SUMMABILITY R_{r} FOR DOUBLE SERIES

М. Ј. Конл

Let r be a positive integer. A trigonometric series T of a single variable is said to be summable R_{r} at θ_{0} if the series obtained by r times formally integrating T has an r th symmetric derivative at θ_{0}. For even values of r, summability R_{r} has been applied to double trigonometric series. We study here summability R_{r}, for odd values of r, for double trigonometric series. We obtain a connection between Bochner-Riesz summable series and series which are summable R_{r}.

1. Let

$$
\begin{equation*}
\sum_{-\infty}^{\infty} c_{n} e^{i n \theta} \tag{1.1}
\end{equation*}
$$

be a trigonometric series of a single variable. Let r be a positive integer. Suppose the series obtained by formally integrating (1.1) r times

$$
\begin{equation*}
c_{o} \frac{\theta^{r}}{r!}+\sum_{n \neq 0} \frac{c_{n}}{(i n)^{r}} e^{i n \theta} \tag{1.2}
\end{equation*}
$$

converges to a function $F(\theta)$ in a neighborhood of $\theta_{0} \in(0,2 \pi)$. We will say that the series (1.1) is at θ_{0} summable by the method R_{r} to sum s if $F(\theta)$ has at θ_{0} an r th symmetric derivative with value s. That is, if r is even,

$$
\begin{equation*}
\frac{1}{2}\left\{F\left(\theta_{o}+t\right)+F\left(\theta_{o}-t\right)\right\}=a_{o}+\frac{a_{2}}{2!} t^{2}+\cdots+\frac{s}{r!} t^{r}+o\left(t^{r}\right) \tag{1.3}
\end{equation*}
$$

as $t \rightarrow 0$, and if r is odd,

$$
\begin{equation*}
\frac{1}{2}\left\{F\left(\theta_{o}+t\right)-F\left(\theta_{o}-t\right)\right\}=a_{1} t+\frac{a_{3}}{3!} t^{3}+\cdots+\frac{s}{r!} t^{r}+o\left(t^{r}\right), \tag{1.4}
\end{equation*}
$$

as $t \rightarrow 0$.
The following result, see [8], p. 66, establishes a connection between summability (C, α) and summability R_{r} for trigonometric series.

Theorem A. Let $\alpha>-1$ and assume the series (1.1) is summable (C, α) at θ_{0} to sum s. Let r be an integer with $r>\alpha+1$, and suppose the series (1.2) converges in a neighborhood of θ_{0}. Then the series (1.1) is summable R_{r} to s.
2. In two variables we will denote points $x \in E_{2}$ by $x=\left(x_{1}, x_{2}\right)=$
$t e^{2 \theta}$ and integral lattice points by $n=\left(n_{1}, n_{2}\right)$. We write

$$
|x|=\sqrt{x_{1}^{2}+x_{2}^{2}} .
$$

We will say a double trigonometric series

$$
\begin{equation*}
T: \sum_{n \in \mathcal{Z}_{2}} c_{n} e^{i n \cdot x} \tag{2.1}
\end{equation*}
$$

is Bochner-Riesz summable of order α at x_{0} to sum s_{0} if

$$
\lim _{R \rightarrow \infty} \sum_{\mid n<R}\left(1-\left(\frac{|n|}{R}\right)^{2}\right)^{\alpha} c_{n} e^{i n \cdot x_{0}}=s_{0} .
$$

Suppose r is an even number, $r=2 s$. A two dimensional analogue of summability R_{r} is given as follows, see [7], [4].

Definition. Let $F(x)$ be defined in a neighborhood of $x_{0} \in E_{2}$. F has at x_{o} a sth generalized Laplacian equal to s_{o} if F is integrable on each circle $\left|x-x_{0}\right|=t$ and

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(x_{o}+t e^{2 \theta}\right) d \theta=a_{o}+\frac{a_{2} t^{2}}{(2!)^{2}}+\cdots+\frac{s_{o} t^{2 s}}{\left(2^{s} s!\right)^{2}}+o\left(t^{2 s}\right) \tag{2.2}
\end{equation*}
$$

as $t \rightarrow 0$.
Theorem B. Let the series T of (2.1) be Bochner-Riesz-m summable at x_{o} to sum s_{o}, where m is a nonnegative integer, and suppose the coefficients of T satisfy

$$
\sum_{n \in Z_{2}}|n|^{-3+\varepsilon}\left|c_{n}\right|^{2}<\infty
$$

for some $\varepsilon>0$. Let $r=2 s$ be an even integer with $r \geqq m+2$. Set

$$
\begin{equation*}
F(x)=\frac{c_{o}\left(x_{1}+x_{2}\right)^{2 s}}{2^{s}(2 s)!}+(-1)^{s} \sum_{n=0} \frac{c_{n}}{|n|^{2 s}} e^{2 n \cdot x} \tag{2.3}
\end{equation*}
$$

Then the generalized sth Laplacian of $F(x)$ exists at x_{0} and is equal to s_{0}.

That is, if the series (2.1) is Bochner-Riesz- m summable to s_{0} and r is an even number with $r \geqq m+2$, then the series is also summable R_{r} to $\operatorname{sum} s_{o}$.
3. The purpose of this paper is to derive a connection between Bochner-Riesz summability and summability R_{r}, for odd values of r. We use the following definition, from [5]. This definition extends the formula of (1.4) to two dimensions in a manner analogous to the extension of (1.3) to two variables by (2.2).

