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A TOPOLOGICAL CHARACTERIZATION
OF BANACH CONTRACTIONS

SOLOMON LEADER

A continuous operator T o n a metric space (X, p) is a
Banach contraction with fixed point p under some metric σ
topologically equivalent to p if, and only if, every orbit
Tnx converges to p and the convergence is uniform on some
neighborhood of p. For σ to be bounded we demand that
the convergence be uniform on X. The latter condition with
T uniformly continuous characterizes the case for σ bounded
and uniformly equivalent to p.

A Banach contraction is an operator T on a metric space (X, σ)
such that for some a < 1

(1) σ(Tx, Ty) ̂  aσ(x, y) for all x, y in X .

(T is called nonexpansive if (1) holds with a — 1.) By induction (1)
extends to

(2) σ(T*x, Tny) £ anσ(x, y)

for all n in the set N of all natural numbers. By the Banach
Contraction Theorem a Banach contraction T on a complete metric
space has a unique fixed point p = Tp. From (2) with y — p

(3)

Since an converges to 0 (3) implies

(4) T*x > p for all a i n l .

Moreover, taking any ball about p, we conclude from (3) that

(5) TnB > p for some neighborhood B of p .

That is, (4) holds uniformly for x in B. We contend that a continu-
ous T satisfying (4) and (5) is topologically equivalent to a Banach
contraction. We shall also get topological and uniform characteriza-
tions of Banach contractions on bounded spaces. Our proofs depend
on two lemmas which extend constructions used by Ludvik Janos [1]
to characterize Banach contractions on compact spaces.

For any metric p we use the notation p[ ] to denote the p-
diameter of sets.

THEOREM. Let T operate on a metric space (X, p).

461



462 SOLOMON LEADER

( i ) There exists a metric σ topologically equivalent to p on X
such that T is a Banach contraction under σ with fixed point p if,
and only if, T is continuous and both (4) and (5) hold.

(ii) There exists a bounded metric σ topologically equivalent
to p on X such that T is a Banach contraction under σ with fixed
point p if, and only if, T is continuous and TnX—>p.

(in) There exists a bounded metric σ uniformly equivalent to
p on X such that T is a Banach contraction under σ if, and only
if, T is uniformly continuous and

(6) p[T«X] , 0 .

LEMMA 1. For T an operator on (X, p) conditions (a) and (b)
are equivalent in their corresponding versions:

( a ) T and its iterates are equicontinuous (equiunif ormly con-
tinuous).

(b) T is nonexpansive under some metric p topologically (uni-
formly) equivalent to p. p may be assumed bounded.

Proof. That (b) implies (a) is trivial. To prove the converse
we may assume p rg 1 since we can replace p by the uniformly
equivalent metric Min {p, 1}. Then define

( 7 ) p(x, y) = sup p(T*x, Tny) .

p is readily seen to be a metric with p <£ p <Ξ 1. So p is uniformly
continuous with respect to p. By (a) and (7) p is (uniformly) con-
tinuous with respect to p. Finally, (7) implies T is nonexpansive
under p.

LEMMA 2. Let (Bn} be a sequence of subsets of (X, p) indexed
by the set Z of all integers (positive, negative, and zero) so that the
conditions (8), (9), and (10) hold:

(8) Bn+1 S Bn for all n in Z ,

(9) U%ezBl = X,

where the superscript denotes interior, and

(10) ρ[Bn] • 0 as n > oo .

Given 0 < a < 1 let σ be the largest pseudometric on X such that

(11) σ ^ anp on Bn for all n in Z .

Then
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(12) p <: a~nσ + ρ[Bn] for all n in Z .

So p is uniformly continuous with respect to σ. Hence σ is a
metric. Moreover, σ is topologically equivalent to p. IfB0 — X
then σ is uniformly equivalent to p. Finally, if T is a nonexpan-
sive operator on (X, p) such that

(13) TBn S Bn+1 for all n in Z

then (1) holds.

Proof. Let S(x, y) be the set of all finite sequences

( (xif ^>ϊ=0,i, ,m in X x Z such that x0 = x,

®m = V, and both #;_! and xύ belong to Bn. for

i = 1, •• , m .

Then the largest pseudometric σ satisfying (11) is

(15) σ{x, y) = inf Σ anip(%i-ι, α«)
S(%,y) i=i

as the reader can routinely verify. Given n in Z we contend that
for any member (14) of S(x, y)

(16) anp(x, y) ^ Σ α ^fo-i, *«) + α

1. No 05< 6 Bn. Then ^ < n by (8) and the last condition
in (14). Therefore

(17) an < a™*

for i = 1, •••, m. By the triangle inequality and (17),

i-19 xt) ^

which gives (16) in Case 1.

