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A BOUNDED OPERATOR APPROACH TO
TOMITA-TAKESAKI THEORY

MARC A. RIEFFEL AND ALFONS VAN DAELE

Let M be a von Neumann algebra. The Tomita-Takesaki
theory associates with each cyclic and separating vector for
M a strongly continuous one-parameter group, 4, of unitary
operators and a conjugate-linear isometric involution, J, of
the underlying Hilbert space, such that 4*M4* = M and
JMJ = M’, where M’ denotes the commutant of M.

The present paper has two purposes. In the first half
of the paper we show that the operators 4* and J can, in
fact, be associated with any fairly general real subspace of
a complex Hilbert space, and that many of their properties,
for example the characterization of 4 in terms of the K.M.S.
condition, can be derived in this less complicated setting.
In the second half of the paper we show, by using some of
the ideas from the first half, that a simplified proof of the
Tomita-Takesaki theory given recently by the second author
can be reformulated entirely in terms of bounded operators,
thus further simplifying it by, among other things, eliminat-
ing all considerations involving domains of unbounded
operators.

1. Introduction. Our approach is motivated by the following
observation. Let M Dbe a von Neumann algebra on a Hilbert space
&7, and let @ be a cyclic and separating vector for M. Let M, denote
the collection of self-adjoint elements of M and let .2 denote the
closure of M,w. Then .27 is a real subspace of 57 which can easily
be shown to have the properties that % N+ = {0} and &% + 1.9
is dense in 5# (see Proposition 4.1). In [10] we found that the po-
sitions of 2" and .2 were closely related to questions concerning an
operator algebra and its commutant. In the present paper we find
that the operators 4 and J depend only on the relative positions of 2%~
and +.97, and, in particular, can be defined in terms of the projections
on these two subspaces. More generally, the operators 4 and J
can be associated with any such real subspace, whether or not it
comes from a von Neumann algebra. Because of this, it turns out
that this subject is closely related to earlier work of Dixmier [4]
and Halmos [7] on pairs of subspaces of Hilbert spaces. In fact,
we digress at the end of the next section to show that our approach
gives slightly simpler proofs of some of their main results.

_ In writing this paper we have addressed ourselves to those who
are already familiar with the original approaches to Tomita-Takesaki
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theory [13, 14, 16,17] as well as recent simplifications [18, 19, 22].
But those who wish to learn the subject (and are familiar with the
early parts of [5]) will have no difficulty in reading this paper if
they simply disregard statements which refer to these earlier ap-
proaches or to unbounded operators.

The content of the next sections is as follows. The second sec-
tion treats pairs of subspaces of real Hilbert spaces, while the third
treats one real subspace of a complex Hilbert space. In the fourth
section we prove the main results of Tomita-Takesaki theory for the
case of a von Neumann algebra with cyclic and separating vector,
while in the fifth we treat left Hilbert algebras.

Most of the research for this paper was conducted while we
were both visiting at the University of Pennsylvania. We would
like to thank the members of the Department of Mathematics there
for their warm hospitality during our visits. This research was
partially supported by National Sciences Foundation grants GP-30798X
and GP-28976.

2. Two subspaces. Since we will need to study real subspaces
of a complex Hilbert space, we will frequently need to view a com-
plex Hilbert space as a real Hilbert space, by taking the real part
of its inner product. Thus, much of the information we need only
concerns pairs of subspaces in real Hilbert spaces, and accordingly
it is this subject that we study in this section.

Let 27 be a real Hilbert space, and let .2 and <& be two
(closed) subspaces of 57 which satisfy the nondegeneracy condition
that 2 N ¥ = {0} and o7 + & is dense in & We can define a
(usually unbounded) operator, S, with (dense) domain .2~ + ¥ by

SE+n=£&—-7

for ce 2% and 7€ <. The operator S is well-defined because 22 N
% ={0}. In fact it is a simple matter to check that S is a closed
operator because .27 and & are closed.

It is easily seen that if .2 is the closure of M,® as in the
introduction, and if & = 1.9, then we obtain exactly the usual
operator S of Tomita-Takesaki theory (see the appendix).

Returning to the general setting, we could form the polar de-
composition, S = J4'%, of S, to obtain operators analogous to those
of Tomita-Takesaki theory, and we could immediately study these
operators further. But we prefer instead to show how to work in
terms of bounded operators only, so that S need not ever be defined.

DEFINITION 2.1. Let P and @ denote the orthogonal projections
onto .o and & respectively. Let



A BOUNDED OPERATOR APPROACH TO TOMITA-TAKESAKI THEORY 189

R:P+Q’
and let
JT =P —Q,

be the polar decomposition of P — Q, where T is the positive oper-
ator and J is the partial isometry.

We now collect together some elementary properties of R, T
and J which will be used throughout this paper.

ProprosiTION 2.2. With R, T and J defined as above, we have
Both R and 2 — R are injective, and 0 < R < 2.

T = RY2 — R)'?, and T s injective.

J is a self-adjoint orthogonal operator, so that J* = 1.

T commutes with P, Q, R and J.

JP=(Q1—-Q), JQ =1 — P)J

JR = (2 — R)J.

Ot o o=

Proof. (1) It is clear that 0 < R < 2. Suppose that R& = 0.
Then

WPEIF + |QEIF = (P, & +<(Q§, &) =(RE E =0,

so that P& = 0 = Q5. Thus £ is orthogonal to both .9 and & and
so £ = 0 since ¥ + & is dense. Hence R is injective. Now the
pair (27, &) also satisfies the nondegeneracy condition, and the
above argument can be applied to the projections 1 — P and 1 — @
to show that 2 — R is injective.

(2) A simple calculation shows that

I*"=P—-PQ—-QP+Q=R2-R),

so that T = RY*2 — R)"®. Then T is injective since both R and 2—R
are.

(3) Since P — Q is self-adjoint, J must be self-adjoint. Since
T is injective, J must be injective. Thus J? = 1.

(4) Since P — Q is self-adjoint, T and J commute. Now

TP = P(P — Q)P = P(1 — Q)P = PT*,

so that P commutes with 7% and hence with 7. Similarly @ and
T commute. Thus R and T commute.

(5) TJP=P—-QP=Q1-QP-Q=01-QTJ =TI — Q)J.
Since T is injective, it follows that JP = (1 — Q)J. The second rela-
tion follows by taking the adjoint of both sides of this relation.
The third relation follows by adding the first two.
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We remark that property (5) shows that J % = &+ and J&¥ =
¢+, so that J carries the pair (9% &) to the pair (£*t, 27).
Under this transformation R is replaced by 2 — R, while T is left
invariant since it commutes with J.

It is interesting to see how our operators R, T and J are related
to the operators S, F, 4 and J of the usual theory, but since we
will not need to use these relations we have relegated a discussion
of this matter to the appendix of this paper. Let us mention here
only that the operators J coincide, while 4 = (2 — R)R™".

Finally, we remark that all of these operators are closely related
to the operators A and B on pages 390 and 391 of [4], while property
2 should be compared with Proposition 3 of [4]. Also, our operator
R, or at least R/2, does make a fleeting appearance in Takesaki’s
monograph [13] in the form of the operator K defined on page 32
of [13].

We would now like to characterize the operator J. We will not
need this characterization later, but it is interesting to see how such
a characterization is obtained in our context. A characterization
within the context of Tomita-Takesaki theory, with J defined in
terms of the polar decomposition of S, has been given by Araki [1]
and Woronwicz [21] (see also p. 254 of [20]), and their proofs, in-
volving unbounded operators, can easily be adapted to the present
context. But actually, the desired result already essentially appears
as Theorem 1 of [4], with a proof involving only bounded operators.
We give here a proof which is slightly simpler than Dixmier’s, in
that it involves only the canonically defined operators introduced
above, and does not involve first choosing an arbitrary isometry of
2 onto ¥+ as he does.

ProPOSITION 2.3. The operator J defined above is the unique
self-adgjoint orthogonal operator with the following properties:
(1) Jo = &£+ (so J& = %),
(2) JE & =0 for all £€. 27, while
JIn, > £ 0 for all ne <~

Proof. We already know from part 5 of Proposition 2.2 that J
satisfies the first property. Now from this

PJP = P(1 — Q)J = P(P — Q)J = PT .

But P and T are positive operators which commute, and so PT = 0.
Thus PJP = 0. A similar calculation shows that QPQ < 0. It fol-
lows that J satisfies the second property also.