Definition. Let $r=2 s+1$ be an odd positive integer. Let $L(x)$ be a function defined in a neighborhood of $x_{o} \in E_{2}$. We will say $L(x)$ has at x_{0} a generalized symmetric derivative of order r with value s_{0} if L is integrable on each circle $\left|x-x_{o}\right|=t$, for t small, and if

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} L\left(x_{o}+t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \tag{3.1}\\
& \quad=a_{1} t+\alpha_{3} t^{3}+\cdots+\frac{s_{o}}{2^{2 s+1} s!(s+1)!} t^{2 s+1}+o\left(t^{2 s+1}\right)
\end{align*}
$$

as $t \rightarrow 0$.
We are able to obtain the following results which, for odd values of r, form a two dimensional version of Theorem A. We begin with the case of double trigonometric series which are Bochner-Riesz summable of integral order, since the statement and proof of our results are much simpler in this case.

Theorem 1. Let m be a nonnegative integer. Suppose

$$
\begin{equation*}
T: \sum_{n \in Z_{2}} c_{n} e^{i n \cdot x} \tag{3.2}
\end{equation*}
$$

is Bochner-Riesz-m summable at x_{o} to finite sum s_{o}. Let $r=2 s+1$ be an odd integer such that $r \geqq m+1$. Suppose the coefficients of T satisfy

$$
\begin{equation*}
\sum_{n_{1}+n_{2}=0}|n|^{-2 r+3+\varepsilon}\left|c_{n}\right|^{2}+\sum_{n_{1}+n_{2} \neq 0}\left(n_{1}+n_{2}\right)^{-2}|n|^{-2 r+3+\varepsilon}\left|c_{n}\right|^{2}<\infty \tag{3.3}
\end{equation*}
$$

for some $\varepsilon>0$. Then the series

$$
\begin{align*}
\frac{c_{o}\left(x_{1}+x_{2}\right)^{r}}{(r)!(2 r)!2^{s+1}} & +\frac{1}{2}\left(x_{1}+x_{2}\right) \sum_{n_{1}+n_{2}=0}^{\prime} \frac{c_{n}}{|n|^{2 s}} e^{i n \cdot x} \tag{3.4}\\
& +\sum_{n_{1}+n_{2} \neq 0} \frac{-i c_{n}}{\left(n_{1}+n_{2}\right)|n|^{2 s}} e^{i n \cdot x}
\end{align*}
$$

converges spherically to a function $L(x)$ which has at x_{0} a generalized symmetric derivative of order r with value s_{0}.

We are able to extend Theorem 1 to include some, but not all, fractional orders of Bochner-Riesz summability. Let β be a nonnegative real number. We denote by $[\beta]$ the largest integer $\leqq \beta$ and by $\langle\beta\rangle$ the fractional part of $\beta,\langle\beta\rangle=\beta-[\beta]$.

THEOREM 2. Let β be a nonnegative real number with $\langle\beta\rangle<$ $1 / 2$. Suppose the series (3.2) is summable Bochner-Riesz- β to finite sum s_{0}. Let $r=2 s+1$ be an odd integer with $r \geqq[\beta]+1$. Suppose the coefficients of the series (3.2) satisfy formula (3.3) for some $\varepsilon>0$.

Then the conclusion of Theorem 1 still holds.
In particular, in the two dimensional case, Bochner-Riesz summability of order β, for $\beta<1 / 2$, is enough to imply summability R_{1} (which is Lebesgue summability).
4. Although Theorem 1 is a special case of Theorem 2, we give its proof separately, since its proof is much easier than that of Theorem 2. We will assume, as we may, that $c_{0}=0, x_{0}=0$, and $s_{o}=0$. We set

$$
S_{R}=S_{R}(0)=\sum_{|n|<R} c_{n}
$$

and for $\eta>0$

$$
\begin{equation*}
S_{R}^{\eta}=\frac{1}{\Gamma(\eta)} \int_{0}^{R}(R-u)^{\eta-1} S_{u} d u \tag{4.1}
\end{equation*}
$$

Note that S_{R}^{η}, as a function of R, is the fractional integral of order η of $f(R)=S_{R}$, see [6].

Hardy, see [2], has shown that a series $\sum c_{n}$ is Bochner-Riesz- η summable to 0 if and only if

$$
\sum_{|n|<R} c_{n}\left(1-\frac{|n|}{R}\right)^{\eta} \rightarrow 0
$$

as $R \rightarrow \infty$. Thus, for the proof of Theorem 1 we may assume

$$
\begin{equation*}
S_{R}^{m}=o\left(R^{m}\right) \tag{4.2}
\end{equation*}
$$

as $R \rightarrow \infty$.
We will need the following lemmas. The first lemma has been adapted from [7].

Lemma 1. Suppose $\sum_{n \in Z_{2}} c_{n} e^{i n \cdot x}$ is Bochner-Riesz- $(m+1)$ summable to 0 at $x=0$, and suppose the coefficients c_{n} satisfy condition (3.3) of Theorem 1, with $r \geqq m+1$. Then

$$
\begin{equation*}
S_{R}^{k}=o\left(R^{r+1 / 2}\right), \tag{4.3}
\end{equation*}
$$

as $R \rightarrow \infty$, for $k=0,1, \cdots, m+1$.
Proof. We first note that for $n_{1}+n_{2} \neq 0$,

$$
\begin{aligned}
\sum_{n_{1}+n_{2} \neq 0} & \left(n_{1}+n_{2}\right)^{-2}|n|^{-2 r+3+\varepsilon}\left|c_{n}\right|^{2} \\
& \geqq \frac{1}{4} \sum_{n_{1}+n_{2} \neq 0}|n|^{-2}|n|^{-2 r+3+\varepsilon}\left|c_{n}\right|^{2} \\
& =\frac{1}{4} \sum_{n_{1}+n_{2} \neq 0}|n|^{-2 r+1+\varepsilon}\left|c_{n}\right|^{2} .
\end{aligned}
$$

