holds.

To show that jy" is a left Hilbert algebra, we must show that
if J%Γ' denotes the (closed) real subspace of £έf spanned by the γoη
for Ύ] 6 j * " , then 3T' Π iJf = {0}. But if ζ = rfojj then Q - ζ so
that, as seen earlier, ζ 6 %3iTL. That is, J Γ ' £ i J Γ 1 . But ^ ^ + iJίΓ
is dense, and so ^ T 1 Π i ^ ^ 1 = {0}. Thus also JT"' Π i^Γ' = {0}.

Finally, we show that πr(Ssf') is strongly dense in i ^ ( j ^ ) ' . Let
α?' e £f{j^') and let ζ, 57 6 jtf'. Then for f 6 j ^ we have

- π'{ζ)x'π(ξ)V = π

It follows from the definition of j&" that π\ζ)xfηej^ft and

πf{π%)xfr]) = π%)x'π\r)) .

Thus π'(ζ)x'π'(η) 6 π(J^') If w e n o w let C and 57 run through the
net ζt of the previous paragraph, we see that πr(ζ^xfπ\ζ^) converges
strongly to xf. Thus π'(*$/") is strongly dense in

Actually, we can now prove that 3£~' — i^ίL

y so that the J
corresponding to jtf' is the same as that for J ^ while the Δil cor-
responding to j ^ " is the Δ~u for Ĵ C The proof of the first part
of the next lemma is inspired by the proof of Lemma 3.4 of [13].

LEMMA 5.12. 3ίΓ is the closure of the set of self-adjoint ele-
ments of Sf, and
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Proof. Of course J3Γ is contained in the closure of the set of
self-adjoint elements of Ĵ C Suppose, conversely, that ξ e J^f with
ξ# = ξ. Now if p is any real polynomial with no constant term,
then p(π(ξ))ξ e J%", as is seen by real polarization. But we can ap-
proximate the range projection, e, of π(ξ) in the strong operator to-
pology by such p(π(ξ)), and so eξ e J^Γ However, for any η e j * "

π'(η)eξ = eπ\r])ξ = eπ(ξ)η = π(ζ)η = π\η)ξ ,

and so, since we now know that τcr is nondegenerate, eζ = ξ. Thus

To show that 3tΓ* — %3ίΓL, note first that since we know that
is a left Hubert algebra, we can apply to j&' the result just

proved to conclude that 3ίΓ* is the closure of the set of self-adjoint
elements of j ^ " . Thus it suffices to show that the set of self-
adjoint elements of Szff is dense in %3tΓL. That this set is contained
in i^t"1- was discussed just after Proposition 5.3. That this set is
dense follows immediately from Proposition 5.10 (with t — 0) and
the remark just after Proposition 2.2.

Since it follows that the J for Jzfr is the same as that for ,
while the Δu for j&' is the Δ~u for Jzf, we can now easily obtain
the main results.

THEOREM 5.13. Let Szf he a left Hilbert algebra. Then

for all real t.

Proof. From Lemma 5.10 we obtain

Then by symmetry

But £f(j#") = £f(j#Ύ by Lemma 5.11. From this the desired re-
sults follow.

The following is a sharpening of Lemma 5.10.

THEOREM 5.14. Let jzf be a left Hilbert algebra. If ξ
then ΔuJζ e j&' for all real t, and

π'(ΔuJξ) = ΔuJπ(ξ)JΔ-u , (Δ^Jξf = J"J£* .

Proof. It suffices to prove the theorem when ξ — ξ*. Now if
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p is any real polynomial with no constant term, then it follows from
Lemma 5.10, as in the proof of Lemma 5.12, that ΔuJp(π(ξ))ξ e
and that for any η e stf we have

If we then let the p(π(ξ)) approximate the range projection, e, of
π(f), so that eξ = ξ as in the proof of Lemma 5.12, we obtain

π{η)ΔuJξ =

The desired result now follows from the definition of

From Theorem 5.14 applied to όzf as well as J ^ ' we can easily
obtain the results about achieved (i.e. full) left Hubert algebras con-
tained in [18]. We include them here for the readers' convenience.

Since sf' is a left Hubert algebra, we can define Jzf" =
If ξ e J*f, then for any ΎJ e sff we have

π'{r))ξ = π(ζ)η ,

so that Szf £ jy" , and it is consistent to use the notation π and #
for the representation and involution of J ^ " . Of course the left
von Neumann algebra of J ^ " is again £?(j*fry = £f{*Stf).