Suppose now that K is another self-adjoint orthogonal operator
on 27 for which properties 1 and 2 above hold, so that
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KP=(1—-QK, PKP=0, and QKQ<=<0.
We must show that K =J. Now
(JK)P = J1 — Q)K = P(JK),

so that JK commutes with P. A similar calculation shows that JK
also commutes with Q. Thus JK commutes also with B, T, and J.
In particular, K and J commute with each other. Now

RT(KJ) = (P + Q)P — QK
=(P1—-Q) - Q1 - P)K=PKP—-QKQ=0.

But RT is injective and positive, while KJ is orthogonal, so by the
uniqueness of polar decompositions KJ =1, so K = J.

We remark that both in the application of this result to Tomita-
Takesaki theory and in the setting of the next section we will have
# = 1.2, Thus the requirement that QK@ < 0 in property 2 above
will follow from the requirement that PKP = 0. Also, while the
above proposition at first only yields Re (J¢, &) = 0 for £e€. .97, we
also know that (J& &) is real since J. 2% = ¢.9¢™%, so that again
(J&, &) = 0.

In concluding this section we digress to indicate how the above
approach can be used to give a proof of perhaps the most useful
version of the main theorem of Halmos’ paper [7], namely his
Theorem 8. Our proof is simpler than his proof in that again it
involves only the canonically defined operators introduced above, and
does not involve first choosing an arbitrary isometry from .22 to
<+ and then later compensating for this choice. Also our proof
makes clear that the theorem is true for the case of real as well
as complex scalars. We will not need this theorem later in this
paper, but recent applications of this theorem where it is essential
to be able to work with real scalars can be found in [6, 9], and our
familiarity with this theorem helped us to arrive at some of the
points of view used in the present paper.

THEOREM 2.4 (Theorem 3 of [7]). Let 57 be a Hilbert space
(real or complex), and let 22" and & be two (closed) subspaces of
&7 which are in general position, that is, the intersection of any
two of 2¢, &£, o, &+ is {0}. Then there is a Hilbert space _#,
an operator, C, on A4 such that 0 < C <1 and C and 1 —C are
injective, and an orthogonal (or unitary) operator from SZ onto
A D A which carries 27 to the graph of C and & to the graph
of —C.
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Proof. Since .2 and & are in general position, the nondegen-
eracy conditions used earlier are satisfied, so we can define the oper-
ators P, Q, R, T and J as before, satisfying the properties of Proposi-
tion 2.2. But we now have more information. Specifically, the pair
(2, &) also satisfies the nondegeneracy condition, and from parts
2 and 3 of Proposition 2.2 applied to this pair it follows that (1 — P) —
Q =1 — R is injective.

Let _# be the range of the spectral projection for R corre-
sponding to the interval [1,2]. From the fact that JRJ =2 — R,
it is easily seen that J_~ is the range of the spectral projection of
R corresponding to the interval [0, 1]. Moreover, since 0 < R < 2
and since, as just shown above, 1 is not an eigenvalue for R, we
must have that J 27 = _~Z7*.

From the definition of .# we see that the restriction of
(2 — R)*R™* (=4"%) to _# is a bounded operator on ., which we
will denote by C. In fact it is clear that 0 < C £ 1 and that C and
1 — C are injective.

We claim that

% =Q1+JC) 7, ¥=Q01-=JC)AZ .

It is sufficient to prove the first of these equalities, since interchanging
27 and %, and hence P and @, changes J to —J but has no effect
on R and so on C or _# Consider first £€._~#. Then

2Pt =(R+ JT)Y =(R + J(2 — R)1/2R1/2)E
=1+ JO)RE .

Since R maps .# onto _#, it follows that
P# =0+ JC).#Z .
Consider next ée #Z* = J_#, so £ = Jp for ne _#. Then
2Pt =R+ JT)np=(J2—R)+ T)p = (JC+ )T,

which is in (1 + JC)_# since T, being a function of R, carries .2
into itself. Thus

Pz+< @1+ JC).7 .
Since o7 = P.# + P_.#*, it follows that
=04+ JC).Z .
We now define an isometry, U, from 57 to .Z @ .# by

U+ Jdn) = (1) for & ne #Z .
Then
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U2 = UQ + JC).# = graph (C),
while a similar argument shows that U< is the graph of —C.

As remarked in [7], the proof of the above result has as an
almost immediate corollary one of the main results of [4], namely

PROPOSITION 2.5 (Proposition 9 of [4]). Let (57;, &) be a pair
of subspaces in genmeral position in a Hilbert space 57, for i =1, 2.
Let R; be the sum of the projections on °%; and .. Then the two
pairs of subspaces are unitarily equivalent if and only if R, and
R, are unitarily equivalent.

3. One real subspace. Let 22" be a (closed) real subspace of
a complex Hilbert space 57 such that 2% N9 = {0} and 5% +
1.9 is dense in 5# In this section we will apply the results of
the previous section to the pair (9%, 1.%") of real subspaces of 5#7
To do this we view 27 as a real Hilbert space by equipping it with
the real part of its inner-product. We can then let P and Q be the
real linear projections on .27 and 7.9 respectively, defined by means
of the real inner-product on 57, and so we can define the operators
R, T and J as in the previous section. Because of our special choice
of subspaces, these operators will have additional properties:

PROPOSITION 3.1. The operators R and T are complex linear
and positive. Furthermore, J is a conjugate linear isometry, so
that {J&, 7> = {Jy, &) for & ne 2

Proof. Simple calculations show that 7P = Q¢, and hence that
R is complex linear, while P — @ is conjugate linear. Then from
the construction of polar decompositons 7' will be complex linear,
while J is conjugate linear. We know that

Re (J¢, 7) = Re (§, Jn) = Re {J7, &) .

This, together with the conjugate linearity of J, shows that (J&,n) =
(Jn, &) for & ne 2~

We remarked in the previous section that the modular operator,
4, of the usual Tomita-Takesaki theory is related to R by 4=
(2 — R)R™'. Furthermore, a major role in that theory is played by
the one-parameter unitary group 4. Because £ is now complex,
we can expect to be able to define this group in our context also.
We now show, in fact, that this can be done directly in terms of
R. We will then derive various properties of this group, and show
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that it is characterized by the K.M.S. condition even in our setting,
all this using only bounded operators.

According to Proposition 2.2 both R and 2 — R are injective,
while 0 < R < 2. It follows that the spectral measures for R and
2 — R are both concentrated on the open interval (0,2). Now for
any real ¢ the funection »— )\ is well-defined, bounded and con-
tinuous on this open interval, and so by spectral theory we can
define R** and (2 — R)*. Furthermore, from spectral theory we also
see that in this way we obtain two commuting one-parameter unitary
groups which are strongly continuous (see Lemma 3.6). From the
fact that JRJ = (2 — R) it follows eagily that

JR"J = (2 — R)™

for all real ¢, where the minus sign in the exponent of (2 — R) is
caused by the conjugate linearity of J. While we do not define the
operator 4, we will nevertheless use the notation 4" so as to con-
form with the usual notation of the Tomita-Takesaki theory. We
define this unitary operator by

DErFINITION 3.2. For each real ¢ let
4% = (2 — R*R™*,

so that {4} is a one-parameter unitary group.

ProposITION 3.3. For any real t

J4*t = LT and 428 = .

Proof. The first equation follows directly from the fact that
JR"J = (2 — R)"". Now since 4 is a function of R, it commutes
with R and 7, and so with 7J. It follows that 4 commutes with
both P and @, and in particular that 4%.9 < .2 Since this last
relation is also true for 4%, it follows that 475 = 277

We can now turn to our characterization of the group 4* in
terms of the K.M.S. condition. We will not need this characteriza-
tion later, but we feel that it is important to include it at this
point so that it is clear that the K.M.S. property is really concerned
just with real subspaces of a complex Hilbert space, and does not
essentially involve the presence of von Neumann algebras.

DEFINITION 3.4. A strongly continuous one-parameter unitary
group, U,, on the Hilbert space &7 is said to satisfy the K.M.S.
condition with respect to the real subspace, .27, of 2 if for any
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&, ne o there is a complex-valued function, f, defined, bounded and
continuous on the strip —1 < Im(z) <0, analytic in the interior,
and with boundary values given by

@) = CUE 7
fit =) =<y, UL

for all real ¢.

We remark that such a function f is unique. Indeed, if there
were another such function, g, with the same boundary conditions,
the difference f — ¢ would vanish on the reals. Then the Schwartz
reflection principle would yield a function analytic on the strip
—1=Im () £1 and also vanishing on the reals. Such a function
must vanish everywhere, so that /= g¢.

