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CERTAIN HYPOTHESES CONCERNING L-FUNCTIONS

JOHN B. FRIEDLANDER

Some conditional results are discussed concerning Diri-
chlet L-functions. In particular, a method is introduced
which on the one hand gives a new proof of a result of
Wolke concerning the least prime quadratic residue, and on
the other hand, gives a result on the least quadratic non-
residue which does not seem to follow from previously known
arguments.

Let q be an odd prime, χ(n) the Legendre symbol (n/q) and
L(s, χ) the Dirichlet L-f unction pertaining to χ. Let Y+ (respectively
Y_) denote the least prime p such that χ(p) = 1 (respectively —1).
Various results are known connecting together:

(A) zero-free regions for L(s, χ)
(B) the magnitude of L(l, χ)
(C) the magnitudes of Y+ and Γ_.
Roughly speaking, a statement about any of these implies a cor-

responding statement about the subsequent ones.
In the case of (A) => (B), we have the following theorem of

Little wood [8].

(1) Assume L(s, χ) Φ 0 for σ = Re s > 1 — θ(q). There exist
positive absolute constants c± and c2 such that

\ ^ c2 log log q
) <log log g < M 1 ' Z ) < θ(q) '

Actually, Littlewood proves this only for θ{q) = 1/2 (the Extended
Riemann Hypothesis) but his method extends easily (as remarked
by Elliott [4] for the lower bound) to give the stated result. A brief
sketch of the method is given in Lemma 11.

In the case (A) ==> (G), there is the result of Rodosskii [9]:

(2) Let ψ > e and assume L(s, χ) Φ 0 for σ > 1 — ψ/log q. There
is a positive constant c such that

(Actually, Rodosskii's assumption is somewhat weaker, postulating
a zero-free region only up to a certain height.)

In the case of the Extended Riemann Hypothesis (ψ = 1/2 log q),
we have the slightly stronger result of Ankeny [1]
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Y- < log2 q

and a similar result for Y+.
We shall be primarily concerned with results of the type (B) =>

(G). The first result of this nature seems to be that of Linnik and
Renyi [6]:

(3) Given ε > 0, there exists c(e) such that, if

L(l, χ) < c(ε) log q , then F_ < q .

The idea of the proof of (3) may be summarized as follows.
Let X = q2 and α(m) = Σίi»%(d). As is well-known, Σ m α Φ ^
XL(1, χ) and, on the other hand, since a (m) ^ 0, this sum is
^ Σm^ipi^p^_ τ(m) where τ(m) is, as usual, the number of divisors
of m. If Γ_ Ξ> qε for fixed ε, this latter sum can be given a lower
bound of the form /(ε)Xlog Y (cf. 3.4.8 of [5]), and this in turn
forces a lower bound on L(l, χ).

More recently, Wolke [11], improving an earlier theorem of
Elliott [4], gave a somewhat analogous result for Y+.

(4) logΓ+«(logg/L(l,χ)) 1 / 2 .
Hence, if L(l, χ) > (t(q)/logq), then Y+ ^ g'<*<«»-1'8.
Although it is somewhat hidden in Wolke's proof, the ideas

involved are essentially the same as for (3). Wolke, following
Elliott, based his proof on the expression

used by Linnik and A. I. Vinogradov [7] in their unconditional (but
ineffective) proof that Y+ < g1/4+ε. However, with little additional
effort, the proof can be based on ^m^xa(m). The same incidentally
can be said about the result of Linnik and Vinogradov. Indeed,
with X — q1/4+ε their Theorem 2 gives, for some δ > 0,

J > ( m ) = XL(1, χ) + 0{Xι~δ) .

The assumption χ(p) = — 1 for p ^ X gives Σm^x α(w) = Σm^̂ x 1 ^
X1/2, and, using SiegeΓs theorem, a contradiction ensues.

Returning to (4) we see that, if one may take t(q) ->oo as ^
oo, then one has the estimate Y+ < qε. In this sense, the result is
an exact analogue of (3).

A further consequence is that, for given c > 0, there exists cr > 0
such that if Y+ > c', then L(l, χ) > c log q.

The exponent —1/2 of t(q) should be difficult to improve, since
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if it could be replaced by a < — 1/2, it would follow from the trivial
estimate Y+ :> 2 that L(l, χ) = o(log q). Moreover, if for some
β{q) —> 0 as g —> oo, the assumption L(l, χ) > t(q)β(q)jlog q were suf-
ficient, then one could easily deduce that the estimate Y+ < qε holds
apart from those q for which L(s, χ) has an exceptional zero.

The result (3) seems somewhat weak in comparison with (4). By
analogy, one might expect:

(5) CONJECTURE, log Γ_ < (L(l, χ) log q)u\

Hence, if L(l, χ) < \ogq/t(q), then Γ_ ^ q^^~ι/\
From the point of view of the proof of (3) as outlined above,

the stronger result (5) is not obtained because the function /(ε)
tends to zero with ε, far too rapidly. Moreover, in view of the
trivial bound ΓL ^ 2, (5) would immediately give L(l, χ) > I/log q,
so that one must expect it to be very difficult.

