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CALCULATIONS OF THE SCHUR GROUP

J. WILLIAM PENDERGRASS

Let the field K be an abelian extension of the rational
field Q. The Schur group of K, S(K), consists of those classes
in the Brauer group of K which contain an algebra isomor-
phic to a simple component of a rational group algebra QG
for some finite group G.

Suppose that K has a cyclic extension of the form Q(ζ)
where ζ is a primitive nth root of unity. In this paper we
calculate the 2-part of S(K) where K contains the fourth
roots of unity.

An interesting facet of these results is that in some cases certain
local indices of classes in S(K) are tied together. That is, a class
in S(K) must have a nontrivial local index at an even number of
the primes in a certaiji set. The tying together of local indices in
these fields is caused by quadratic reciprocity and is not found in
the g-part of S(K) where q is an odd prime number.

Let [A] be the class in the Brauer group of K which contains
the iΓ-central simple algebra A. The Hasse invariant of [A] at a
prime © of if is denoted inv® [A]. Benard and Schacher [2] showed
that each class [A] in S(K) has uniformly distributed invariants.
That is, if the index of [A] is /, and σ(sz) = ej where ε7 is a primi-
tive Ith root of unity and σ e Gal (K/Q), then inv© [A] = λ invσ(@) [A]
for each prime © in K. A corollary of this result is that the local
index of a class [A] in S(K) is the same at each of the primes of
K which divide a single rational prime p. This common index is
called the p-local index of [A],

Set L = Q(ξ) where ξ is a primitive 28nth root of unity, (2, n) = 1.
Let K be a field contained in L such that Gal (L/K) = (φ) is a cyclic
group of order 2*ί', (2, tf) = 1. Let ζ be a primitive 28th root of
unity and suppose that ^(ζ) = ζh where h = 52r~2. Thus the 2rth
roots of unity lie in K. A theorem of Benard and Schacher [2]
implies that the exponent of the 2-part of S(K) is at most 2r.

Observe that there can be at most one rational prime p with
even ramification index in L/K. This follows from the fact that the
inertia group of a divisor of p is contained in Gal (L/K(ε)) where ε
is a root of unity in L having largest possible order not divisible
by p. If p is such a prime, then let:

2k exactly divide p — 1,
2C exactly divide e(p, L/K),
2d exactly divide f(p, K/Q),
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where e(p, L/K) is the ramification index of p in L/K and f(p, K/Q)
is the residue class degree of p in K/Q.

Now suppose that q is a prime which does not divide 2n. We
shall use the following notation:

2Hq) exactly divides q — 1,
2Hq) exactly divides f(q, K/Q),
2a(q) exactly divides A(q) where φMq) == [L/K, q] is the Frobenius

automorphism of q in L/K,
2viq) exactly divides V(q) where hΛ(q) - qf«>w = 7(g)2s.

In addition, for any prime p we denote $*<*>*'& — 1 by Γ(p).
Finally let λ — max {s — t, 0}.

THEOREM. T&e 2-part of S(K) consists of those classes [A] in
the Brauer group of K which have uniformly distributed invariants
which satisfy the following conditions.

(I) If q does not divide n, then the q-invariants of [A] are
integral multiples of l/2/(g) where

_ ίmax {r - b(q), /{q) - v{q), 0} if /{q) £ r - λ

(max {r — b(q), r — λ — v(q), 0} if /(q) ^ r — λ .

(II) If p divides n, then the p-ίnvariants of [A] are integral
multiples of l/27(??) where

(0 if p — 2 or if e(p, L/K) is odd

(max {c — d + r — k, c — d Λ- s — t — λ, 0} otherwise.

(III) Suppose that p divides n and I(p) Φ 0. If-k>s,kΦt,
and 2k+s~t~x is greater than the power of 2 which divides pf — 1 for
all primes pr Φ p which divide n, then the q-invariants of [A] are
odd multiples of l/2I(g) for an even number of primes q in the set.

{p} U {q: (q/p) = - 1, (?, 2m) = 1, and s(q) ^ r - λ}

where (q/p) is the Legendre symbol.

Proof. Let Kr z> K be the field such that [L: K'\ = 2 f. Then
Lemma 2 of [5] implies that the set of permissible invariants for

-elements in the 2-part of S(K) is exactly the set of permissible
invariants for elements in the 2-part of S(K'). Thus we may assume
that [L: K] = 2* without any loss of generality.

Now we must determine the invariants of the crossed product
algebras of the form

[L(eq)/K, α] = Σ L(6v)uσ , σ e Gal (L(εq)/K)

where eq is a primitive qth root of unity, q is an odd prime which
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does not divide n9 and a is a factor set from Gal (L(eq)/K) x
Gal (L(εq)/K) into <ζ>. The multiplication in these algebras is given
by

uσuτ = a(σ, τ)uστ ,

uσw = σ(w)uσ ,

for (7, τ e Gal (L(εq)/K) and w 6 L(εg). We know from Theorem 1 of
[5] that the classes in the Brauer group of K which contain these
classes generate the 2-part of S(K).