The fact that

[t — 1) =, UL = (f(8)”

makes it possible to obtain a condition which is equivalent to the
K.M.S. condition but which is often easier to verify.

PrOPOSITION 3.5. A strongly-continuous one-parameter unitary
group U, satisfies the K.M.S. condition with respect to the real
subspace o2 of 2 if and only if for any & ne. 2% there is a
function, f, defined, bounded and continuous om the strip —1/2 <
Im (2) = 0, analytic in the interior and such that

f(@) = CUS, 19> for all real t
and
S — ©/2) s real for all real t.

Proof. That these conditions imply the K.M.S. condition is seen
by simply applying the Schwartz reflection principle along the line
Im () = — 1/2. Conversely, suppose the K.M.S. conditions are satis-
fied. If f is a “K.M.S.-function” as in Definition 3.4 such that
ft — 1) = (f(t))", then we can define another function, g, on the strip
—1<Im() <0 by

9(2) = (fE@ — )~ .

Then g will satisfy the same properties and have the same boundary
values as f, and so by the uniqueness remarked above we will have
g = f. Then

St — 4/2) = g(¢ — +/2) = (f(¢ — /2))",
so that f is real on the line Im (2) = — 1/2.
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This second version of the K.M.S. condition was inspired by
Combes’ treatment of the K.M.S. condition for weights [2].

We will now begin to show that for a given real subspace .%;
the group 4" defined earlier satisfies the K.M.S. condition with re-

spect to .277 For this we need the following lemma, which will also
be used in later sections.

LEMMA 38.6. For any complex z with Im (z) <0 we can define
the bounded operator R*. The function z+— R“ is strong-operator
continuous on Im(z) <0, is analytic on Im(z) <0, and s uni-
formly bounded on horizontal strips of finite width. Similar results
are true for (2 — R)™.

Proof. For any complex z with Im (z) < 0 the function X —A*
is bounded and continuous on the open interval (g, 2) on which the
spectral measure of R is supported, and so we can form R*. Since
AEF = 2°@ if Nve(0,2) and Im(z) <0, it follows that R* is
uniformly bounded on horizontal strips of finite width. Now let
£e &7, and let {E.} be the spectral resolution for R. Then the re-
striction of R to (1 — E.)2# has its spectrum in (¢, 2), and so has
bounded logarithm. It follows that the function R*“(1 — E)¢ is
actually analytic in the entire complex plane. Now (1 — E.)¢ con-
verges to £ as ¢ goes to 0, since R is injective. Thus R*(1 — E.)
converges to R, in fact uniformly on horizontal strips where
Im (2) < 0, since R* is uniformly bounded there. It follows that
R*¢ is continuous for Im (z) < 0, and analytic for Im (z) < 0.

PROPOSITION 38.7. The one-parameter unitary group A defined
in Definition 3.3 satisfies the K.M.S. condition with respect to 9%

Proof. Let & ne. 22, We would like to set f(z) = (4", ) but
this is undefined. However, we can take advantage of the fact that
&€ 57 to extend 4¢ analytically to the strip —1/2<Im(z) <0. For

28 = 2P = (R + TJ)¢ = RVH(RY* + (2 — R)/*J)&,
so that

=R if 20 =(RY*+ (2 — R)"*J).
Thus
A“E — AitRl/zc — (2 . R)itR—itH/zC s
and so we can set
f@) = (2 — BB, 1) .
From Lemma 3.6 together with the fact that multiplication of oper-
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ators is strongly continuous on bounded sets, we see that the func-
tion is defined, bounded and continuous on the strip —1/2 <Im (z) <0,
and analytic in the interior. It is clear that

@) = 4%, 1) .
It remains to show that f(¢ — 4/2) is real. But

fit = ij2) = (2 — B2 — R}"R™C, 7)
= (4@ = R}, ) = (@ — RYC, 4707,

while
22 — R)*C = (2 — R)(R" + (2 — R)")¢
= (T + JR): = J(TJ + R): = 2JP¢ = 2J¢ .
Thus
@t — i/2) = <Jg, 475,
which is real, since JEe¢ % * by Proposition 2.3 while 4 %pe 227

THEOREM 3.8. The group 4 is the unique strongly continuous
one-parameter group of unitaries on S# which carries 27 onto
% and satisfies the K.M.S. condition with respect to 9%

Proof. Let U, be a strongly continuous one-parameter group
of unitaries on 57 which carries .72 onto .9 and satisfies the
K.M.S. condition with respect to 227 We will show that U, = 4*
for all ¢.

Recall that 7€ 57 is said to be an entire vector for {U,} if
there is an entire S#-valued function, %, such that i(t) = Uz for
all real t. Such vectors are dense in 52 We recall the proof so
that we can see that, in fact, .9~ will contain a collection of entire
vectors dense in 977 For ne 7% let

N, = (n/m)"* Sw e Undt .
Then 7, € 2 since exp (—mnt?) is real and since .57 is closed and is

carried into itself by U,. It is easily seen that {»,} converges to 7.
Finally, each 7, is an entire vector, since

h(2) = (/)" S"_"We-w-ﬂz Undt

is entire, and h,(s) = U,n, for all real s.
Now let 7 be an entire vector for {U,} in 2% and let & be the
entire function such that a(t) = Uz for real ¢{. Then for fixed real
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t the functions (¢t + iz) and U,k(iz) are both entire, and agree for
purely imaginary z. They are thus equal, and so in particular

h(t + v8) = Uh(is)

for all real s and ¢. Since U, is unitary, this makes it clear, in
particular, that & is bounded on horizontal strips of finite width.
Let £ be another vector in 227 We would like to show that

<Ut777 A”J$> = <777 J‘§> ’

for this will then imply that U, = 4% since J. 2%~ and %  are total
in 52 To show this we must extend this function analytically by
means of the function % defined above, and by the device used in
the proof of Proposition 3.7. Specifically, define { as in that proof
so that & = RV, and set

9(2) = {Wz), J(2 — R)*RE™"77C) .

Then, as in the proof of Proposition 3.7, g is defined, bounded and
continuous on the strip —1/2 < Im (2) < 0, and analytic inside. Fur-
thermore,

9@) = (U, JA*RV*C) = KU, J4%E)

which is real since U e . 2% while J4£ €122+ by Proposition 2.3.
On the other hand

9@t — i/2) = (W — 1/2), J4(2 — R)"*C)
= (Wt — ©/2), 4%)

since (2 — R)"*{ = J& as seen in the proof of Proposition 3.7. Now
if the K.M.S. condition for {U,} is applied to the pair (y, 4°°¢), we
obtain a function, f, defined, bounded and continuous on the strip
and analytic on the interior such that f(t — ¢/2) is real and

J@) = (U, 47&) = (M(t), 47

for real ¢. Thus f agrees on the z-axis with the entire function
{W(z), 4°&>, and so must agree with it everywhere on the strip. It
follows that <{h(z), 4°°¢) is real for z =t — ¢/2. In particular this
must be true for s = ¢, so that g(t — 4/2) is real for all real ¢.

Thus the function g is defined, continuous and bounded on the
strip —14/2 £ Im (z) < 0, analytic in the interior, and real-valued on
the boundary of the strip. But such a function must be constant,
because repeated applications of the Schwartz reflection principle will
yield an extension to a bounded entire function. Thus

<Ut77y AltJE> = <7)’ JE> ’
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so that U, = 4° for the reasons indicated above.

In fact, the following stronger form of the uniqueness property
can be obtained. (We are indebted to J. Naudts for this result.)

THEOREM 3.9. Let U, be a strongly continuous one-parameter
group of umnitaries on o Hilbert space 57 Suppose that 2, is a
real submanifold of 57 such that U, satisfies the K.M.S. condition
for 2%,. Then U, also satisfies the K.M.S. condition with respect
to the smallest real subspace, 27, invariant under U, and con-
taining >2,. Furthermore 22 N 1.5 = {0}, so that if we let 57
denote the closure of 2% + 1.5¢, them we can define 4 on 5% using
%. Then 57 1is invariant under U, and U, = 4" on SZ.

Proof. Let 2¢] denote the set of vectors &£ € 52 such that for
every ne. 2, there is a K.M.S. function for the pair (§ %) as in
Definition 3.4. Then .9%] is obviously a real submanifold of 52 and
T, S K.

Let ¢€.27; and ne€ 2, and let f be the K.M.S. function for the
pair (&, 7). For fixed real s define g on the strip —1/2<Im(z) <0
by g(z) = f(z + s). Then

g@t) = £t + s) = CULUE), 7 ,
and ¢(t — ¢/2) is real, so that ¢ is a K.M.S. function of the pair
(U,£, m). Thus 227 is invariant under U,.

We claim that 57 is also closed. Indeed let £, be a sequence
in 22, let e 92, and let f, be the K.M.S. function (on —1 =<
Im (2) £ 0) for the pair (&, 7). Assume that &, converges to £ e 5%

Applying the maximum modulus principle on the strip (p. 245 of
[11]) to the function f, — f., we find that

[fa@) — fu(@)| < 1160 — &alllInl],

so that {f,} is a uniformly Cauchy sequence on the strip. Thus this
sequence converges uniformly to.a function, f, which is defined,
bounded and continuous on the strip and analytic on the interior.
Furthermore

f@) = 1lim f,(¢) = im CUE,, 7) = (U&7,
and similarly
St —9) = (f@8) .

Thus f is a K.M.S. function for the pair (&, %), so that £¢.%,.
Since 727 is a real closed subspace of 57 which contains 9%
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and is invariant under U,, it must contain 2¢. Thus we have shown
that if £e .2 and ne 27 then there is a K.M.S. function for the
pair (& 7). But we can then repeat the arguments above to show
that there is a K.M.S. function for any ¢, ne .2, so that U, satisfies
the K.M.S. condition for 277

To complete the proof it is sufficient to show that 27" Ui.9% =
{0}, as the rest will then follow from Theorem 3.8. Suppose now
that £e. 2" N1, and let f be the K.M.S. function for the pair
(& 8. Then if will be the K.M.S. function for the pair (z¢, &), so
that both f and ¢f are real on the line Im (2) = —1/2. Thus f
vanishes on this line and so everywhere, and so 0 = f(0) = (¢, &), so
that &£ = 0.

We remark that the condition that U, carry .°¢ into .2 cannot
be dropped in Theorem 3.8. For otherwise it would follow from
Theorem 3.9 that every subspace .27, of .22 such that °7; + .97 is
dense would define the same group 4°, which is impossible.

We also remark that the more general characterization whose
proof begins in the bottom paragraph of page 239 of [8] can pre-
sumably be carried over to the present setting.

Finally we confess that while it is our feeling that J and 4%
are giving information about the relative positions of .o and .57,
it is not clear to us in what sense this is really true. In particular,
the characterization of 4 by means of the K.M.S. condition can
hardly be called “geometric” and it would be nice to have a char-
acterization which was more geometric.

4. von Neumann algebras. In this section we give a proof
of the main results of Tomita-Takesaki theory for the case of a von
Neumann algebra with a cyclic and separating vector. The proof
we give is obtained essentially by reformulating the proof given in
[19] in terms of the bounded operators which we studied in the
previous two sections.

Let M be a von Neumann algebra acting on a Hilbert space 52,
and let ® be a cyclic and separating vector for M. Let M’ denote
the commutant of M, and let M, and M, denote the set of self-adjoint
elements in M and M’ respectively.

PROPOSITION 4.1. Let .22 denote the closure of Mw. Then 5%
is @ (closed) real subspace of 57 such that 22 N1 = {0} and
"+ 1.7 1s dense in 57  Moreover M.w & 1.977+.

Proof. Clearly 5 + 1.% = Mw, and so is dense since @ is
cyclic. We know that M.w N iM,w = {0} because ® is separating,
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but this does not imply that 22" N 1.2%2" = {0} since 5%~ can be strictly
bigger than M,w. But let us first show that M,w S .97+, If xe M,
and 2’ € M, then

{zw, ¥'0) = {x'zw, @) = (2w, 20 ,
so that {zw, 2’®w) is real, and
Re (zw, ix'®w) = 0.

Thus #’'®w €19+ and M,w < 7.9¢*. But then Mw S 1.7+ + %+
(¥ ni2e). Since w is cyelic for M', it follows that (¥ Niz")*
&7, so that o7 N i.97 = {0}.

(N

One can, in fact, show that (M,w)” = 1.9+ (see Theorem 1 of
[10]), but we will not need this result here.

Since the above proposition says that 5" as defined above satis-
fies the nondegeneracy conditions used in the previous sections, we
can use . % to define operators R and T, and especially J and 4.
The main results of the Tomita-Takesaki theory are:

THEOREM 4.2. If 5 ts defined in terms of M as above, and
of J and 4 are defined by OF, then

(1) JMJ =M,

(2) 4%Mda* = M for all real t.

The main difficulty in proving the above theorem seems to stem
from the paucity of information we have relating the subspace .2~
to the action of the elements of M on 5 In fact, the only such
piece of information we seem to have is the following lemma, whose
proof is obtained by modifying the proof of Sakai’s linear Radon-
Nikodym theorem [12].

LEMMA 4.3. Let o' € M,. Then for any MeC with Re(\) > 0
there s a unique x € M, such that

{yw, ¥’®) = Re \W(yw, 2@)) for all yec M,.

Proof. By real linearity we may assume that Re(\) =1 and
that 0 < 2’ < 1. Define normal functionals + and +, on M for any
xe M, by

v(y) = {yo, ¥’w) , ¥.(y) = Re W yw, 20))

for ye M,. Clearly 4 and +, are in the self-adjoint part of the
predual of M. What we need to show is that there is some ze M,
such that 4 = +,. Let
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V= {d,:xeM, and ||z] < 1}.

Since z +— 4, is clearly continuous for the w*-topology on M and the
weak topology on the predual of M, it follows that V is weakly
compact. Also V is clearly convex. We need to show that 4 e V.
Suppose that ¢ V. Then by the Hahn-Banach separation theorem
there is an h e M, such that

A (k) < (k) for all ze M, ||z <1.
This means that
Re (W hw, 2@)) < (hw, ')

for all ze M,, ||z|]] £1. Now let ~ = u|h| be the polar decomposi-
tion of h. Since h is self-adjoint so is %, and » and |k| commute.
Let « = w. Then

Re (W ho, uw)) < (hw, ¥'®) = {W(z')"*w, (2')*0)
= {|h|@) " o, (@) @) = {|h|2'®, ®)
= {|h|®, @) = (hw, uw) = Re (\(hw, uw))

(since Re(\) =1). This is a contradiction.

COROLLARY 4.4. For any o' € M' there 1s an x € M such that
JT2w = ew, JTx*0w = cv*w .
Proof. Suppose first that &’ € M,. If we apply Lemma 4.3 with
» =1 we obtain an € M, such that
Re (yow, 20) = {yw, ¢'®) for all y e M,.

This means that z® is the orthogonal projection of z'@w onto .~
(for the real inner product), that is, Pzr'®w = zw. Now z'wei 9%,
so that Qz'w = 0. Thus

JTr'ew = (P — Q)r'w = 20 .

The general result now follows by conjugate linearity.

LEMMA 4.5. Let #'e M'. Then for any neC with Re(\) >0
there is an x e M such that

TJx'JT = M2 — R)xR + ARx(2 — R) .

Proof. By linearity we may assume that &’ € M.. Then accord-
ing to Lemma 4.3 (with = replaced by «/2) there is an z¢ M, such
that
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Ly, 2wy = Myw, 20) + A z0, yo)

for all ye M,. It is clear that this relation will hold for arbitrary
ye M if we change the third y to y*. If we then substitute z*y
for y, where y, z€ M, we obtain

Yo, ¥'20) = Myw, zaw) + Ayrw, 20) .

Now let %’ and 2’ be arbitrary elements of M. By Corollary 4.4
there exist %, z€ M such that

JTy'w = yo , JTZw = zw .

Substituting these expressions for y® and zw in the above equation
and rearranging, using Proposition 3.1, we obtain.

(1) (Zw, TJE' JTy' @) = MTJzzw, y' @) + X z'w, TJyzw) .
Now for any w < M, we have Puw = uw, so that
TJuw = (P — Quw = 2 — P — Quw = (2 — Ruw .
Similarly for w’ € M, we have Qu'w = 0 so that
THw'w = (P — Qu'w = (P + Qu'w = Ruw .

Using the fact that R is linear while TJ is conjugate-linear, we see
that

TJuw = (2 — Rw*ew, TJuweo = Ru'*o

for any ue M and v € M'. It follows from this, Corollary 4.4 and
x* = g, that

TJzew = (2 — R)z*z*w = (2 — R)xJT7 *w
= (2 — R)xRZw .