Taking an even more hopeful view one has:

(6) CONJECTURE, log Y_<L(1, χ) (log log q)1+ε which almost (but
not quite) corresponds to taking — 1 as the power of t(q) in (5).

If one assumes the Extended Riemann Hypothesis, then for ε ^
1, (6) follows easily from (1) and (2).

The results of the above type can be examined by a slightly
different approach (than that used in proving (3) and (4)) which can
be outlined as follows.

Let g(m) and h(m) be totally multiplicative functions having
absolute value ^ 1 . One might expect that if Σ w ^ x g(m)/m is in
some sense small, then so is Σm^ipim^F^W/m and conversely.
Hence if h{m) — g(m) for all m ^ Y, then an upper bound for
Σm<;χ g(m)/m should lead to an upper bound for ΣTO^X h(m)/m. For
example, letting g(m) — λ(m) (the Liouville function), the prime
number theorem gives an upper bound for the former sum. Choosing
Y < Y+ and h(m) = χ(m), we expect an upper bound for Σm^x X(m)/m
and thus, if X is not too small, for L(l, χ). In similar fashion one
can apply this method to the problem of estimating Y_. What is
somewhat surprising is that, whereas in the case of Y+, the method
gives precisely the same result as did the previous one (i.e., a new
proof of (4)), in the case of 7_, a different type of result is ob-
tained, which is more in the nature of (5) (although of course
weaker), and which, as far as one can see, is not easliy shown to
be equivalent to (3).

(7 ) LEMMA. For Y > 3/2,
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λ(m)

p\Zip^γ m *°£ "^

Proof. Letting u = log X/log Yy we distinguish two cases.

Case I. u < exp (el/log Y). Hence c is a positive constant as-
sociated with the error term in the prime number theorm. (Actually,
the more refined versions of the prime number theorem allow us to
take c to be any positive constant, but this is unimportant for our
purpose.) In this case, the result is a consequence of the results of
Levin and Fainleib (Theorem 3.2.4 of [5]) and we even have, uniformly
for 1 + ε £ u < exp (el/log Γ),

piZ%γ m 61ogΓ

where ω(u) is the continuous function defined by w(u) = u"1 for 1 <
u ^ 2 and (^ω(^))' = ω(u — 1) for u > 2. (For ^ ^ 1 + ε, we do not
get an asymptotic formula, but the upper bound is straight-forward.)

Case II. u ^ exp (el/log
Let φ{X, Y) - Σ « » P I ^ > F 1 and ψ(X, Y) = Σ MPI ^ F L We

have,

Σχ ^ = Σ̂  ^ Σ / ( δ ) .

Changing the order of summation gives

Applying partial summation and well-known upper bounds for ψ(X, Y)
(e.g., 1.6 and 1.7 of [3]) we find that (for case II) the error terms
are O(l/log2 Y). Combining the above with the Legendre formula

φ{x, Y) = x Σ ^ψ- + θ(ψ(x, Y))
d^x a

we have

v λ(m) _ π2

Using the known estimates for φ{X, Y) available either from
the sieve or from the work of de Bruijn [2], the result follows.

REMARK. In applying the Sieve of Eratosthenes, one has the
formula
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φ(X, Y) - X Σ
d^X

μ(d) _
d d^X

and one would like to know that the right hand side is small. Un-
fortunately, it is only in view of the prime number theorem itself
that one can say that the right hand side is, for X1/2 <; Y ̂  X1"*,
bounded above by c(X/log2 Y). Applying the argument of the pre-
vious lemma with λ replaced by μ, one sees that the upper bound

Sr

holds uniformly for 1 + ε ̂  Y

X

log2 Y

(8) LEMMA. Let 3/2 ̂  Y <; X. Let h(m) be totally multipli-
cative with I h(m) | rg 1 for all m and h(m) = λ(m) for all m t=== Y*
Then,

Y h{m) ~ logX
&* m log2 Y "

Proof. We have

miX

λ(m)
m

v λ(m)

^ /

m^Xld

λ(m)

1

The third and fourth terms are estimated by means of partial sum-
mation, and the bounds <p(t, Y) < t/log Y and £ m ^ X(m)/m < I/log2 ί.
Each term is thus < I/log Y. That the same fate befalls the first
term is seen from the previous lemma. Applying that lemma and
partial summation to the second term gives the bound log X/log2 Y
as required.

REMARK. In view of the asymptotic nature of (7) it is obvious
that any inprovement must stem from (8), but it seems difficult to
accomplish this without some strong additional assumptions.

(9) THEOREM, log Y+ < (log q/L(l, χ))1/2.

Proof. Choose X = q2, Y < Y+ and h(m) = χ(m) in the previous
lemma and note that Σ ^ i X(m)/m = L(l, χ) (1 + o(l)) for this choice
of X.

Similarly, choosing h(m) = λ(m)χ(m) and Y <Y_, we have:

(10) THEOREM. X(m)χ(m)/m < log X/log2 Y_.
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At this point, one would like to use the sum on the left as an
approximation for ζ(2)/L(l, χ). To do this it seems necessary (to
avoid having to choose X exceedingly large) to postulate a zero-free
region for L(s, χ).