Let Δq = Aq{x, y, z) be the algebra (L(εq)/K, a) where the values
of a are in <ζ> and q is an odd prime not dividing n. Set Gal (L(eq)/L) =
<7>. The factor set a is determined by the integers x, y, and z where

UγUφ = ζXUφUγ ,

We must have

uφ(ζ*) =

Thus

(a) 2s~r divides z,

(1) (b) 2̂  divides x,

(c) τ/(A — 1) + x(q — 1) = F2S for some integer Y.

The Frobenius automorphism of q in LjK is ^^(5). Thus

Hence

hAiq) _ ?/(gfi/«) = V2* for some integer F .

Now applying Theorem 3 of [6] we get that the g-local index
of [Aq] is given by

(P{q){q - 1), q - 1)

where

(b) = Iy
h — 1 L a — 1
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Thus, since 2r exactly divides h — 1, the g-local index of [Δq] is
max{2r~^, 1} where 2μ exactly divides YΓ(q)/(q - 1) - xV.

We know that 2b{q) exactly divides Γ(q)/(q — 1). Moreover, we
may make Y either odd or even without changing the power of 2
which divides x. If /{q) S r — λ, then equation (l)(c) implies that
2r~l{q) is the smallest power of 2 which can divide x. If / Ξ> r — λ,
then 2χ is the least power of 2 which can divide x. Thus, the maxi-
mum g-local index of [Δq] is 21{q) where

= (max {r - b(q), /(q) - v(q), 0} if /(q) £ r - λ

(max {r - b(q), r - λ - v(<?), 0} if /(<?) ̂  r - X .

Now observe that for any prime q' which does not divide 2nq,
q is unramified in L(eq)jK. Thus the g-invariants of \Δq\ must be
zero. This means that the only classes amongst the generators of
the 2-part of S(K) which have non-zero invariants at the primes of
K dividing q are those classes of the form [Jq(xf yf z)\. Thus we
have proved (I).

If there is no prime which ramifies in LjK, then [Aq] can have
nonzero invariants only at the primes of K which divide q. If 2
ramifies in L/K, it must be the only prime which ramifies in L/K.
So, since the 2-invariants of any class in S(K) must be zero by the
results of Yamada [7], the only nonzero invariants that [Δq] can have
are at the primes of K which divide q. In both of these cases we
are done and the theorem is proved.

So for the remainder of the proof let p be an odd prime which
is ramified in L/K. Set φgfΎ9 equal to a Frobenius automorphism
for p in L(sq)/K. Observe that φ2t~c generates the inertia group of
p in L/K where 2C = e(p, LjK).

Applying Theorem 3 of [6] we get that the p-local index of [Δq]
is given by

2C

), 20

where

x g + z ] .
2s L y h - 1 2" J

Thus the p-local index of [Δq] is max {2s""', 1} where 2' exactly divides

We know that 2*"° exactly divides (h2t~c - l)/(h - 1), that 2k+d~c

exactly divides Γ(p)/2% and that 2s~r is the least power of 2 which
divides z. Hence we need to find the smallest power of 2 which
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divides xg.
We know that g must be an f(p, K/Q)th power, so picking q

such that (q/p) = — 1 we get that min{2d, 2Aq)} is the smallest power
of 2 which can divide g. If /{q) ;> r — λ, then 2λ must divide x,
and if /(q) <̂  r — λ, then 2r~^9) must divide x. Hence we find that
min {2x+d, 2r} is the smallest power of 2 which can exactly divide xg.
Thus the maximum p-local index of a class in the 2-part of S(K) is
21{p) where

I(p) = max {c — d + s — t — λ, c — £ + s — r, c — d + r — k, 0}

= max {c — c£ + s — ί — λ, c — d + r — &, 0}

since c <̂  ί — (s — r). This proves (II).
If I(p) = 0, then we are finished. So assume for the rest of the

proof that I(p) > 0.
Now assume that k> s, k Φ t, and 2k+s~t~λ is greater than the

power of 2 which divides pf — 1 for all primes pf which are unequal
to p and which divide n.

Suppose that the p-local index of [Aq{x> y9 z)] is 2Iip). Now s —
t — λ > r — ί; so I(p) — c — d + s — t — λ. Thus 2λ+d exactly divides
xg, indeed 2λ must exactly divide x and 2d must exactly divide g.
Thus /(q) ^ r — λ and (q/p) = — 1. Further, since | ) Ξ 1 mod 4,
(p/g) = — 1 by the law of quadratic reciprocity. This, together with
the hypotheses, implies that b(q) = k — t + a(q) where 2b{q) exactly
divides f{q, K/Q) and a(q) exactly divides A(q). Hence /(q) + b(q) >
r + a(q). So, since 2Aq)+Hq) exactly divides qf{q) - 1 and 2r+a{q) exactly
divides hA{9) — 1, we get that r + a(q) = s + v(^). Thus

r — δ(g) = r — fc + έ — a(q) < r — λ — α(g) ̂  r — λ — v(g) .

Hence I(q) = r — λ — v(^) and the #-local index of [Λ(^> V* z)\ i s 2Z(9)

Observe that I(q) > 0 since the hypotheses insure that a(q) < s — λ,
so that #(<?) < r — λ.