Similarly TJyx®w = (2 — R)xRy'w. Substituting these expressions in
(1), we obtain

o, TJEJTy'w) = (2 — R)zRZ 0, y o) + 7w, (2 — R)zRy'w) ,

Since @ is cyclic for M’, and 9’ and 2’ are arbitrary elements of
M’', we obtain the desired equation.

We will now “solve” the operator equation obtained in the above
lemma for z in terms of a’. We could do this by reformulating the
proof in [19]. But instead we will take into account an argument
of U. Haagerup which makes the proof slightly more direct. This
is based on the following easy lemma.
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LEMMA 4.6. Let N = ¢/* where —mw < ¢ < w. Let f be a com-
plex-valued function defined, bounded and continuous on the strip
IRe ()| < 1/2 and analytic inside this strip. Then

£(0) = Ste‘“(e” + )OSt + 1/2) + Nt — 1/2))dt

Proof. Define g¢(z) = we** (sin'wz)"'f(z). Then ¢ has a simple
pole at z = 0 with residue f(0). Furthermore g tends to zero at
infinity within the strip because f is bounded and —7 < ¢ < =.
Therefore we can apply Cauchy’s integral formula, integrating along
the boundary to obtain

7(0) = (27z:i)“[g+mg(it +1/2)idt — S+°°g(z‘t _ 1/2)idt] .
Now sin z(it + 1/2) = cos wit = (e™ + e~**)/2, while
ei¢(it+1/2) — )\'e——(ﬁt and eiQ(it—l/Z) —_ Xe—gjt ,

and from this the desired formula follows.

LEMMA 4.7. Let )\ = ¢*/* where —w < ¢ < 7, and let x and 2’
be as in Lemma 4.5. Then

+oo
= S e e + e Ty T AL

Proof. Let & 7ne 57, and define f for |Re(2)| < 1/2 by
f(z) = (RT*H/%2 — R)*™PuR*™*2 — R)™"%, 1) .

Then from Lemma 3.6 it follows that f satisfies the requirements
of Lemma 4.6. Moreover

MGt + 1/2) = M4M2 — R)wRA™E, )
Mf(it — 1/2) = M4"Ro(2 — R4, 7) ,

so that from Lemma 4.5
M@t + 1/2) + Nf (it — 1/2) = (LTI’ TTA 7, 1) .
On the other hand
f(0) = (B2 — R)"’zRY*2 — R)"%, 1) = (TaT¢, 1) .

Thus from Lemma 4.6 we obtain

(TaTe, ) = S+me‘¢’(e"“ ) AT T JTAE, 7)>dt
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The desired equation now follows from the fact that T is injective
and so has dense range.

We can now come close to proving the main theorem.

LEMMA 4.8. For every o' ¢ M’ and every real t we have

A4y’ Ja e M .

Proof. Let xe M Dbe related to 2’ as in Lemma 4.5, and let %’
be any element of M’. Then %' commutes with the right hand side
of the equation of Lemma 4.7. Thus if & ne 5~ and if we define
g by

9(8) = (Y 4T’ T4, 1) — (AT T4 Y'E, )

then we have

S+me‘¢‘(e"‘ + e g(t)dt = 0

—o00

for all ¢ with —7 < ¢ < 7. But then g itself must vanish. To see
this, let
+o0
@) = | Tt + eyt

for |[Re(2)| < . Then in this region f will be analytic. But it
vanishes for real z, and so vanishes everywhere. In particular it
vanishes for z = 14s for any real s. But then from the injectivity
of the Fourier transform it follows that g vanishes. Since this is
true for all & ne 5%, we obtain the desired result.

Setting ¢ = 0, we see in particular that JM'J < M. To com-
plete the proof of the main theorem it is sufficient to verify that
JMJ < M’'. One way to verify this is to show that the J obtained
by interchanging the roles of M and M’ is the same as the J used
above. It is easily seen that this is true if (M.w)” = .2+, and
this latter follows from Theorem 1 of [10]. However, we give now
a more direct verification of the fact that JMJ & M'.

LEmmA 4.9. JMJ S M'.

Proof. Notice first that Jo = w. This is because w € 22" N 1.9+,
so that Pw = w and Qw = 0, so that Rw = w = TJw and Tw = w.

Now we know that J .97 = 1.9¢* and M,w < 5%, so that (Jzw, y»)
is real for all z, y€ M,. Then

(Jzw, yw) = Yo, Jow) = {20, Jyo)
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from Proposition 3.1. Since Jw = w, this can be rewritten as
yJad)o, @) = Lo, o(JyJ)o) .

But this last equation is linear in both 2z and ¥, and so holds actually
for all #, ye M. Then we can replace y by y(Jy'J) for any %' e M’,
since we know that Jy'Je M. We obtain

Ly(Jy' )Tz, ) = o, zJyJy'JJo) .
Assuming still that «, y € M,, we find that the left hand side becomes
yIy'zw, ) = (J(JyJ)zy'w, o) = (Jo, (JyJ)zy'®)
= (a(Jy)w, y'o) .

while the right hand side becomes {(JyJ)zw, y'®). Since this is true
for all ¥’ e M’, and w is cyclic for M’, we have

2(Jy))w = (JyJ)xw

for all «, ye M,. By linearity this actually holds for all z, y € M.
Replacing 2 by 2z for ze M, we obtain

(Jy)xzw = xzJyJw = x(JyJ)zo .
Since this is true for all ze M and w is cyclic for M, it follows that
(Jyd)e = o(JyJ) ,
so that JyJe M’ as desired.

Proof of Theorem 4.2. From Lemmas 4.8 and 4.9 it follows that
JMJ = M’, and so JM'J = M. Then from Lemma 4.8 it follows that
A" M4~ = M.

As an easy consequence of Theorem 4.2 together with the results
in §3 we obtain the K.M.S. property for a faithful normal state on
a von Neumann algebra.

THEOREM 4.10. Let M be a von Neumann algebra, and let ¢ be
a faithful normal state on M. Then there is a wunique strongly
continuous one-parameter group of x-automorphisms, o,, of M that
satisfies the K.M.S. condition with respect to 6, that is, such that
for any x,yc M there is a complex-valued function, f, defined,
bounded and continuous on the strip —1 < Im (2) £ 0, analytic in-
side the strip, and with boundary values

f@) = ¢(yo (@), [t — 1) = g(ox)y)
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Jor all real t. If ¢ is of the form ¢(x) = {xw, ®) where @ is a
cyclic and separating vector for M, then

o(x) = 447,

where 4% is the unitary group associated to the real subspace 5% =
(M,w)~ as wn §3.

Proof. We can assume that ¢ is of the form ¢(z) = (vw, w)
where @ is a cyclic and separating vector for M. Let 2% = (M,0)",
let 4% be the one-parameter group associated with .92, and let o,(2) =
A%x47%. Then o, defines a strongly continuous one-parameter group
of x-automorphisms of M according to Theorem 4.2. Let us now
apply Proposition 8.7 to .2¢. For any =z, y €M, we have the pair
of vectors (zw, yw) in 2, to which there corresponds a K.M.S. func-
tion f on the strip —1 < Im (z) < 0 such that

1) = Lvw, yo)y = (4'ad o, yo)
= (Yo ()0, ®) = ¢(yo(z)) .

(Recall that in the proof of Lemma 4.9 we saw that Rw = w, so
that 4w = w for all t.) Then

ft — i) = f(t)” = ¢(a/2)y) .

By linearity it follows that for all x, y € M there is a K.M.S. func-
tion, f, on the strip such that

J@) = ¢(yo (@) , [f(t — 1) = ¢(c(@)y) .

That is, o, satisfies the K.M.S. condition for 4.

Conversely, let @, be a strongly continuous one-parameter group
of =-automorphisms of M satisfying the K.M.S. condition for ¢. As
is well-known, ¢ must be invAriant under «,. (In the K.M.S. con-
dition let ¥ = 1, so that f(¢) = f(¢ — ) for all ¢, so that, as before,
f is constant.) Then there is a one-parameter unitary group, U,
such that Uxzw = a,(x)w for all xe M and all real t. So for any
pair z, y € M, there is a K.M.S. function f such that

1) = ¢(yal2)) = {ya(r)w, ) = {Ugw, yo)
A — 1) =fi) .
It now follows from Theorem 3.9, with 9%, = M,w, that U, = 4“.
5. Left Hilbert algebras. In this section we treat the more

general case of left Hilbert algebra. Since one of the axioms in
the usual definition of Hilbert algebras [13, 18] involves unbounded
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operators, we should start by giving an equivalent definition in which
this axiom has been reformulated so as not to involve unbounded
operators. But because we feel that this axiom appears somewhat
unnatural at first (for either approach), we prefer to introduce it
gradually. This has the added advantage of making clearer at
exactly what point of the development this axiom is needed.