Thus, from (3.3),

$$
\sum_{n_{1}+n_{2} \neq 0}|n|^{-2 r+1+\varepsilon}\left|c_{n}\right|^{2}<\infty,
$$

and therefore

$$
\sum_{n \in X_{2}}|n|^{-2 r+1+\varepsilon}\left|c_{n}\right|^{2}<\infty
$$

Using Schwartz's inequality,

$$
\begin{align*}
\sum_{|n|<R}\left|c_{n}\right| & =\sum_{|n|<R}\left(|n|^{1 / 2(-2 r+1+\varepsilon)}\left|c_{n}\right|\right)\left(|n|^{-1 / 2(-2 r+1+\varepsilon)}\right) \\
& \leqq\left(\sum_{n \in Z_{2}}|n|^{-2 r+1+\varepsilon}\left|c_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{|n|<R}|n|^{2 r-1-\varepsilon}\right)^{1 / 2} \tag{4.4}\\
& =C \cdot\left(R^{2 r+1-\varepsilon}\right)^{1 / 2} \\
& =o\left(R^{r+1 / 2}\right)
\end{align*}
$$

as $R \rightarrow \infty$.
Now fix an integer j.

$$
\begin{aligned}
& \sum_{|i|<R} c_{i}(R-|i|+j)^{m+1}=\sum_{|i|<R+j} c_{i}(R-|i|+j)^{m+1} \\
&-\sum_{R \leq|i|<R+j} c_{i}(R-|i|+j)^{m+1}
\end{aligned}
$$

Since $\sum c_{n} e^{i n \cdot x}$ is Bochner-Riesz- $(m+1)$ summable to 0 at 0 ,

$$
\sum_{|i|<R+j} c_{i}(R-|i|+j)^{m+1}=o\left(R^{m+1}\right)
$$

as $R \rightarrow \infty$.

$$
\sum_{R \leq i i<R+j} c_{i}(R-|i|+j)^{m+1}=o\left(R^{r+1 / 2}\right),
$$

because of (4.4). Thus,

$$
\begin{align*}
\sum_{|i|<R} c_{i}(R-|i|+j)^{m+1} & =o\left(R^{m+1}\right)+o\left(R^{r+1 / 2}\right) \tag{4.5}\\
& =o\left(R^{r+1 / 2}\right)
\end{align*}
$$

as $R \rightarrow \infty$.
We next use the fact, see [7], that there are number $C_{j k}$, for $j=1, \cdots, m+2, k=0, \cdots, m+1$ such that for all complex numbers z,

$$
\sum_{j=1}^{m+2} C_{j_{k}}(z+j)^{m+1}=z^{k} .
$$

Thus, for $0 \leqq k \leqq m+1$,

$$
\begin{aligned}
S_{R}^{k} & =\frac{1}{k!} \sum_{|i|<R} c_{i}(R-|i|)^{k} \\
& =\frac{1}{k!} \sum_{|i|<R} c_{i} \sum_{j=1}^{m+2} C_{j_{k}}(R-|i|+j)^{m+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{m+2} \frac{1}{k!} C_{j k} \sum_{|i|<R} c_{i}(R-|i|+j)^{m+1} \\
& =\sum_{j=1}^{m+2} \frac{1}{k!} C_{j k} o\left(R^{r+1 / 2}\right) \\
& =o\left(R^{r+1 / 2}\right)
\end{aligned}
$$

by (4.5). This proves Lemma 1.
Lemma 2. Let $x=\left(x_{1}, x_{2}\right)=t e^{i \theta} \in E_{2}$ and $n=\left(n_{1}, n_{2}\right) \in \boldsymbol{Z}_{2}$, with $|n| \neq 0$. Define

$$
g_{n}(x)= \begin{cases}\frac{1}{2}\left(x_{1}+x_{2}\right) e^{i n \cdot x} & \text { if } \quad n_{1}+n_{2}=0 \tag{4.6}\\ \frac{-i e^{i n \cdot x}}{n_{1}+n_{2}} & \text { if } \quad n_{1}+n_{2} \neq 0\end{cases}
$$

Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta=\frac{J_{1}(|n| t)}{|n|}
$$

where $J_{1}(z)$ is the Bessel function of the first kind of order 1.
Proof. This is the lemma from [5].
5. Proof of Theorem 1. Let

$$
T_{R}(x)=\sum_{\substack{\mid n \ll \\ n_{1}+n_{2}=0}} \frac{1}{2}\left(x_{1}+x_{2}\right) \frac{c_{n}}{|n|^{2 s}} e^{i n \cdot x}+\sum_{\substack{|n|<R \\ n_{1}+n_{2} \neq 0}} \frac{-i c_{n}}{\left(n_{1}+n_{2}\right)|n|^{2 s}} e^{i n \cdot x}
$$

The hypothesis (3.3) insures that

$$
L(x)=\lim _{R \rightarrow \infty} T_{R}(x)
$$

exists a.e. on each circle $|x|=t$, see [3], Theorem 1. Also, by Theorem 2 of [3],

$$
\int_{0}^{2 \pi} \sup _{R}\left|T_{R}\left(t e^{i \theta}\right)\right| d \theta<\infty,
$$

so, using Lebesgue's Dominated Convergence Theorem,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} & L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& =\lim _{R \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} T_{R}\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& =\lim _{R \rightarrow \infty} \sum_{n \mid<R} \frac{c_{n}}{|n|^{2 s}} \frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta
\end{aligned}
$$

where $g_{n}(x)$ is defined by (4.6). Using Lemma 2 we get

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& \quad=\lim _{R \rightarrow \infty} \sum_{|n|<R} \frac{c_{n}}{|n|^{2 s}} \frac{J_{1}(|n| t)}{|n|} \tag{5.1}\\
& \quad=\lim _{R \rightarrow \infty} \sum_{|n|<R} c_{n} \frac{J_{1}(|n| t)}{|n|^{r}} \\
& \quad=t^{r} \lim _{R \rightarrow \infty} \sum_{|n|<R} c_{n} \gamma(|n| t),
\end{align*}
$$

where $\gamma(t)=z^{-r} J_{1}(z)$.
We express the last sum as an integral and integrate by parts $m+1$ times.

$$
\begin{align*}
& \sum_{|n|<R} c_{n} \gamma(|n| t)=S_{R} \gamma(R t)-\int_{0}^{R} S_{u} \frac{d}{d u} \gamma(u t) d u \\
& =S_{R} \gamma(R t)-S_{R}^{1} \frac{d}{d R} \gamma(R t)+\int_{0}^{R} S_{u}^{1} \frac{d^{2}}{d u^{2}} \gamma(u t) d u \\
& \vdots \tag{5.2}\\
& = \\
& \quad S_{R} \gamma(R t)-S_{R}^{1} \frac{d}{d R} \gamma(R t)+\cdots+(-1)^{m} S_{R}^{m} \frac{d^{m}}{d R^{m}} \gamma(R t) \\
& \quad+(-1)^{m+1} \int_{0}^{R} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}} \gamma(u t) d u .
\end{align*}
$$

From Lemma 1,

$$
S_{R}^{k}=o\left(R^{r+1 / 2}\right) \text { for } k=0, \cdots, m
$$

Repeatedly using the relations from [1],

$$
\begin{equation*}
\frac{d}{d z}\left(z^{-n} J_{n}(z)\right)=z^{-n} J_{n+1}(z) \tag{5.3}
\end{equation*}
$$

and

$$
J_{\nu}(z)=o\left(z^{-1 / 2}\right),
$$

as $z \rightarrow \infty$, we get

$$
\begin{equation*}
\frac{d^{k}}{d z_{k}} \gamma(z)=o\left(z^{-r-1 / 2}\right) \tag{5.4}
\end{equation*}
$$

as $z \rightarrow \infty$. So, for $k=0, \cdots, m$

$$
\begin{align*}
S_{R}^{k} \frac{d^{k}}{d R^{k}} \gamma(R t) & =o\left(R^{r+1 / 2}\right) o\left(R^{-r-1 / 2}\right) \tag{5.5}\\
& =o(1)
\end{align*}
$$

as $R \rightarrow \infty$. Thus, returning to (5.2),

$$
\lim _{R \rightarrow \infty} \sum_{|n|<R} c_{n} \gamma(|n| t)=(-1)^{m+1} \int_{0}^{\infty} S_{u}^{m} \frac{d^{n+1}}{d u^{m+1}} \gamma(u t) d u
$$

and (5.1) becomes,

$$
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} & L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& =t^{r} \lim _{R \rightarrow \infty} \sum_{|n|<R} c_{n} \gamma(|n| t) \tag{5.6}\\
& =t^{r}(-1)^{m+1} \int_{0}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}} \gamma(u t) d u
\end{align*}
$$

Now we make use of the series expansion for $J_{1}(z),[1]$, p. 4.

$$
\begin{align*}
J_{1}(z) & =\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{1}{2} z\right)^{1+2 k}}{k!(k+1)!} \tag{5.7}\\
& =a_{1} z+a_{3} z^{3}+\cdots .
\end{align*}
$$

Then,

$$
\begin{aligned}
\gamma(z) & =z^{-r} J_{1}(z) \\
& =z^{-r}\left(a_{1} z+a_{3} z^{3}+\cdots+a_{r-2} z^{r-2}+a_{r} z^{r}+\cdots\right) .
\end{aligned}
$$

We define a polynomial $P(z)$ as follows. If $r=1$, let $P(z) \equiv 0$. Otherwise, let

$$
P(z)=a_{1} z+a_{3} z^{3}+\cdots+a_{r-2} z^{r-2}
$$

where the a_{i} 's are given by (5.7). Now we let

$$
\begin{equation*}
\lambda(z)=\gamma(z)-z^{-r} P(z) . \tag{5.8}
\end{equation*}
$$

Then $\lambda(z)$ is an entire function in the plane and

$$
\gamma(z)=z^{-r} P(z)+\lambda(z)
$$

Returning to (5.6),

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& \quad=t^{r}(-1)^{m+1} \int_{0}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}} \gamma(u t) d u \\
& \quad=t^{r}(-1)^{m+1} \int_{0}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}}\left\{(u t)^{-r} P(u t)+\lambda(u t)\right\} d u \tag{5.9}\\
& \quad=t^{r}(-1)^{m+1} \int_{0}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}}\left\{(u t)^{-r} P(u t)\right\} d u \\
& \quad+t^{r}(-1)^{m+1} \int_{0}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}} \lambda(u t) d u \\
& =A+t^{r} B(t)
\end{align*}
$$

Since $c_{o}=0$, therefore $S_{u}^{m}=0$ for $0 \leqq u<1$. Thus we may replace the interval of integration of the integral involving A by the interval $(1 / 2, \infty)$.

$$
\begin{aligned}
A & =t^{r}(-1)^{m+1} \int_{1 / 2}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}}\left\{(u t)^{-r} P(u t)\right\} d u \\
& =t^{r}(-1)^{m+1} \int_{1 / 2}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}}\left(\sum_{\substack{k=1 \\
k-2}}^{r-2} \alpha_{k}(u t)^{k-r}\right) d u \\
& =\sum_{\substack{k=1 \\
k-2}}^{r-2} t^{r+k-r} a_{k}(-1)^{m+1} \int_{1 / 2}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}} u^{k-r} d u \\
& =\sum_{\substack{k=1 \\
k-1 \\
k=1}}^{r k} t_{k}(-1)^{m+1} \int_{1 / 2}^{\infty} o\left(u^{m}\right) O\left(u^{k-r-m-1}\right) d u \\
& =\sum_{\substack{k=1 \\
r-2}}^{r-1} t^{k} a_{k}(-1)^{m+1} \int_{1 / 2}^{\infty} o\left(u^{k-r-1}\right) d u \\
& =\sum_{\substack{k=1 \\
k=0 d}}^{r-2} b_{k} t^{k}
\end{aligned}
$$

Returning to (5.9),

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& \quad=A+t^{r} B(t) \\
& \quad=b_{1} t+b_{3} t^{3}+\cdots+b_{r-2} t^{r-2}+0 \cdot t^{r}+t^{r} B(t)
\end{aligned}
$$

The proof of Theorem 1 will be complete when we establish $B(t) \rightarrow 0$ as $t \rightarrow 0$.

$$
\begin{align*}
B(t) & =(-1)^{m+1} \int_{0}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}} \lambda(u t) d u \\
& =\int_{0}^{1 / t}+\int_{1 / t}^{\infty} \tag{5.10}\\
& =B_{1}(t)+B_{2}(t)
\end{align*}
$$

To estimate $B_{1}(t)$ we use the fact that $\lambda(z)$ is entire, so for $|z| \leqq 1$,

$$
\left|\frac{d^{k}}{d z^{k}} \lambda(z)\right|<K
$$

Since $|u t| \leqq 1$ in the interval of integration involving $B_{1}(t)$,

$$
\left|\frac{d^{m+1}}{d u^{m+1}} \lambda(u t)\right| \leqq t^{m+1} K
$$

in this interval.

$$
\begin{aligned}
B_{1}(t) & =(-1)^{m+1} \int_{0}^{1 / t} o\left(u^{m}\right) t^{m+1} K d u \\
& =o\left(t^{m+1}\right) \int_{0}^{1 / t} u^{m} d u \\
& =o\left(t^{m+1}\right)\left(\frac{1}{t}\right)^{m+1} \\
& =o(1)
\end{aligned}
$$

as $t \rightarrow 0$.
For the estimate of $B_{2}(t)$ we use the decomposition

$$
\lambda(z)=\gamma(z)-z^{-r} P(z)
$$

Clearly, as $z \rightarrow \infty$

$$
\frac{d^{m+1}}{d z^{m+1}} z^{-r} P(z)=O\left(z^{-m-3}\right)
$$

and by (5.4),

$$
\frac{d^{m+1}}{d z^{m+1}} \gamma(z)=O\left(z^{-r-1 / 2}\right)
$$

Thus, for $z \rightarrow \infty$

$$
\begin{equation*}
\frac{d^{m+1}}{d z^{m+1}} \lambda(z)=O\left(z^{-r-1 / 2}\right), \tag{5.11}
\end{equation*}
$$

and

$$
\begin{aligned}
B_{2}(t) & =(-1)^{m+1} \int_{1 / t}^{\infty} S_{u}^{m} \frac{d^{m+1}}{d u^{m+1}} \lambda(u t) d u \\
& =(-1)^{m+1} \int_{1 / t}^{\infty} o\left(u^{m}\right) t^{m+1} O(u t)^{-r-1 / 2} d u \\
& =o\left(t^{m+1-r-1 / 2}\right) \int_{1 / t}^{\infty} o(u)^{m-r-1 / 2} d u \\
& =o\left(t^{m-r+1 / 2}\right) o\left(\frac{1}{t}\right)^{m-r+1 / 2} \\
& =o(1) .
\end{aligned}
$$

(Note we needed $m-r-1 / 2<-1$ to perform the last integration.) Thus $B_{2}(t) \rightarrow 0$ as $t \rightarrow 0$, and returning to (5.10), the proof of Theorem 1 is complete.
6. Proof of Theorem 2. We may assume that the fractional part of β is not zero. Otherwise Theorem 2 reduces to Theorem 1. Write $\beta=m+\alpha$, where m is an integer and $0<\alpha<1 / 2$.

We again assume $c_{o}=0, x_{o}=0, s_{o}=0$. We proceed as in the beginning of the proof of Theorem 1.

