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ON SPACES WHICH HAVE A CLOSURE-PRESERVING
COVER BY FINITE SETS

YUKINOBU YAJIMA

The purpose of the present paper is to give a characteri-
zation of spaces which have a closure-preserving cover by
finite sets, in terms of hereditary metacompactness and
generalized o-discreteness. Several results with respect to
spaces which have a closure-preserving cover by finite sets
can be deduced easily from our characterization. Moreover,
we can conclude more easily from it whether or not a given
space has such a cover.

1. Introduction. H. Tamano [10] and R. Telgarsky [11] raised
independently the question of whether or not a space which has a
closure-preserving cover by compact sets must be paracompact.
H. B. Potoczny [7] showed that even if a space has a closure-
preserving cover by finite sets, it is not necessarily paracompact.
Thus, the study of spaces which have a closure-preserving cover by
finite sets has been taken up by several authors in [9], [11], [12],
[13] and [14]. In particular, R. Telgarsky [12] gave a necessary
condition and a sufficient condition for a given space to have such
a cover. But each of these conditions is not necessary and sufficient
as we shall show by examples below. In the present paper, we
shall first find a necessary and sufficient condition for a topological
T,-space to have a closure-preserving cover by finite sets. It will
be shown that the necessary condition and the sufficient condition
of R. Telgarsky can be deduced easily from our necessary and suf-
ficient condition. Secondly, we shall prove that it is undecidable
under set theoretic assumptions whether or not a first countable
normal space with a closure-preserving cover by finite sets is metri-
zable.

2. Preliminaries and main theorem. Throughout this paper,
N denotes the set of all natural numbers and all spaces are assumed
to be T\,-spaces.

A space X is said to be weakly o-discrete, if X is the countable
union of discrete subsets {X,:n € N} such that Uz, X, is closed in
X for each neN. A space X is said to be o-discrete ([12], [13]),
if X is the countable union of discrete closed subsets. A space X
is said to be hereditarily metacompact, if each (open) subset of X
is metacompact.

Our main theorem is as follows.
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THEOREM 1. The following are equivalent for a space X.
(@) X has a closure-preserving cover by finite sets.
(b) X 1is hereditarily metacompact and weakly o-discrete.

REMARK. It is easy to see from Theorem 1 that the spaces
which are given by examples in [6], [7] and [14] have closure-
preserving covers by finite sets.

3. Proof of Theorem 1.

LEMMA 2. If a space X has an open cover U = {U(x): xec X}
such that x € Ux) for each € X and U(x) C Uly) whenever xz e Uly),
then § = {F,: xe X} is a closure-preserving cover of X, where F, =
{y e X: x e U(y)} for each ze X.

Proof. Since zeF, for each z€ X, & is a cover of X. Let
YcX. Let €U,y F,. Then there is a point y,€ Y such that
Ux)NF, # @. Choose z€ Ux) N F,,. Since U(z) cU(x) and y, €
U(z), we have y,€ U(x). Hence x e F, C U,cy F',. This proves that
the cover ¥ is closure-preserving.

Let us consider the following two conditions (*), (xx).

Condition (x): X has an open cover Il = {U(z): z € X} such that
(i) x€ U(x) for each ze X, (ii) U(xr) c U(y) whenever z ¢ U(y), and
(iii) W is point-finite in X. ‘
and .

Condition (x*): X has an open cover B = {V(z): € X} such that
(i) z € V(x) for each e X, and (ii) B is point-finite in X, and has a
countable pairwise disjoint cover {X,:n € N} such that (iii) each X,
is a discrete subset and (iv) Uz, X, is closed in X for each n € N.

We shall prove the three lemmas below.

LEMMA 3. The following are equivalent for a space X.
(@) X has a closure-preserving cover by finite sets.
(b) X satisfies the condition (x).