(11) LEMMA. Let c > 0 be given, s — σ + it, τ = \ 1| + 2, and
assume L(s, χ) has no zeros for σ > 1 — c log log (qτ)/\og (gτ). Then,
there exists cι> 0 depending only on c, such that, on the contour
σ0 = 1 — c log log (qτ)/2 log (qτ), we have | log L(s, χ) | < c, log log (qτ).

Proof. This is a slight modification of some arguments of Lit-
tlewood, and so we give only a sketch. All implied constants depend
at most on c.

Step 1. For σ ̂  σ0, \L'(s, χ)/L(s, χ)\ < log (qτ). For σQ ̂  σ ̂
1 + c log log (qτ)Jlog {qτ), this is proved by the method of [8], (Lemma
5). For σ> 1 + c log log (gτ)/log (qτ), it follows from | L'(s, χ)/L(s, χ) \ <
Σmsa Δ(m)\ma by means of partial summation.

Step 2. For 0 < δ ̂  1, and Λ(m) = Λ(m)/log m,

log L(l + iί, χ) = Σ ̂ l (

This follows, using Step 1 in the argument of Theorem 14.6 of [10].

Step 3. Using Step 2 and the argument of Theorem 14.8 of
[10],

I log L(l + it, χ) I ̂  log log N + O(d-le~dN) + 0(δι~^ log (qτ)) + 0(1) .

Choosing N = (gτ)2^, δ — (gτ)~^ where A (depending on c) is chosen
so that S1-"0 < (log (gτ))"1, we get

|logL(l + it,χ)\ <loglog(qτ) .

Using this and Step 1, (11) follows from the relation

log L(σ0 + it, χ) = log L(l + it, χ) - Γ ̂ ±^LΆdσ .
Jσ0 Lt(σ + it, χ)

(12) THEOREM. Let c > 0 be given and assume L(s, χ) has no
zeros for σ > 1 — c log log (qτ)/log (qτ). Then,

logΓ_«(L(l,χ)loggr ,

where the implied constant depends on c.
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Proof. From (10) and partial summation,

m \ X(m)χ(m) ^ logX
m

Writing the left hand side as

_ 1 \ ζ(2s + 2) Xsds
q 2 s + 2 12πi Js-ί Λ q2s+21 L(s + 1, χ) φ + 1) '

shifting the line of integration to σ = σ0 — 1, and choosing X =
where c2 > 2(cx + 3)/c, the previous lemma gives this to be

C(2) 0
V W 2 a I '

Using the trivial bound Γ_ < q, 1/L(1, χ) < log X/log2 Γ_ and the
result follows.

REMARKS. Although we have investigated the previous method
only to the extent of determining an hypothesis sufficient to establish
the estimate (5), it is clear that by varying the choice of X in the
above proof, different hypothetical zero-free regions will give other
results of this nature.

Furthermore, by using (2) in conjunction with the lower bound
in (1), we get results of type (12) immediately. They seem how-
ever to be weaker than those obtained by the above method. For
example, to obtain the estimate (5) by these means it is necessary
to postulate a zero-free region of width c log log q/(log g)1/3.

Conversely, using (12) together with the upper bound of (1), we
get a result of the same nature as (2), but here again it is weaker
than that obtained by Rodosskii's method.

REFERENCES

1. N. C. Ankeny, The least quadratic nonresidne, Annals of Math., 55 (1952), 65-72.
2. N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes,
Proc. Kon. Ned. Akad. Wetens A, 53 (1950), 803-812.
3. , On the number of integers ^ X and free from primes > Y, Proc. Kon.
Ned. Akad. Wetens. A, 54 (1951), 50-60.
4. P. D. T. A. Elliott, A note on a recent result of U. V. Linnik and A.I. Vinogradov,
Acta Arith., XIII (1967), 103-105.
5. B. V. Levin and A. S. Fainleib, Application of some integral equations to problems
of number theory, Russian Math. Surveys (22), 3 (1967), 119-204.
6. Yu V. Linnik and A. Renyi, On certain hypotheses in the theory of Dirichlet
characters, Izv. Akad. Nauk. SSSR Ser. Mat., 11 (1947) 539-546.
7. A. I. Vinogradov and Yu. V. Linnik, Hyperelliptic curves and the least prime
quadratic residue, Dokl. Akad. Nauk. SSSR, 168 (1966), 259-261.



44 JOHN B. FRIEDLANDER

8. J. E. Little wood, On the class number of the corpus P(V—K), Proc. London Math.
Soc, (2) 27 (1927), 358-372.
9. K. A. Rodosskii, On nonresidues and zeros of L-functions, Izv. Akad. Nauk. SSSR.
Ser. Mat., 20 (1956), 303-306.
10. E. C. Titchmarsh, The Theory of the Riemann Z'eta-function, Oxford, 1951.
11. D. Wolke, A note on the least prime quadratic residue (mod p), Acta Arith., XVI
(1969), 85-87.

Received October 21, 1975.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY