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{0}^{2 \pi} L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
\quad=t^{r} \lim _{R \rightarrow \infty} \sum_{|n|<R} c_{n} \gamma(|n| t)
\end{gathered}
$$

with $\gamma(z)=z^{-r} J_{1}(z)$.
As in the proof of Theorem 1 we integrate the last sum by parts. We now integrate by parts $m+2$ times.

$$
\sum_{|n|<R} c_{n} \gamma(|n| t)=S_{R} \gamma(R t)-\int_{0}^{R} S_{u} \frac{d}{d u} \gamma(u t) d u
$$

$$
\begin{align*}
= & S_{R} \gamma(R t)-S_{R}^{1} \frac{d}{d R} \gamma(R t)+\cdots+(-1)^{m+1} S_{R}^{m+1} \frac{d^{m+1}}{d R^{m+1}} \gamma(R t) \tag{6.1}\\
& +(-1)^{m+2} \int_{0}^{R} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}} \gamma(u t) d u
\end{align*}
$$

We are now assuming the series (3.1) is summable Bochner-Riesz- β to 0 at $x_{o}=0$, so it is also summable $\operatorname{Bochner-Riesz-~}(m+1)$ to 0 at $x_{0}=0$. Therefore we may again apply Lemma 1. For $0 \leqq k \leqq m+1$,

$$
\begin{aligned}
S_{R}^{k} \frac{d^{k}}{d R^{k}} \gamma(R t) & =o\left(R^{r+1 / 2}\right) O\left(R^{-r-1 / 2}\right) \\
& =o(1)
\end{aligned}
$$

as $R \rightarrow \infty$, so

$$
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} & L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& =t^{r} \lim _{R \rightarrow \infty} \sum_{|n|<R} c_{n} \gamma(|n| t) \tag{6.2}\\
& =t^{r}(-1)^{m} \int_{0}^{\infty} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}} \gamma(u t) d u
\end{align*}
$$

We define $P(z)$ and $\lambda(z)$ as in the proof of Theorem 1:

$$
P(z)=\left\{\begin{array}{lll}
0 & \text { if } & r=1 \\
a_{1} z+a_{3} z^{3}+\cdots+a_{r-2} z^{r-2} & \text { if } r \neq 1
\end{array}\right.
$$

and

$$
\lambda(z)=\gamma(z)-z^{-r} P(z) .
$$

Then (6.2) becomes,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta \\
& \quad=t^{r}(-1)^{m} \int_{0}^{\infty} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}}\left[(u t)^{-r} P(u t)+\lambda(u t)\right] d u
\end{aligned}
$$

$$
\begin{aligned}
&= t^{r}(-1)^{m} \int_{0}^{\infty} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}}\left[(u t)^{-r} P(u t)\right] d u \\
&+t^{r}(-1)^{m} \int_{0}^{\infty} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \\
&= A(t)+t^{r} B(t) . \\
& A= t^{r}(-1)^{m} \int_{1 / 2}^{\infty} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}}\left(\sum_{\substack{k=1 \\
k=1 \\
\text { odd }}}^{r-2} a_{k}(u t)^{k-r}\right) d u \\
&= \sum_{\substack{k=1 \\
k=1}}^{r-2} t^{r+k-r} a_{k}(-1)^{m} \int_{1 / 2}^{\infty} o(u)^{m+1} \frac{d^{m+2}}{d u^{m+2}} u^{k-r} d u \\
&=\sum_{\substack{k=1 \\
k-2}}^{k_{k} \text { odd }} b_{k} t^{k}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} L\left(t e^{i \theta}\right)(\cos \theta+\sin \theta) d \theta=\sum_{\substack{k=1 \\ k \text { odd }}}^{r-2} b_{k} t^{k}+t^{r} B(t) \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
B(t)=(-1)^{m} \int_{0}^{\infty} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \tag{6.4}
\end{equation*}
$$

To complete the proof of Theorem 2 we must show $B(t) \rightarrow 0$ as $t \rightarrow 0$.
If $f(u)$ is a function defined for $u>0$ and η is a positive real number, denote by

$$
I^{\eta} f(z)=\frac{1}{\Gamma(\eta)} \int_{0}^{z}(z-u)^{\eta-1} f(u) d u
$$

the fractional integral of order η, see [6]. Now if we set

$$
f(u)=S_{u}=\sum_{|n|<u} c_{n}
$$

then by (4.1),

$$
S_{u}^{\eta}=I^{\eta} S_{u},
$$

so

$$
\begin{aligned}
S_{u}^{m+1} & =I^{m+1} S_{u} \\
& =I^{1-\alpha} I^{m+\alpha} S_{u} \\
& =I^{1-\alpha} S_{u}^{m+\alpha} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
S_{u}^{m+1} & =\frac{1}{\Gamma(1-\alpha)} \int_{0}^{u}(u-z)^{1-\alpha-1} S_{z}^{m+\alpha} d z \\
& =\frac{1}{\Gamma(1-\alpha)} \int_{0}^{u}(u-z)^{-\alpha} S_{z}^{m+\alpha} d z
\end{aligned}
$$

Returning to (6.4)

$$
\begin{aligned}
B(t) & =(-1)^{m} \int_{0}^{\infty} S_{u}^{m+1} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \\
& =\lim _{R \rightarrow \infty}(-1)^{m} \int_{0}^{R} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{u}(u-z)^{-\alpha} S_{z}^{m+\alpha} d z \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \\
& =\lim _{R \rightarrow \infty} \frac{(-1)^{m}}{\Gamma(1-\alpha)} \int_{0}^{R} S_{z}^{m+\alpha} \int_{z}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u d z \\
& =\lim _{R \rightarrow \infty} \frac{(-1)^{m}}{\Gamma(1-\alpha)} \int_{0}^{R} S_{z}^{m+\alpha} H(z, t, R) d z
\end{aligned}
$$

where

$$
\begin{aligned}
& H(z, t, R)=\int_{z}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \\
& B(t)= \\
& \quad \lim _{R \rightarrow \infty} \frac{(-1)^{m}}{\Gamma(1-\alpha)} \int_{0}^{1 / t} S_{z}^{m+\alpha} H(z, t, R) d z \\
& \\
& \quad+\lim _{R \rightarrow \infty} \frac{(-1)^{m}}{\Gamma(1-\alpha)} \int_{1 / t}^{R} S_{z}^{m+\alpha} H(z, t, R) d z \\
& \\
& =B_{1}(t)+B_{2}(t)
\end{aligned}
$$