NOTATION AND ASSUMPTIONS 5.1. Let .©~ be an involutive al-
gebra over C, with involution denoted by &£—¢& for £ec.7 We
suppose further that .o~ is equipped with a scalar product, & 7+—
(& 1) for & ne . o7 and with the corresponding norm. We will denote
the Hilbert space obtained by completing .o for this norm by S#
We will assume that

(1) Left multiplication is continuous, that is, for any & € .7 the
linear operator { — & for { €. is continuous, and so extends to a
bounded operator on 2#; denoted by =(£).

(2) We have (&, ) = (&, &) for & (,ne .4 so that the re-
presentation © of .7 on 57 is a =-representation.

(8) The subalgebra .o7* of .o/ spanned by the elements &7 for
& n €. is dense in .97 so that the representation 7 is nondegenerate.
We will let <2(.7) = n(.~)"”, and call it the left von Neumann
algebra associated with .o

Of course w(.%7) will be strong operator dense in &(.57) by the
double commutant theorem. It is a trivial matter to verify that if
M is a von Neumann algebra with a cyclic and separating vector
w, then the set & = Mw becomes an involutive algebra with the
above properties if it is equipped with the =-algebra structure it
inherits from M. Furthermore n(xw) =z for all ze M, so that
A7) = M.

In the theory of left Hilbert algebras an important role is played
by the analogue of the set M'w. The appropriate candidate in the
present setting seems to be:

DEFINITION 5.2. Let .o/’ denote the set of vector 7€ 5 such
that there is a bounded operator, b, on 5~ and another vector
N, € & such that

bé = (&), b*&=n(&n, for all fe.o4

Clearly b is unique since .o is dense, and so we can denote it by
7'(n). Furthermore 7, is unique because 7 is nondegenerate, so that
we can denote it by 7. Thus

T'()E =&y, TmM*E=mn@)r for all fe.ox

It is not clear that .o/’ contains any nonzero vectors, and in
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fact we will have to impose an additional axiom to insure this. But
we can first obtain the following important properties:

ProposITION 5.3. If pe 7’ then 17°e 7', and iof 1), {e 7" then
T’ e '. Thus 7" becomes a *-algebra with product defined
by 0ol = '), and involution'. Moreover, @ 1is a *-representa-
tion of 7" on 57 and ©'( ') S L ().

Proof. We show first that #'(.’) € (). Let ne. " and
§, e Then

T’ (Mr($)E = 7'(EC = n(EC)y
= n(@)n(0)n = m(@)x' () .

Since .o is dense and 7(.&) generates .&£(.%7), the result follows.

From the definition of .7’ it is clear that if ye .o’ then 7' ¢
7' and 7'(9") = ©'(n)*, as well as that »* = 7. Now let 9, e .o’
and £€ . Then

2@’ (L = 7' (@)L = @' ()’ (8§
(@' )y = 7' (@ = 7'(O)* 7' (9)*¢ .

From the definition of .o’ it follows that #'(y){ € &7’. We also see
from this that (7o)’ = {*o7" and that 7'(9<{) = ='(9)7'(0).

To the extent that .’ contains nonzerc elements it will also
contain nonzero self-adjoint elements. Let e .o7" with » = 7. Then
for £€.97 we have

0, &8 = (o, 1)) = (a(@)n, & = (TS, &

which is real since 7'(n) is self-adjoint. If we let 22 denote the
(closed) real subspace spanned by the &% for £e€ .27 then the above
says that 7e€4.97*, where we are now using the corresponding real
inner product on 24 (In particular, we see that &' i %™ +
2¢7*.) The following technical lemma shows, among other things,
that conversely if ¢.97"* contains nonzero vectors, then so does ..

LEMMA 5.4. For any ne 57 there are elements a, b, ¢c€ & ()
such that
(1) 0Za=l, 0=5c=<1, be=@1—a)

a(l —a) = bb* and (1 —c) = 0b*b.

(2) 7@y =1 —a), w@EA—c)y="0*, forte A
If in fact nei o7, then
(3) w(&an =bg, wm(Eb*p =c& for fe A
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If neio™ and 7+ 0, then bn = 0 and bye .o .

Proof. Let ne 5 We use the closure of the graph of &+
w(&)y for £e . Thus let .4~ be the subspace of 57 P &% defined
by

AT =, Gy e )
Let E be the projection onto .#; and let the matrix for £ be

7 ( a b )
S\t e )
Since .7~ is invariant under the obvious action of & on & @ 57
it follows that a, b, c € &(.o7). Then all the properties (1) follow

from the fact that E is a projection. For any £¢.% we have
(&, w(&)n) €+ so that E carries this vector to itself. Thus

aé + br(@)n =&, b*&+ ex(@)n = w(&)y .

Since b, ¢ € ¥ (.&7), property (2) follows.
Suppose now that »e¢.27*. Then (), &%) is real for all {e.o7
so that

w7y, & — <& m(&)p) =, &6 — &%, = 0.

Then the sesquilinear form for this quadratic form in & must also
vanish, that is

(&, £ — K& )y =0 for all & e .o

But this says that (z(&)y, —&e._#"* for £€ .54 so that I is zero on
this vector. Property (3) follows from this. Now from the first
part of property (2) it already follows that b7y e.o/”’, since (1 — a)
is self-adjoint. But we could have b7 = 0. This would mean that
1 —a)=0, so that b =0 from property (1). But if pei ™, it
would then follow from property (8) that » = 0.

Thus to make sure that .o’ is large, we must make sure that
1.2+ is large. Since we also want to be able to use the results of
§2, a natural way to try to do this is to assume that ¥ Nt % =
{0}. Notice that even before assuming this we know by polarization
that .9 + 7.9 contains all elements of the form &{ for & (e.%
and so is dense, since .%? is assumed dense. But a more compelling
reason for making the assumption that 97" N .2 = {0} (besides the
development in §§2 and 3) is that it is easily seen that this condition
is implied by the requirement that the map &— &, and so its re-
striction to .o7?% has a closed extension, which is one of the usual
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axioms for a Hilbert algebra. (The converse is true, but will only
become clear in the course of the proof below — see also the remarks
just before Lemma 2.3 of [18]). Thus we are ready to give a de-
finition of a left Hilbert algebra which does not involve unbounded

operators.

DEFINITION 5.5. Let . be an involutive algebra with scalar
product satisfying the axioms of Notation 5.1. Let .2 be the real
subspace of 57 spanned by the &% for fe.o% We will say that
&7 is a left Hilbert algebra if 227 N 1.9 = {0}.

We can now define the operators J and 4% on 57 using 2% as
in §3. Our aim is then to prove the analogue of Theorem 4.2. To
get started on this we need an analogue of Lemma 4.3. But in the
setting of left Hilbert algebras we have no analogue of Sakai’s
Radon-Nikodym theorem or its variant, and so we will have to give
a very different proof. We remark that in the lemma below we
have interchanged the roles of M and M’ used in §4, because to
avoid this we would have had to use right Hilbert algebras, which
is not the usual convention. In the process we have interchanged
» and X, and this will have the result that our later formulas are
essentially the same as those in §4.

LEMMA 5.6. Let £€.92. Then for any neC with Re(\) =1
there is & unique 7)€1.92"+ such that

(&, T = Re (\(n, ) for all Lei 9.
Moreover if & is also in .57 then ne. &7 and n° = 1.

Proof. Define a bilinear form, B, on +.%* by
B, {) = Re (\ (7, {)) for 9, Leio ™.

Then B(7, 1) = Re \(n, 7)) = {1, ), so that B is a scalar product
inducing the original norm on 7.%°*. Thus .9+ is a Hilbert space
for the secalar product B.

Now for any &€ .%  the map (> (& () for (€197 is a real
continuous functional on ¢. 97+, and so there exists ne€i.%* such
that

(1) &, C) =B, L) =Re(\n, L)) for {ei ™.

This proves the first assertion.

The important part of the lemma is the second assertion, that
if £e .7 then e .7’ and 7" = 7. So suppose now that £e .94 Let
a, b, ¢ be the operators in & (.7) associated to 7 as in Lemma 5.4.
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What we will show is that now a is invertible, and that z'(n) = a~'.
To show that a is invertible we need to obtain estimates involving
the spectral projections of a.