Proof. (a)—(b): Let ¥ = {F..acA} be a closure-preserving
cover of X by finite sets. Put Ulx) = X — U {F.: 2 ¢ F,} for each
zeX and U = {U(x): z€ X}. It is obvious that 1 satisfies (i) and
(ii) of (*). Assume now that there is a point ze€X such that
ord (z, U) = W,. We can choose an infinite number of points z,, x,
«++ e X such that z € U(z,) for each ne N. Choose F,e$ such that
xe€F,. Then we have z,e F, for each ne N. Since F, is finite,
this is a contradiction. Hence 1l is point-finite in X.
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(b) — (a): It is obvious from Lemma 2 and (iii) of ().

LEMMA 4. For every space X, the condition (x) and the condi-
tion (xx) are equivalent.

Proof. (x)—(xx): Put X, = {xeX:ord (z, 1) = n} for eachn e
N. It is obvious that {X,:n €N} is a countable pairwise disjoint
cover of X. Since Ur, X, ={zecX:ord(x, 1) < n}, Ur, X, is closed
in X for each n € N.

Fix ne N and ze X,. We can choose distinct » points z, ---,
%, € X such that {x'e X: 2 e U(x') e} = {x,, -+, x,}. Let ye Ux)N X,.
By (i) and (ii) of (x), ¥ € U(y) c U(x) € N, U(z;). Since ord (y, N) = n,
ye{x, ---, 2,}. Thus X, is a discrete subset of X for each n e N.

(x*)— (x): We use the induction with respect to n. Let P(n)
be the proposition: There are point-finite (in X) collections 1, =
{U(z): x € X;} of open sets for ¢ =1, ---, n such that (a) Ux)N X, = {x}
for each ze X, (b) if j <4, 2€X,, yeX; and zc Uly)ell,;,, then
Ux)cUly) and (¢) Ulx)cV(z) and Ux)N Uizt X; = @ for each
ze X,.

It is obvious that P(1) is true. Assume now that P(n) is true.
By (iii) and (iv) of (x*), we can choose an open neighborhood U(x)
of z for each e X,,, such that Ux)CcV(x), Ux) N X,,, = {«} and
Ux)NUr, X; = @. Moreover, if zeUr, {U: Uel}n X,,,, then
we choose U(zx) such that Ulx)c N {U:xec UeUr,N}. It is possible
since {U:xcUelUx, U} is a finite collection. Put U,,, = {U):
zeX,,}. By our construction and P(n), it is easy to see that
u,-.--,1,,, satisfy the conditions (a), (b) and (¢) of P(n + 1) and
1,,, is point-finite in X. So, X has an open cover J;-, I, such that
u, ..., 1, satisfy the conditions of P(n) for each neN. Put U =
U;-. 1,. By the pairwise disjointness of {X,:n € N}, I = {U(»): z € X}.
The open cover 1 satisfies (i), (ii) and (iii) of ().

LEMMA 5. The following are equivalent for a space X.
(a) X satisfies the condition (**).
(b) X is hereditarily metacompact and weakly o-discrete.

Proof. (a)—(b): It follows from (i) and (ii) of (x*) that X is
hereditarily metacompact. X is obviously weakly o-discrete.

(b) — (a): Let X = Uy, X, such that X, is a discrete subset,
Ur, X, is closed in X and Uz, X, is metacompact for each n e N.
We may assume, without loss of generality, X, N X, = @ for m # n.
Since each X, is a discrete closed subset in |2, X;, there is a point-
finite collection B, = {V(x): x € X,} of open sets for each ne N such
that V(z) N X, = {x} and V(z)c Ur.X; for each 2€ X,. Put 8 =
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Uz ®B,. Then B = {V(z):2xcX}. It is easy to prove that L is
point-finite in X. Hence X satisfies the condition (x*).
By Lemmas 8, 4 and 5, the proof of Theorem 1 is complete.

4. Applications.

LEMMA 6. Fach wmetacompact o-discrete space is hereditarily
metacompact.

Proof. Let X Dbe a metacompact o-discrete space. We may
assume, without loss of generality, that X = UJ;-, X, such that each
X, is a discrete closed subset of X and X, N X, = @ for m # n.
Let Y be an open subset of X. Let 1 be an open cover of Y.
Since X, NY is a discrete closed subset of X, there is a point-finite
(in X) collection B, = {V(z): 2 X, N Y} of open sets of X for each
n e N such that ze V(z), V) N Uz X, = @ and V(x) is a subset
of some element of N for each ze X, NY. Put B =Y, B,. Then
L= {V(x):xc Y} and B is a point-finite open refinement of 11 in Y.
Hence X is hereditarily metacompact.