2. Some xi e Bn. Let a?,- be the first and xk the last such
xt. Let J = [1, i ] U [ifc + 1, m] in N. Then />(α;, y) ^ Σnej p{%i-ι> »<) +
P(^i, #*) ^ Σ i e i p(%i-i9 xd + /θ[.BJ. Multiplying by α% and noting that
(17) holds for all i in J, we get anp(x, y) <; Σ«e j α**̂ t>(a;i_1, x^ + α%p[β%]
which implies (16) in Case 2.

Now (15) and (16) imply α*^ ^ σ + anρ[Bn] which gives (12).
Given ε > 0 use (10) to get n such that ρ[Bn] < e/2. Take

δ = αΛ(ε/2). Then by (12), σ < δ implies p < ε. So p is uniformly
continuous with respect to σ, which implies σ is a metric. (9) implies
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σ is continuous with respect to p since continuity holds on each Bn

by (11). If Bo = X then σ <: p by (11) at % = 0, so σ is uniformly
continuous with respect to p.

Finally, if T is nonexpansive and satisfies (13) consider any
member (14) of S(x, y). Then (Txi9 nt + 1> belongs to S(Tx, Ty) by
(13). Therefore, since T is nonexpansive under p, (15) yields
σ(Tx, Ty) £ Σ?=i an*+ίp(Tx^ί9 Txτ) ^ a Σf=i a,%tρ(Xt-i, xt) which gives (1)
by (15).

We can now prove the theorem. The direct implications in (i),
(ii), and (iii) follow from the Banach Contraction Theorem and the
topological (uniform) invariance of the conclusions. So we need only
prove the converses.

To prove (i) let T be continuous and satisfy (4) and (5). We
contend first that the Tn are equicontinuous for all n in N. That
is, given q in X and ε > 0 there exists a neighborhood D of q such
that

(18) p[T*D] < e

for all n in N. To get such a D choose m in N large enough to
ensure that for B some neighborhood of p satisfying (5)

(19) Tmq e B°

by (4) and

(20) p[TkB] < ε for all k > m

by (5). Since T, and hence each interate of T, is continuous there
exists a neighborhood D of q such that (18) holds for all n <£ 2m.
By (19) T~mB is a neighborhood of q since Tm is continuous. So we
may assume D £ T~mB. For n > 2m take k = n — m to get k > m
and Γ"J9 S r * £ . So (20) implies (18) for n > 2m. Thus (18) holds
for all n in N.

Hence we may assume by Lemma 1 that T is nonexpansive
under p. Consequently each open ball about p is mapped into itself
by T since p = Tp by (4) and the continuity of T. Hence in (5) we
may assume B is open and

(21) TBQB.

Apply Lemma 2 with

(22) Bn - TnB for all n in Z .

Indeed, (21) and (22) imply (8) and (13). (10) follows from (22) and
(5). Since B is open and T is continuous, Bn is open for n < 0 by
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(22). So (9) follows from (4) and (22). Hence Lemma 2 applies and
gives (i).

To prove (ii) let T be continuous and TnX—+p. These conditions
are just those in (i) with B — X. So we get σ from Lemmas 1 and
2 exactly as in the proof of (i). But now σ <; p from (11) at n — 0
since Bo = X under (22). Thus, since we may assume p is bounded,
σ is bounded.

To prove (iii) let T be uniformly continuous and satisfy (6). We
contend first that the Tn are equiuniformly continuous for all n in
N. Given e > 0 choose m by (6) so that

(23) p[TmX] < e .

Since T, and hence each of its iterates, is uniformly continuous we
can choose δ > 0 such that every subset D of X with p[D] < δ must
satisfy

(24) ρ[TnD] < ε

for n = 1, , m. But (24) holds for n > m by (23). So (24) holds
for all n in N. Therefore, by the uniform version of Lemma 1 we
may assume T is nonexpansive under a bounded p.

Let Bn = TnX. Then (8), (9), and (13) are trivial while (10) is
just (6). So Lemma 2 applies and gives (iii), which completes the
proof of the theorem.

Note that (iii) is the uniform analogue of (ii). However, we
have no uniform analogue of (i).

For X a compact metric space each of our results (i), (ii), and
(iii) reduces to the theorem of Ludvik Janos [1]: An operator T on
a compact metric space (X, p) is a Banach contraction under some
metric σ topologically equivalent to p if, and only if, T is continu-
ous and the TnX intersect at only one point.

To get this theorem from (i), (ii), or (iii) one can use the follow-
ing remarks about a continuous T operating on a compact (X, p):

( a ) Continuity of T is equivalent to uniform continuity,
( b ) Every continuous metric σ on X is bounded,
( c ) a is topologically equivalent to p if, and only if, σ is uni-

formly equivalent to p,
( d ) The intersection / of the compact nested after-images TΛX

is nonempty and ρ[TnX] —> ρ[I], (See Lemma A in [2].)
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