We will make separate estimates of $H(z, t, R)$ for $B_{1}(t)$ and for $B_{2}(t)$.
First, in the interval of integration involving $B_{1}(t), 0 \leqq z \leqq 1 / t$.

$$
\begin{align*}
H(z, t, R) & =\int_{z}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \\
& =\int_{z}^{1 / t}+\int_{1 / t}^{R} \tag{6.5}\\
& =H_{1}+H_{2}
\end{align*}
$$

Using the fact that λ is entire,

$$
\begin{aligned}
\left|H_{1}\right| & \leqq \int_{z}^{1 / t}(z-u)^{-\alpha} t^{m+2} \cdot K d u \\
& \leqq K t^{m+2} \int_{z}^{1 / t}(z-u)^{-\alpha} d u \\
& =O\left(t^{m+2}\right)\left(\frac{1}{t}-z\right)^{1-\alpha}
\end{aligned}
$$

We estimate H_{2} by employing (5.11)

$$
\begin{aligned}
H_{2} & =\int_{1 / t}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \\
& =\int_{1 / t}^{\infty}(u-z)^{-\alpha} t^{m+2} O(u t)^{-r-1 / 2} d u
\end{aligned}
$$

$$
\begin{aligned}
& =O\left(t^{m-r+3 / 2}\right)\left(\frac{1}{t}-z\right)^{-\alpha} \int_{1 / t}^{\infty} u^{-r-1 / 2} d u \\
& =O\left(t^{m-r+3 / 2}\right)\left(\frac{1}{t}-z\right)^{-\alpha}\left(\frac{1}{t}\right)^{-r+1 / 2} \\
& =O\left(t^{m+1}\right)\left(\frac{1}{t}-z\right)^{-\alpha}
\end{aligned}
$$

Returning to (6.5),

$$
H(z, t, R)=O\left(t^{m+2}\right)\left(\frac{1}{t}-z\right)^{1-\alpha}+O\left(t^{m+1}\right)\left(\frac{1}{t}-z\right)^{-\alpha} .
$$

and

$$
\begin{aligned}
B_{1}(t) & =\frac{(-1)^{m}}{\Gamma(1-\alpha)} \int_{0}^{1 / t} S_{z}^{m+\alpha} H(z, t, R) d z \\
& =\int_{0}^{1 / t} o\left(z^{m+\alpha}\right)\left\{O\left(t^{m+2}\right)\left(\frac{1}{t}-z\right)^{1-\alpha}+O\left(t^{m+1}\right)\left(\frac{1}{t}-z\right)^{-\alpha}\right\} d z \\
& =o\left(\frac{1}{t}\right)^{m+\alpha}\left\{O\left(t^{m+2}\right) \int_{0}^{1 / t}\left(\frac{1}{t}-z\right)^{1-\alpha} d z+O\left(t^{m+1}\right) \int_{0}^{1 / t}\left(\frac{1}{t}-z\right)^{-\alpha} d z\right\} \\
& =o\left(\frac{1}{t}\right)^{m+\alpha}\left\{O\left(t^{m+2}\right)\left(\frac{1}{t}\right)^{2-\alpha}+O\left(t^{m+1}\right)\left(\frac{1}{t}\right)^{1-\alpha}\right\} \\
& =o(1),
\end{aligned}
$$

as $t \rightarrow 0$.
It remains to be shown that $B_{2}(t) \rightarrow 0$. In the interval of integration for $B_{2}, 1 / t \leqq z \leqq R$, and

$$
\begin{gathered}
H(z, t, R)=\int_{z}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}} \lambda(u t) d u \\
=\int_{z}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}}\left(\frac{-P(u t)}{(u t)^{r}}\right) d u \\
+\int_{z}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}} \gamma(u t) d u \\
=H_{a}+H_{b} . \\
H_{a}=-\int_{z}^{R}(u-z)^{-\alpha} \frac{d^{m+2}}{d u^{m+2}}\left(\sum_{\substack{k=1 \\
k-2 \\
k-1 d}} \alpha_{k}(u t)^{k-r}\right) d u \\
=\int_{z}^{R}(u-z)^{-\alpha} t^{m+2} O(u t)^{-m-4} d u \\
=t^{-2}\left\{\int_{z}^{2 z}(u-z)^{-\alpha} O(u)^{-m-4} d u+\int_{2 z}^{\infty}(u-z)^{-\alpha} O(u)^{-m-4} d u\right\} \\
=t^{-2}\left\{O(z)^{1-\alpha} z^{-m-4}+O\left(z^{-\alpha}\right) z^{-m-3}\right\} \\
=
\end{gathered}
$$

We change variables in the interval for H_{b} by letting $x=u t$.

$$
\begin{aligned}
H_{b}(z, t, R) & =\int_{z}^{R}(u-z)^{-a} \frac{d^{m+2}}{d u^{m+2}} \gamma(u t) d u \\
& =\int_{t z}^{t R}\left(\frac{x}{t}-z\right)^{-a} t^{m+2} \frac{d^{m+2}}{d u^{m+2}} \gamma(x) \frac{d x}{t} \\
& =t^{m+1+\alpha} \int_{t z}^{t R}(x-t z)^{-\alpha} \gamma^{(m+2)}(x) d x \\
& =t^{m+1+\alpha}\left\{\int_{t z}^{t z+1}+\int_{t z+1}^{t R}\right\} \\
& =H_{b}^{\prime}+H_{b}^{\prime \prime}
\end{aligned}
$$