COROLLARY 7. Fach metacompact o-discrete space has a closure-
preserving cover by finite sets.

This is an immediate consequence of Theorem 1 and Lemma 6.

REMARK. R. Telgarsky proved in [12] (Theorem 5) that each
paracompact o-discrete space has a closure-preserving cover by finite
sets. Corollary 7 generalizes this result. We shall show in §5
(Example 3) that there is a metacompact o-discrete space which is
not paracompact.

Recall that Y is said to be scattered, if each subset Z of Y has
an isolated point in Z.

CorROLLARY 8 (R. Telgarsky [12]). If X has a closure-preserving
cover by finite sets, then X has a countable cover {Y,.n e N}, where
Y, is a scattered closed subset of X and it is the union of n dis-
crete subsets for each me N,

This an immediate consequence of Theorem 1.
COROLLARY 9. The following are equivalent for a space X.

(a) X has a closure-preserving cover by finite sets.
(b) X 1is hereditarily metacompact and has a o-closure-pre-
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serving cover by finite sets.

Proof. (a)—(b): Obvious.

(b) — (a): It is easy to show that the countable union of weakly
o-discrete closed subsets is weakly o-discrete. Hence X is hereditarily
metacompact and weakly o-discrete.

REMARK. Our Corollary 9 has been proved earlier, in [13]
(Theorem 12.1), by R. Telgarsky for the case of X being a metriza-
ble space.

THEOREM 10. The following are equivalent for a space X.

(@) X has a closure-preserving closed cover by compact sets.

(b) X has an open cover N = {U(x): x € X} such that (i) x € U(x)
Jor each xze X, (ii) Ux) Cc U(y) whenever xe€ Uly) and (ii) C(z) =
{ye X:xe Uly)} is a compact closed set for each e X.

Proof. (a)—(b): Let € = {C,: e A} be a closure-preserving
closed cover by compact sets. Put U(x) = X — U {C..2¢C,} for
each z€ X and I = {U(x): ze X}. It is obvious that U satisfies (i)
and (ii) of (b). Let y ¢ C(x) and ze U(y). Since z¢ U(y) and U(z)C
U(y), x ¢ U(z). Thus, we have z¢ C(z). Therefore U(y) N C(z) = @.
This proves that each C(z) is closed in X. Let yeC(x). Since ze
U(y), y € C, whenever 2 € C,. Thus, C(x) is contained in N {C,: z€C,}
which is compact and closed. Hence C(x) is a compact closed set
for each ze¢ X.

(b) — (a): It is obvious from Lemma 2 and (iii) of (b) in this
theorem.

REMARK. For a space to have a closure-preserving closed cover
by compact sets, R. Telgarsky gave, in [12], a sufficient condition
which is not necessary.

LEMMA 11. If a first countable space X has a closure-preserving
cover by finite sets, then X 1s developable.

Proof. By Lemma 3, X has an open cover U = {U(»): z € X)
satisfying (i), (ii) and (iii) of (¥). So, X has a countable number of
open covers B, = {V,(x): 2€ X} of X such that {V,(x):neN} is a
local base at « and V, . (x) cV,(x) cU(x) for each xc€ X and neN.
We shall show that {8,:ne N} is a development of X, Let xe X
and let W be an open neighborhood of z. There is a finite number
of points z,, ---, %, € X such that {Uel:ze U} = {U(x)), ---, Ux,)}.
For =1, ---, m, we choose some n,e€ N such that V,(x)CW if
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v,eW and ¢V, (v) if ;¢ W. Put n,=max{n:i=1,.--, m}.
Assume that zeV,(y)e%B,. By zeV,(y)cUy), y = 2. for some
E<m. Since xeV, (%), 2,6 W. So, we have V,(y)CV, (x,)CW.
Hence St (z, B,)cCW.