One can also form j#"" = (j#"')f. But if η e j*f"', then for all
ξ 6 Sf" we have

Since sf £ J^"', this also holds for ξ e j*£ and thus ^ e J ^ ' . Hence
" f = j * " . Similarly J ^ " " = J ^ " , etc.
A left Hubert algebra is said to be achieved (or full) if Ssf —

". The remarks just above show that Szf' is always achieved.
Also, Jzf" is achieved, so that any left Hubert algebra is contained
in a left Hubert algebra J*f" which is achieved and is such that

,2^(jy"). Applying Theorem 5.14 successively to Sf and
f we obtain

THEOREM 5.15. If s$? is an achieved left Hilbert algebra, then
= sf\ and

π\jξ) = jπ(ξ)J for all ζ

Furthermore, Δuόzf — Ssf, and for ξ e Ssf

π(Δuξ) = Δuπ(ξ)Δ-u for all real t.

6* Appendix* In this appendix we investigate the relation be-
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tween our operators R, T, J and the traditional operators of the
theory, namely S, F and Δ. As in § 2 let 3ίΓ and Sf be the (closed)
subspaces of a real Hubert space Sίf satisfying the nondegeneracy
condition that JίΓ Π .Sf = {0}, and 3ίΓ + & is dense. Let P and
Q denote the orthogonal projections on 3ίΓ and £f respectively, and
let R = P + Q, TJ=P-Q.

Now we can also associate to the pair {3f, £f) certain (usually)
unbounded operators. We already mentioned in §2 the operator S,
whose domain, D(S), is J%Γ + Sf and which is defined by

η) = ξ-7} for ξ , j

Then S is a closed, densely defined, operator. Now since the pair
(SfL

9 <5ΓL) also satisfies the nondegeneracy condition, we can define
an operator F whose domain, D(F), is ^f1 + J%ΓL, and which is
defined by

+ Vd = ίi - Vi for & G ^ % ^ e

Again F is closed and densely defined. The operators S and F cor-
respond to the traditional ones of Tomita-Takesaki theory. Their
relations with R, T and J are given by:

PROPOSITION.

(1) F^JSJ, F = S*.
(2) 1/ ί e D(S), then (2 - i2)Sf = JTξ,

If ηe D(F), then RFη = JΓ57.
(3) 1/ Δ = (2 — R)R~\ then we have the polar decompositions

S = JΔin , F = JJ" 1 / 2 .

Proof. According to Lemma 2.3 J is an orthogonal self-adjoint
operator which maps the pair (3ίΓ9 Sf) to the pair (SfL

9 ^ ~ ± ) , and
so it is apparent that F = JSJ. For ζe^T, ηe^f, & e =2̂ % ft e 5T 1

we have

), 5, + ft> = <f - ft fi

= <5 + 77, fx - yd = <ξ + v

Thus F C S * . On the other hand, if ζeD(S*), then

7), C> = <ί + 7̂, S*ζ>

for all f G 3ίT and 57 e ̂ f. If η = 0 this implies that ζ - S*ζ e
while if f = 0 it implies that ζ + S*ζ e J ^ 1 . Consequently ζ G = ^ J +

1 . Thus JD(S*) = e ^ ? 1 + ̂ T 1 , so that F = S*. This proves part 1.
Let ζ e 5ίr and 17 e .Sf. Then
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(2 - R)S(ξ + V) = (2 - P - Q)(ξ - y)

) + (1 - Q)(ξ - y) - - (1 - P)V + (1 ~ Q)£

(P- Q)ξ = (P- Q)(ξ + y) = JT(ζ + y).

This proves the first equation of part 2. The second is proved in a
similar way.

From part 1 we have

(JS)* = S*J = FJ=JS ,

so that JS is self-adjoint. On the other hand, part 2 shows that if
ξβD(S) then #JSί - Tξ, or, since Γ = (2 - i2)1/2i?1/2.

R/2JSξ - (2 - J?)1/2ί .

If we set Δ = (2 - ^ i Γ 1 , this implies that f 6 D(J1/2), and that
JS C J1/2. But by the maximality of self-adjoint operators, we must
have equality. The second equation of part 3 can be proved in a
similar way, or by using the relation JAι/2J — Λ~ι/2.
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