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SUMMABILITY Rr FOR DOUBLE SERIES

M. J. KOHN

Let r be a positive integer. A trigonometric series T
of a single variable is said to be summable Rr at θ0 if the
series obtained by r times formally integrating T has an rth
symmetric derivative at θ0. For even values of r, sum-
mability Rr has been applied to double trigonometric series.
We study here summability Rr, for odd values of r, for
double trigonometric series. We obtain a connection between
Bochner-Riesz summable series and series which are sum-
mable Rr.

1* Let

(1.1) ±cuβ*«
— oo

be a trigonometric series of a single variable. Let r be a positive
integer. Suppose the series obtained by formally integrating (1.1)
r times

(1.2) e^ + Σ.j^ze*"
r\ (n)

converges to a function F(θ) in a neighborhood of θ0 e (0, 2ττ). We
will say that the series (1.1) is at θ0 summable by the method Rr to
sum 8 if F(θ) has at θ0 an rth symmetric derivative with value s.
That is, if r is even,

(1.8) i - {F(θ0 + t) + F{θ0 - t)} = a0 + ^f + . + ±r + o(V)

as ί—>0, and if r is odd,

(1.4) ±{F(ΘO + t) - *\0O 0} α,* + ^

as t—>0.
The following result, see [8], p. 66, establishes a connection be-

tween summability (C, α) and summability Rr for trigonometric series.

THEOREM A. Let a > — 1 cmd assume the series (1.1) is
mable (C, a) at θ0 to sum s. Let r be an integer with r > a + 1,
and suppose the series (1.2) converges in a neighborhood of θ0. Then
the series (1.1) is summable Rr to s.

2 In two variables we will denote points x e E2 by x = (a?x, #2) —
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tetθ and integral lattice points by n = (n19 n2). We write

= Vχ\ + x\.

We will say a double trigonometric series

(2.1) T: Σ cne
inm*

ne Z2

is Bochner-Riesz summable of order a at x0 to sum s0 if

Σ

Suppose r is an even number, r = 2s. A two dimensional analogue
of summability i?r is given as follows, see [7], [4].

DEFINITION. Let F(x) be defined in a neighborhood of xoeE2.
F has at x0 a sth generalized Laplacian equal to s0 if ί7 is in-
tegrable on each circle | x — x0 \ = t and

ί β ) d θ = a + + +(2 2) -h\y^+ teίβ)dθ=a

as ί—>0.

THEOREM B. Lei ί/ιe series T of (2.1) 5e Bochner-Riesz-m
summable at x0 to sum s0, where m is a nonnegative integer, and
suppose the coefficients of T satisfy

Σ N~~3+εkJ2< -
neZ2

for some ε > 0. Let r = 2s 6e αu eve^ integer with r ^ m -f 2.

(2.3) F(x) = { + * r ^(-Ds ΣΣF(x) % + ( D Σ ^Vβ .
2s(2s)! n*o \n\2s

Then the generalized sth Laplacian of F{x) exists at x0 and is equal
to s0.

That is, if the series (2.1) is Bochner-Riesz-??i summable to s0

and r is an even number with r ^ m + 2, then the series is also
summable Rr to sum s0.

3* The purpose of this paper is to derive a connection between
Bochner-Riesz summability and summability Rr, for odd values of
r. We use the following definition, from [5]. This definition extends
the formula of (1.4) to two dimensions in a manner analogous to
the extension of (1.3) to two variables by (2.2).
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DEFINITION. Let r — 2s + 1 be an odd positive integer. Let
L{%) be a function defined in a neighborhood of x0 e E2. We will say
L(x) has at x0 a generalized symmetric derivative of order r with
value s0 if L is integrable on each circle \x — xo\ — t, for t small,
and if

(3.1) - L Γ i ^ + teiθ)(cos θ + sin θ)dθ
2π Jo

as ί->0.
We are able to obtain the following results which, for odd values

of r, form a two dimensional version of Theorem A. We begin with
the case of double trigonometric series which are Bochner-Riesz
summable of integral order, since the statement and proof of our
results are much simpler in this case.

THEOREM 1. Let m be a nonnegative integer. Suppose

(3.2) T: Σ cue**'*
ne Z2

is Bochner-Riesz-m summable at x0 to finite sum s0. Let r = 2s + 1
be an odd integer such that r Ξ> m + 1. Suppose the coefficients of
T satisfy

(3.3) Σ I n r r + s + ε \ c j + Σ (*i + <Γ21n\-»+*+<\cn\
2 < -

converges spherically to a function L(x) which has at x0 a generalized
symmetric derivative of order r with value s0.

We are able to extend Theorem 1 to include some, but not all,
fractional orders of Bochner-Riesz summability. Let β be a non-
negative real number. We denote by [β] the largest integer <^β
and by </S> the fractional part of /S, (β) = β - [β].