Let ¢ be any spectral projection of a, and let
= ebb*n = e(1 — a)ayn .
We show first that {e.o7’. Using Lemma 5.4 we find that for any
g e

w(£)C = w(&,)ebd*n = ebm(£,)b*7)
= ebc& = 6(1 - aw& ’
while
(£)b*ebn = b¥em(8)by = b¥e(l — @)z, .

From the definition of .o’ it follows that { €./’ and {* = b*eby.
Now equation (1) can be rewritten as

20,0 =0, + N, p) for e ™.

But we have seen that if {€ .97’ and {* = then (€92, so the
above equation holds for such {. By splitting elements of &’ into
their real and imaginary parts it follows that

2¢6, &) =M, &) + ML, ) for Le .
If we substitute the { defined above into this equation and take real
parts, we obtain, since Rex = 1 and bb* = a(l — a).
(7, b¥ebn) + (ebb*1, 1) = 2 Re (&, b¥ebn)
= 2 Re (eb¢, eb7)) = [|eb& | + |[ebn |
= {eb&, bs) + (), b*eby) .

Using the inequality which results from this by cancelling identical
terms, we obtain

(e(l — a)an, ) = {ebb*7, 1) = {ebs, b&)
= (@(@ean, n(§an) = [[7(§)|ea’n, 1)

Now let ¢ > 0 be given and let e be the spectral projection for
@ on the interval [0, ¢]. Since ¢¢ = ae, we obtain from the above
inequality

(1 — e)ean, 7y = {e(l — a)ay, 7y
= 7@ [[}ean, n) = ||m(&)|]Peearn, 1) .

It follows that for small enough & (specifically for ¢ < (1 + ||z(8)/[)™)
we must have ean = 0. Then for any & € .27 we have
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ebé, = en(§)an = w(¢)ean = 0.

Thus ¢b = 0, so that ebb* = ea(l —a) =0, and so ex =0, since 1 —a
has a bounded inverse on e¢5# It will follow that a itself has a
bounded inverse once we show that zero is not an eigenvalue of a.
But suppose that af, = 0 for some &€ Then b*& =0 since
bb* = a(l — @), and so E(é, 0) =0, that is, (&, 0)e.+"*, where E
and .4~ are defined as in Lemma 5.4. It follows that (¢,{> =0
for all { € .5 so that & = 0. Thus a* is bounded.
Then for every & €.% we have

(&) = a7'n(&)an = a'bé, ,
<51, a_1b§1> = <Eu 71:(51)77> = <§?$1; 7]> .

Since 7 €427+, this last number is always real, and so ¢™'b is self-
adjoint. Then from the definition of .o’ it follows that ne .o,
T'(p) = a™'d, and 7’ = 7.

We are now in a position to imitate in the present setting the
steps in §4 beginning at Corollary 4.4. We will let B, T, J and 4%
be defined in terms of the %" defined above, which we have seen
satisfies the required nondegeneracy conditions.

COROLLARY 5.7. If £e€ .7 then TJée " and (TJE)Y = TJE.

Proof. Suppose first that £e.o7* N .97, If we apply Lemma 5.6
with » = 1, we obtain an ne€+.%"* N .o’ such that
(&, L) = Re(n, ¢ for all Lei .

This means that 7 is the orthogonal projection of & onto 7.5¢7%, so
7= (1 — Q)& Since P& =&, we have

TIE=P-Qk=01-Q¢=1.
The general result now follows by polarization and conjugate linearity.
LEMMA 5.8. Let £ .7 N 22, Then for any » € C with Re(\) >0
there is an Ne " such that 7" =1 and
TJr(€)JT = M2 — Ry’ (HR + AR7T'())(2 — R) .
Furthermore JTE = (M2 — R) + AR).
Proof. We may restrict ourselves to the case Re(A) = 1. Then

by Lemma 5.6 (with 7 replaced by 7/2), there is an ne .o’ N ¢.9%*
such that
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(1) 6,0 =M1, 0 + N, ) for all Lei o,

Since &' & 1.977+ + 2+, this relation will hold for arbitrary:{ e .oz’
if we change the third £ to (. If we then substitute ol for ¢,
where {,, {, € .&7’, we obtain

<7T(E)Cz, C1> = )\;<C2077, C1) + X<C2, C1°77> .

Now let &, &¢€.97% and let {, = TJE, for ¢ =1,2. Then {,c.o7’
and & = TJ& Dby Corollary 5.7. Substituting these in the above
equation and rearranging, using Proposition 3.1, we obtain

(2) (& TR TIE) = ME, TICon)) + MTIEom), & -

Now for any e .27’ with {’ = we have {797+ so that Q€ =0
and thus
T, =(P - QL =P+ QL =RL.

Similarly, if &e .7 N 27 then P& = & so that
Tst == (P - Q)Ez = (2 — P — Q)Ss = (2 - R)‘Ss .

Using the fact that R is linear while T'J is conjugate linear, we see
that for any {e.%’ and any &€ .%* we have

TJ. = R, TJ&=(2— R).
It follows from this, Corollary 5.7 and 7’ = 7, that
TJ(Com) = R(oL) = Ra'()TJE = RT'())(2 — R)S, .
Substituting these expressions in (2) we obtain
&, TIn(E)JTE) = ME, RT'()(2 — R)é) + MERT' ()2 — R)&y, &

Since &, and &, are arbitrary elements of .o7?% and .o/* is dense in
&%, we obtain the first equation of the Lemma.

To obtain the second equation let & e€.97 N 2% let {, = TJE, as
above, and substitute this in (1). We obtain, after rearranging,

(&, TIZ) = NG, TIn) + MTI&, ) .
But, as above, TJ¢ = (2 — R)&, and TJ7n = Ry, since e 1.%"*. Thus
<$1y TJ5> = >\’<§1, Rﬁ> + X<517 (2 — R))‘}> ’
from which the desired equation follows.
We remark that the first equation of the above lemma is the

analogue of Lemma 4.5, and we could continue as in §4 to show
that J4*. & (N4 7J= (7). But we need to prove more, namely
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that if £e .97 then J4*¢e . &’ and
T(JA4E) = JA m(E) 47T,
and it is for this that we need the second equation of the above

lemma, as well as of the next lemma (the analogue of Lemma 4.7).

LEMMA 5.9. Let N = ¢“* where —nw < ¢ <7, and let & and n
be as in Lemma 5.8. Then

7'(n) = S+:e_¢t(ezt + et (&) T4t

n=|" e + oy st

Proof. The first formula follows from Lemma 5.8 and Lemma
4.6 just as Lemma 4.7 does from Lemma 4.5. To prove the second
formula, apply Lemma 4.6 to the function

f(z) — <R—z+1/2(2 — R)z+1/27]’ 51>
for any & € 5% and argue as in the proof of Lemma 4.7, using the
second equation of Lemma 5.8.
LEMMA 5.10. Let &,€.%7 and let & = &ig,. Then A%Jée ' for
all real t, and
' (4 JE) = AJm(E)J4™ ", (47JE) = A*J¢E .
Proof. Let N\ = ¢"%? where —w < ¢ <m, and let » be defined

as in Lemma 5.8 in terms of & and M. Now 0 = n({)n — 7'(9)C for
any €. and so from Lemma 5.9 we obtain

0= So_o e_¢t(eﬂt & e—ﬂt)—l(ﬂ(C)JAits _ AitJﬂ(&)JA_itC)dt

for all ¢ with —7w < ¢ <. Arguing as in the proof of Lemma 4.8
we conclude that
w(Q)J4%E = A¢Jn(E)J4 ", for all real t.

Now & = &, and so n(¢) is self-adjoint, as is 4 “Jm(£)J4*. Then it
follows from the definition of .o’ that 4"J¢e .o7’, that (4"J¢) =
4% J5, and that

T (4HJE), = 4*Jr(E)J4 ¢ for L e 27

The argument from now on differs a little from that in [18] in
that we will focus earlier on showing that the role of .&”’ is almost
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symmetric to that of & (%’ will be full while .% need not be).

LEMMA 5.11. The *-algebra .&7' equipped with the scalar product
from 57 is a left Hilbert algebra whose left von Neumann algebra
18 LA ()

Proof. It is clear that .o’ satisfies properties 1 and 2 of Defi-
nition 5.1. Furthermore, setting ¢ = 0 in Lemma 5.10 we find that
J &7 C 7', Since .%* is dense in 5% it follows that &' is also.
But to show that property 3 holds, we need to show that the identity
operator on 7 is in the strong operator closure of #'(.’). Now
since the representation 7 of .& on £# is non-degenerate, we can
find a net & of elements of . such that.z(§,) converges strongly
to the identity operator and ||z(&)|| £ 1. The same will then be
true of m(&%,). But if we let {, = J(¢%,), then, setting ¢t =0 in
Lemma 5.10 we see that ;€. and that #'({,) = Jr(¢,)J, which
also converges to the identity. Thus (') = n(.’).’ is dense in
57, so that property 3 holds.