Recall that $1 / t \leqq z$, so in the interval of integration for $H_{b}, x>t z \geqq 1$. Thus, by (5.11)

$$
\left|\gamma^{(m+2)}(x)\right| \leqq C x^{-r-1 / 2},
$$

and

$$
\begin{aligned}
H_{b}^{\prime} & =t^{m+1+\alpha} \int_{t z}^{t z+1}(x-t z)^{-\alpha} \gamma^{(m+2)}(x) d x \\
& =t^{m+1+\alpha} O(t z)^{-r-1 / 2} \int_{t z}^{t z+1}(x-t z)^{-\alpha} d x \\
& =t^{m+1+\alpha} O(t z)^{-r-1 / 2}
\end{aligned}
$$

We estimate $H_{b}^{\prime \prime}$ by integrating by parts.

$$
\begin{aligned}
H_{b}^{\prime \prime}= & t^{m+1+\alpha} \int_{t z+1}^{t R}(x-t z)^{-\alpha} \gamma^{(m+2)}(x) d x \\
= & \left.t^{m+1+\alpha}(x-t z)^{-\alpha} \gamma^{\prime m+1)}(x)\right|_{t z+1} ^{t R} \\
& +t^{m+1+\alpha} \alpha \int_{t z+1}^{t R}(x-t z)^{-\alpha-1} \gamma^{(m+1)}(x) d x \\
= & \left.t^{m+1+\alpha}(x-t z)^{-\alpha} \gamma^{(m+1)}(x)\right|_{t z+1} ^{t R} \\
& +t^{m+1+\alpha} O(t z)^{-r-1 / 2} \int_{t z+1}^{t R}(x-t z)^{-\alpha-1} d x \\
= & t^{m+1+\alpha}(t R-t z)^{-\alpha} \gamma^{(m+1)}(t R)-t^{m+1+\alpha} \gamma^{(m+1)}(t z+1) \\
& +t^{m+1+\alpha} O(t z)^{-r-1 / 2}\left(\frac{1}{-\alpha}\right)\left\{(t R-t z)^{-\alpha}-1\right\} \\
= & t^{m+1+\alpha}(t R-t z)^{-\alpha} O(t z)^{-r-1 / 2}+t^{m+1+\alpha} O(t z)^{-r-1 / 2} \\
= & t^{m+1+\alpha} O(t z)^{-r-1 / 2} .
\end{aligned}
$$

Hence, in the interval of integration for B_{2},

$$
\begin{aligned}
H_{b}(z, t, R) & =H_{b}^{\prime}+H_{b}^{\prime \prime} \\
& =t^{m+1+\alpha} O(t z)^{-r-1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
H(z, t, R) & =H_{a}+H_{b} \\
& =t^{-2} O\left(z^{-m-\alpha-3}\right)+t^{m+1+\alpha} O(t z)^{-r-1 / 2}
\end{aligned}
$$

So,

$$
\begin{aligned}
B_{2}(t) & =\lim _{R \rightarrow \infty} \frac{(-1)^{m}}{\Gamma(1-\alpha)} \int_{1 / t}^{R} S_{z}^{m+\alpha} H(z, t, R) d z \\
& =\lim _{k \rightarrow \infty} \frac{(-1)^{m}}{\Gamma(1-\alpha)} \int_{1 / t}^{R} o(z)^{m+\alpha}\left\{t^{-2} O\left(z^{-m-\alpha-3}\right)+t^{m+1+\alpha} O(t z)^{-r-1 / 2}\right\} d z \\
& =t^{-2} \int_{1 / t}^{\infty} o\left(z^{m+\alpha-m-\alpha-3}\right) d z+t^{m+1+\alpha-r-1 / 2} \int_{1 / t}^{\infty} o\left(z^{m+\alpha-r-1 / 2}\right) d z \\
& =\left.t^{-2} o\left(z^{-2}\right)\right|_{1 / t} ^{\infty}+\left.t^{m+1 / 2+\alpha-r} o\left(z^{m+\alpha-r+1 / 2}\right)\right|_{1 / t} ^{\infty} \\
& =o(1)
\end{aligned}
$$

(Note that the hypothesis $\alpha<1 / 2$ is necessary here to insure that the last integral converge.) This completes the proof of Theorem 2.

References

1. Erdelyi et al, Higher Transcendental Functions, vol. II, McGraw-Hill, New York, 1953.
2. G. H. Hardy, The second theorem of consistency for summable series, Proc. London Math. Soc., (2), 15 (1916), 72-88.
3. M. Kohn, Spherical convergence and integrability of multiple trigonometric series on hypersurfaces, Studia Math., 44 (1972), 345-354.
4. M. Kohn, Riemann summability of multiple trigonometric series, Indiana Univ. Math. J., 24 (1975), 813-823.
5. M. Kohn, Lebesgue summability of double trigonometric series, Trans. Amer. Math. Soc., to appear.
6. M. Riesz, L'integrale de Riemann-Liouville et le problem de Cauchy, Acta Math., 81 (1949), 1-233.
7. V. Shapiro, Circular summability C of double trigonometric series, Trans. Amer. Math. Soc., 76 (1954), 223-233.
8. A. Zygmund, Trigonometric Series, Vol. II, Cambridge University Press, Cambridge, 1968.

Received March 30, 1976 and in revised form October 6, 1976. Research partially sponsored by the City University of New York Research Foundation.

Brooklyn College of the City University of New York

Brooklyn, NY 11210