LEMMA 12. If a collectionwise Hausdorff, regular space X has
a closure-preserving cover by finite sets, then X is paracompact.

The proof of Lemma 12 is quite parallel to that of H. B.
Potoczny’s theorem in [8]. So, we omit it.

THEOREM 13. If @ first countable normal space X has a closure-
preserving cover by finite sets, then

(a) X s metrizable under V = L (i.e., the axiom of construc-
tibility), and (b) X is mot mecessarily metrizable under Martin’s
Aziom and 2% > W..

Proof. (a): W. Fleissner showed in [2] that a first countable
normal space is collectionwise Hausdorff under V = L. So, X is
paracompact and developable by Lemmas 11 and 12. Hence X is
metrizable.

(b): It is well-known that there is a subset A of the real-line
such that every subset of A4 is a relative G;-set, assuming Martin’s
Axiom plus 2% > W,. S. A. Peregudov showed in [6] that Heath’s
space in [4] (Theorem 3) has the desired property. Here it is to be
noted the existence of Heath’s space is guaranteed under such an
assumption.

THEOREM 14. If a first countable normal space X has o closure-
preserving cover by compact sets, then

(a) X s paracompact under V = L, and (b) X s not necessarily
paracompact under Martin’s Axiom and 2% > W..

The proof of (a) of Theorem 14 is similar to that of H. B.
Potoczny [8] by using the techniques of W. Fleissner [3]. The detail
of the proof is left to the reader. When we consider above Heath’s
space, (b) is obvious by Lemma 11.

5. Examples.

ExaMpPLE 1. There is a compact T,-space which has a closure-
preserving cover by finite sets and is not o-discrete.

Let X be the one-point-compactification of an uncountable dis-
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crete space. The space X has only one accumulation point z,. If
F is a closed subset of X such that z,¢ F, then F is a finite set.
If D is a discrete subset of X such that x,€ D, then D is also a
finite set. Since X is uncountable, the countable union of discrete
closed sets is not X. Hence X is not o-discrete. It is easily verified
that X has a closure-preserving cover consisting of two-point sets.

REMARK. By our Example 1, for a space which has a closure-
preserving cover by finite sets, o-discreteness is not a necessary
condition. Hence the sufficient condition given in our Corollary 7
and R. Telgirsky’s Theorem 5 in ]J12] for such a space is not nec-
cessary.

ExAMPLE 2. There is a paracompact weakly o-discrete T,-space
which is not hereditarily metacompact and not o-discrete.

Let X, ={(, 0):2cR'} and X, = {(z, ¥): (x, y) e R}, y > 0}. Let
p = (0, —1) and X = X, U X, U {p,}. The topology for the space X
is defined as follows: For each (z, 0)e X, a local base at (x, 0) is
{U,(x, 0): m € N}, where U,(z, 0) = {(z/, v): (" — z)* + (y — 1/n) < 1/n’}U
{(z, 0)}, for each (z, ¥)e X, {(z, ¥)} is open in X and a local base at
P I8 {X—U,(@)VU- - UU,(@)Ufr, -+, 7} ¢, -+, @€ X, 1y =+,
r; € X, for each 4, j € N}.

It is obvious that X is a weakly o-discreté Tychonoff space.
Since every open cover of X has a pairwise disjoint open refinement,
X is paracompact with dim X = 0. It follows from Baire’s category
theorem that X, U X, is not metacompact, which is a well-known
fact. By Theorem 1 and Corollary 7, X is not o-discrete.

REMARK. Our Example 2 shows that we can not replace heredi-
tary metacompactness in Theorem 1 by metacompactness and that
the necessary condition in Corollary 8 proved by R. Telgirsky is
not sufficient.

ExaAMPLE 3. There is a metacompact o-discrete normal space
which is not paracompact.

Let G be Bing’s space modified by E. Michael in [5] (Example 2).
We define F, as in [1] (Example H). Then the space G is perfectly
normal, metacompact, and non-paracompact ([5]). Since every point
of G — F, is an isolated point of G and the discrete closed subset
F, is a Gyset, G is o-discrete.
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