Now let q be a prime such that (q/p) = — 1, (#, 2w) = 1, and
/(#) ^ r — λ. Suppose that the g-local index of [Aq(x, y, z)] is 2 I ( 9 ).
We have seen that I(q) is positive and is equal to r — λ — #(</) in
this instance. Hence 2λ must exactly divide x by equation (2)(b).
Thus the p-local index of [Δq(x9 y, z)] is greater than or equal to
2°-d+s~t-χ. However I(p) = c — d + s — t — λ > 0 , so the p-local index
of [Aq(x, y, z)] must be 2Iip).

We have now shown that under the hypotheses of (III), the p-
local index of [Δq] is 21{p) if and only if (q/p) = - 1, s(q) ^ r - λ,
and the g-local index of [Aq\ is 2Uq). This proves (III).

We now need to show that the restrictions on the invariants of
elements in the 2-part of S(K) given in the theorem are the only
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restrictions on the invariants of elements in the 2-part of S(K).
First assume that the hypotheses of (III) hold. Let F =

Q(ep, ε2.+i, V~p) and let σ be the element in Gal(F/Q) such that

σ(ep) = ε-1, σ( V~p) = - #"p, and <x(ε2S+i) = (6,.+i)' where /3 = 52S"2.
Such a σ exists since p does not have a fourth root in <2(εp, ε2.+i).
Let q be a prime not dividing n whose Frobenius automorphism in
F/K is σ. There are infinitely many such primes by the Tchebotarev
density theorem. This means that 2s exactly divides q — 1, 2 exactly
divides f(q, Q(ep)/Q)f and 2 s"1 exactly divides f(p, Q(eq)/Q). Thus the
Frobenius automorphism of q in L/K is an odd power of φ2t~λ if
f(q, K/Q) is odd, and it is 1 if f(q, K/Q) is even. So we have that
a(q) = t - 1 if /(?, JSΓ/Q) is odd, and a(q) - 0 if /(?, JSΓ/Q) is even.
Further /(q) ^ r — λ.

Now the algebra class [ Jff(2\ 0, 0)] has g-local index 1 if f(qf K/Q)
is even and [Δq{2\ 28"1, 0)] has g-local index 1 if f(q, K/Q) is odd.
This follows from equation (2)(a). Now both of these algebra classes
have p-local index 27(2>)~1 since 2λ+d+1 divides xg in both cases. Thus
the algebra class which has local index 2/(3))~1 at p and local index 1
at all other primes is in S(K). This implies that there are no further
restrictions on the 2-part of S(K) in the case where the hypotheses
of (III) hold.

Now assume that either k<,sork — t>s. Let ψp be a gener-
ator of Gal (L/Q(ζ9 εn,)) where (n*, p) = 1 and n/n* is a power of p.
Also set ψ equal to the automorphism in Gal (L/Q(en)) which sends
•ζ to ζ5. Now let q' be a prime whose Frobenius automorphism in
L/Q is fpψ

2r+t~~k~2. This implies that (q'/p) = (p/g') = - 1, that
2r+t~k exactly divides qf - 1, and that 2β+*"* exactly divides /(«', ίΓ/Q).
Consider the algebra class [Δqf(xQ, y0, 0] where

Lq' - U

and

mod 2s

hA«f) - 1 Ί
Λ — 1 J

Observe that xύ(qr — 1) + yo(h - l ) = 0 mod 2s so that equation (l)(c)
is satisfied. Now we have that

Hence the g'-local index of [Δq>(xQi y0, 0)] is 1. Further, 2λ exactly
divides x0, 2

r~~λ divides qf — 1, and (qf/p) = — 1. Thus the p-local
index of [Δq,(xQf y0, 0)] is max {2c-<*+8-ί~*, 1}.

Now consider the algebra class [Δq,(0, 0, 2 s" r)]. Its g'-local index
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is 1 and its p-local index is max {2c~d+r~k, 1}.
Thus S(K) contains the algebra class with local index 21{p) at p

and local index 1 at all other primes. This implies that there are
no extra restrictions on the 2-part of S(K) when either k <; s or
k = t.

Finally assume that k> s, k Φ t, and that there is a prime
p' φ p which divides n such that 2k+s~t~λ divides pf — 1. Let ψp, be
a generator of Gal (L/Q(ζ, εn,)) where (n\ pr) — 1 and n/n' is a power
of p'. Let ψp be as above.

Let q" be a prime whose Frobenius automorphism in L/Q is
α/vψy. Thus (q"/p) = — 1 and 2s divides q" — 1. Further observe
that if β is the smallest integer such that (ψPψP>)β 6 Gal (L/K), then

2k+s-t-x m u s t divide β. Hence a{q") ^ s - λ. Thus [4^(2*, 0, 0)] has
g"-local index 1 and p-local index 2c~d+s~t~λ. Since k > s ^ r, we
have that I(p) = c — d + s — t — λ. So S(iί) contains an algebra
with local index 2Iip) at p and local index 1 at all other primes.
This implies that there are no further restrictions on the 2-part of
S(K) in this case.

This completes the proof to the theorem.
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