To show that .o’ is a left Hilbert algebra, we must show that
if 2" denotes the (closed) real subspace of 5% spanned by the 7°on
for ne.o7’, then %" Ni2¢” = {0}. But if { = 9oy then {* = so
that, as seen earlier, { €1.97"*. Thatis, ¥’ S +.2*. But % + 1.5
is dense, and so % * N 4.9 = {0}. Thus also " Ni.%" = {0}.

Finally, we show that 7'(.%7”) is strongly dense in (). Let
2'e (') and let {,ne.o7’. Then for £e .o we have

'(Q)a'n' ()¢ = 7' (Q)a'w(&)n = n(@)n'({)x'n
(@' Q@' ())*E = n'(n)* " *n (&)L = n(@)m'(n)*a"*C .

It follows from the definition of .’ that #'({)2'n€ .o’ and
(@' (Qa'n) = 7'’z () .

Thus 7#'(Q)z'7’'(n) e n(.&7"). If we now let { and 7 run through the
net {; of the previous paragraph, we see that 7'({,)2'7'({;) converges
strongly to 2’. Thus 7'(.&”) is strongly dense in &£ ().

Actually, we can now prove that 27 = 1.9, so that the J
corresponding to &7’ is the same as that for .o while the 4* cor-
responding to .o’ is the 47* for .&% The proof of the first part
of the next lemma is inspired by the proof of Lemma 3.4 of [13].

LEMMA 5.12. 9% is the closure of the set of self-adjoint ele-
ments of &, and F = 1.7
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Proof. Of course .97 is contained in the closure of the set of
self-adjoint elements of .%4 Suppose, conversely, that ée .o with
g =¢, Now if p is any real polynomial with no constant term,
then p(n(¢))ée %%, as is seen by real polarization. But we can ap-
proximate the range projection, ¢, of #(¢) in the strong operator to-
pology by such n(z(£)), and so e €. 2. However, for any e &’

w'()es = ex’(n)e = e () = w(@)n = 7' ()¢,

and so, since we now know that #’ is nondegenerate, e£ = £, Thus
e

To show that & = ¢.9¢™*, note first that since we know that
&' is a left Hilbert algebra, we can apply to .’ the result just
proved to conclude that .2 is the closure of the set of self-adjoint
elements of .o’. Thus it suffices to show that the set of self-
adjoint elements of .7’ is dense in ¢.2¢"*. That this set is contained
in 9.7+ was discussed just after Proposition 5.3. That this set is
dense follows immediately from Proposition 5.10 (with ¢ = 0) and
the remark just after Proposition 2.2.

Since it follows that the J for .o’ is the same as that for .o
while the 4 for .’ is the 47* for .%7 we can now easily obtain
the main results.

THEOREM 5.13. Let & be a left Hilbert algebra. Then
JA () = A() , 42 A ()L = A() for all real t.

Proof. From Lemma 5.10 we obtain
AT P ()4 < P () .
Then by symmetry
LI A (L S A(7)

But £(¥') = £ () by Lemma 5.11. From this the desired re-
sults follow.

The following is a sharpening of Lemma 5.10.

THEOREM 5.14. Let &7 be a left Hilbert algebra. If e .
then A%JEe 7" for all real t, and

T(4UTE) = A TR(@T4,  (4HTEY = ATE

Proof. It suffices to prove the theorem when & = &, Now if
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p is any real polynomial with no constant term, then it follows from
Lemma 5.10, as in the proof of Lemma 5.12, that 4“Jp(x(¢))¢e o,
and that for any 7€ .7 we have

74 Tp(@@)E = 4“Tp(EE)7EA .

If we then let the p(?t(&)) approximate the range projection, ¢, of
w(£), so that e£ = & as in the proof of Lemma 5.12, we obtain

T ATE = L4Tn(@)JT4 .

The desired result now follows from the definition of .&".

From Theorem 5.14 applied to .7 as well as &’ we can easily
obtain the results about achieved (i.e. full) left Hilbert algebras con-
tained in [18]. We include them here for the readers’ convenience.

Since .7’ is a left Hilbert algebra, we can define .o7"" = (.7')".
If £e .57 then for any ne .’ we have

T’ = x@)n, THE =n&)*n,

so that o7 < .97”, and it is consistent to use the notation 7= and %
for the representation and involution of .&7”. Of course the left
von Neumann algebra of .o is again LA(¥') = LA(¥).

One can also form & = (.%7")'. But if e .97", then for all
te " we have

@ =x'(ME, w@n =r'(H*E.

Since &7 < 7", this also holds for &€ .97 and thus »e€ .%7’. Hence
" = 7', Similarly """ = 7", ete.

A left Hilbert algebra is said to be achieved (or full) if &7 =
7", The remarks just above show that .7’ is always achieved.
Also, 7" is achieved, so that any left Hilbert algebra is contained
in a left Hilbert algebra .%7” which is achieved and is such that
FA() = £ ("), Applying Theorem 5.14 successively to & and
' we obtain

THEOREM 5.15. If .7 is an achieved left Hilbert algebra, then
J&7 = &', and

w'(JE) = Jm(&)J for all E€
Furthermore, 4% .7 = &7 and for £€ &
w(448) = A4m(&)4™*  for all real t.

6. Appendix. In this appendix we investigate the relation be-
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tween our operators R, T,J and the traditional operators of the
theory, namely S, F and 4. As in §2 let 97" and & be the (closed)
subspaces of a real Hilbert space 57 satisfying the nondegeneracy
condition that 2" N & = {0}, and 2% + & is dense. Let P and
@ denote the orthogonal projections on 2" and & respectively, and
let R=P+ @, TJ=P — Q.

Now we can also associate to the pair (9%, &) certain (usually)
unbounded operators. We already mentioned in §2 the operator S,
whose domain, D(S), is % + & and which is defined by

SE+n)=¢—1n for Eeo7, ne A

Then S is a closed, densely defined, operator. Now since the pair
(&#t, 977+) also satisfies the nondegeneracy condition, we can define
an operator F' whose domain, D(F), is &+ + 2, and which is
defined by

FE +n)=¢&—n for §ert, nez™.

Again F is closed and densely defined. The operators S and F' cor-
respond to the traditional ones of Tomita-Takesaki theory. Their
relations with R, T and J are given by:

PROPOSITION.
(1) F=JSJ, F=8*
(2) If £eD(S), then (2 — R)SE = JTE,
If ne D(F'), then RFn = JTn.
(8) If 4= (2 — R)R™, then we have the polar decompositions

S=J4", F=J47*.

Proof. According to Lemma 2.8 J is an orthogonal self-adjoint
operator which maps the pair (°7; &) to the pair (&*, #™*), and
so it is apparent that F = JSJ. For £€ .57, ne€ &, & e ¥, ne %™+
we have

<S(S =+ 7])’ &+ 771> = <E -n&+ 771> = <5, 51> - <7]9 771>
=<S+77y51—771> :<$+7]’F(§1+7]1)> .
Thus FF < S*. On the other hand, if { € D(S*), then

E=00=8E+1,0=¢+780

for all £€. 22" and e &~ If n = 0 this implies that { — S*{e %™,

while if & = 0 it implies that { + S*{ e &¥*. Consequently { € &¥' +

22+, Thus D(S8*) = &+ + 2, so that F = S*. This proves part 1.
Let ¢€ 9% and ne€ <. Then
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C-RSE+N=2—-P—-Q)—7
=1-P)e—N+A-QE¢—-—nN=—-A-P+Q1A—-Q)
=—Q@—-—Pm+P—-QE=P—-QC+n=JTE+7).

This proves the first equation of part 2. The second is proved in a
similar way.
From part 1 we have

(JS)* = S*J = FJ = JS,

so that JS is self-adjoint. On the other hand, part 2 shows that if
e D(S) then RJS¢ = Té&, or, since T = (2 — R)"*R"".

R7?JSE = (2 — Ry’

If we set 4= (2 — R)R™!, this implies that &e D(4%), and that
JS C 42, But by the maximality of self-adjoint operators, we must
have equality. The second equation of part 3 can be proved in a
similar way, or by using the relation JA4Y%J = 472,
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