THEOREM 2. Let β be a nonnegative real number with (β) <
1/2. Suppose the series (3.2) is summable Bochner-Riesz-β to finite
sum s0. Let r — 2s + 1 be an odd integer with r ^ [β] + 1. Suppose
the coefficients of the series (3.2) satisfy formula (3.3) for some ε > 0.
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Then the conclusion of Theorem 1 still holds.

In particular, in the two dimensional case, Bochner-Riesz sum-
mability of order βf for β < 1/2, is enough to imply summability
Rι (which is Lebesgue summability).

4* Although Theorem 1 is a special case of Theorem 2, we give
its proof separately, since its proof is much easier than that of
Theorem 2. We will assume, as we may, that c0 = 0, x0 = 0, and
s0 = 0. We set

SR = SB(0) = Σ cn y
\n\<R

and f or rj > 0

(4.1) SZ =

Note that S|, as a function of R, is the fractional integral of order
7) of f(R) = SΛ, see [6].

Hardy, see [2], has shown that a series Σ e» is Bochner-Riesz-97
summable to 0 if and only if

R

as R~+ 00. Thus, for the proof of Theorem 1 we may assume

(4.2) SS - o{Rm)

as R —> 00.

We will need the following lemmas. The first lemma has been
adapted from [7].

LEMMA 1. Suppose Σnez2cne
in'x is Bochner-Riesz-(m + 1) sum-

mable to 0 at x = 0, αwώ suppose the coefficients cn satisfy condition

(3.3) 0/ Theorem 1, wΐίΛ r ^ m + 1. Then

(4.3) S£ = o(UT+1/2) ,

as i2—> co, /or & = 0, 1, , m + 1.

Proof. We first note that for wL + n2 Φ 0,

Σ (^ + <ΓW-2 r + 3 + εkJ2

^ — Σ l»

= — V |
4 ^i + 712^0
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Thus, from (3.3),

and therefore

Σ I n r - + 1 + ε I c n \ > < o o ,

Using Schwartz's inequality,

(4.4)

as

Σ I < \ | = Σ (|Λr (-*+ 1 + ) |c . | )( |» |- ' ϊ '-* +1+ >)
\n\<R \n\<R

< ( V I ΎL | - 2 r + 1 + ε I r* \2Y/2( V 111
neZ2 \n\<R

= C ( i2 2 r + 1 ~ ε ) 1 / 2

- o(Rτ+1/2)

Now fix an integer j .

Σ ^(Λ - | i | + j)m+1 = Σ ^(Λ-KI + i ) ^ 1

liKΛ |i|<Λ+j

- Σ c,(Λ-|*l + i) + x .

Since Σ cnβ
in'* is Bochner-Riesz-(m + 1) summable to 0 at 0,

Σ
i | < Λ

as i2-> oo.

Σ MR - lίl + Λ w + 1 = ^ r + 1 / 2 ) ,

because of (4.4). Thus,

Σ ct{R - \i\ + j)m+1 = o(i2w+1) + o(βr+1/2)
( 4 5 )

as J?-> oo.
We next use the fact, see [7], that there are number Cjk, for

3 = 1, •••, m + 2, k — 0, , m + 1 such that for all complex num-
bers z,

m+2

Σ Γ ( - zk .

Thus, for 0 <, k ^ m + 1,
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Σ
lϊl<5

- o(ie r + 1 / 2),

by (4.5). This proves Lemma 1.

LEMMA 2. Let x — (xlf x2) =

\n\ Φ 0. Define

(4.6)

e E2 and n = (nlf n2) e Z2, with

= 0

2ττ Jo
sinθ)dθ =

where Jλ(z) is the Bessel function of the first kind of order 1.

Proof. This is the lemma from [5].

5* Proof of Theorem !• Let

π /vv — V (v n'x + Σ _eιn x ^

The hypothesis (3.3) insures that

L(x) = lim TR{x)
R-+00

exists a.e. on each circle \x\ = t, see [3], Theorem 1. Also, by
Theorem 2 of [3],

so, using Lebesgue's Dominated Convergence Theorem,

—\2 πL(te i θ)(cos θ + sin θ)dθ
2π Jo

2ττ
θ + sin

= lim
2ττ Jo

+ sin θ)dθ
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where gn(x) is defined by (4.6). Using Lemma 2 we get

—[**L(teiθ)(cos θ + sin θ)dθ
2π Jo

\\ \n

= lim Σ c.i&ψ.

where Ύ(t) = z rJ1(z).
We express the last sum as an integral and integrate by parts

m + 1 times.

Σ cnΎ(\n\t) = SR7(Rt) - \BSU—Ύ(ut)du
\n\<R Jo dU

= SBΎ(Rt) - S 1 '

(5.2)

= SB7(Rt) - Si-^-

From Lemma 1,

R — θ\jχ ) i o r K —

Repeatedly using the relations from [1],

(5.3) -^-0

and

as z —> co f we get

(5.4) £

as z —> oo. So, for fc = 0, , m

(5.5)
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as R —> oo. Thus, returning to (5.2),

S oo rfm

o du

and (5.1) becomes,
—(2 l ΓL(ίe i 9)(cos θ + sin θ)dθ
2π Jo

(5.6) = ίrlim Σ cnΊ{\n\t)

Now we make use of the series expansion for J^z), [1], p. 4.

(5.7)

Then,

JAfi) = Σ 2

ft = 0

We define a polynomial P(z) as follows. If r — 1, let P(z) = 0.
Otherwise, let

where the α/s are given by (5.7). Now we let

(5.8) \{z) - Ί{z) - z~rP(z) .

Then λ(ίs) is an entire function in the plane and

Returning to (5.6),

ί L ( ^ ) ( c o s 5 + sin θ)dθ

dum

^ l P ( w ί ) + X(ut)}du

- A
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Since c0 = 0, therefore S™ = 0 for 0 ^u <1. Thus we may
replace the interval of integration of the integral involving A by
the interval (1/2, oo).

- t '(- ir + i -{(ut)~rP(ut)}du

l/2

/c o d d

Σ
fc = l

Jfc o d d

= Σ tkak(-l)m+Λ° o(um)O(uk-γ-m-ι)du
fc Jl/2

- Σ ίfcα*(-l)m+1Γ o
fc = l Jl/2odd

r — 2

k=l
k odd

Returning to (5.9),

— \2πL(teiθ)(cos θ + sin θ)dθ
2π Jo

= A +
0 tr

The proof of Theorem 1 will be complete when we establish B(t) ~+ 0
as ί-*0.

B(t) =

(5.10) = r+r
Jo Ji/t

= BSt) + B2(t)

To estimate B^t) we use the fact that X(z) is entire, so for

Since |ί*ί| ^ 1 in the interval of integration involving

dm+1

X(ut) ^ tm+1K

in this interval.
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&) = (-1)TO+1 [Ho(um)tm+1Kdu
JO

= o(ί"+ 1) ['
Jo

- 0 ( 1 )

as £ —> 0.
For the estimate of B2(t) we use the decomposition

Clearly, as

and by (5.4),

Thus, for 2; —

(5.11)

and

B&) = (-iy+ij°

= ( - l ) m + 1 Γ o(um)tm+ίθ(ut)-r~1/2du
J/

- o( ί w + 1 " r - 1 / 2 ) Γ o(u)m-r~1/2du
Ji/ί

(Note we needed m — r — 1/2 < — 1 to perform the last integration.)
Thus l?2(ί)-*0 as ί-+0, and returning to (5.10), the proof of Theo-
rem 1 is complete.

6* Proof of Theorem 2. We may assume that the fractional
part of β is not zero. Otherwise Theorem 2 reduces to Theorem 1.
Write β — m + a, where m is an integer and 0 < a < 1/2.

We again assume c0 = 0, x0 = 0, s0 = 0. We proceed as in the
beginning of the proof of Theorem 1.
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-^-\ L(teu)(cos θ + sin θ)dθ
2π Jo

Σ . ( | | ) ,
R-+00 \n\<R

with 7(z) = z~rJγ(z).
As in the proof of Theorem 1 we integrate the last sum by

parts. We now integrate by parts m + 2 times.

Σ O Ό tt I ί) = SΛ7(Sί) ( S . £
ι»ι<5 Jo du

(6.1) = SBΎ(Rt) - S i A
CLTC

We are now assuming the series (3.1) is summable Bochner-
Riesz-/3 to 0 at x0 = 0, so it is also summable Bochner-Riesz-(m + 1)
to 0 at x0 = 0. Therefore we may again apply Lemma 1. For

dRk

as R —> co f so

\L(teiθ)(cos θ + sin θ)dθ
2π Jo

(6.2) = t ' l i m

We define P(z) and X(z) as in the proof of Theorem 1:

JO if r = 1

\axz 4- azz
5 + + ar_2z

r~2 if r Φ 1

and

X(z) = 7(2) - z~rl

Then (6.2) becomes,

-λ-\2πL(tβiθ)(cos θ + sin θ)dθ
2π Jo
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= A(t) + FB(t) .

A = n-l

« = 1
k odd
r-2

— 2aθkt .
k odd

Hence,

(6.3) — \ L(teίθ)(cosθ + sinu/ w. , ,
27Γ Jo λ=i

A; odd

where

(6.4) B(t) = (~l)w

To complete the proof of Theorem 2 we must show JS(ί)—*0 as ί ~>0.
If /(M) is a function defined for u > 0 and 77 is a positive real

number, denote by

the fractional integral of order η, see [6]. Now if we set

f(u) = S κ = Σ c w ,
\n\<u

then by (4.1),

Si = PSU,

so

= Γ~aIm+aSu

Thus,

1 ••«-
Γ(\ - a)
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Returning to (6.4)

B(t) = (-1)-

= lim (-1) Γ ϊ \\u
* v J Γ ( l α ) V

)S?dz ^
du

1\m f 22 CR Λm+2

where

= lim <-1> r s r + ^ i i , t, R)dz
R i ( l — a) Jo

lim < - 1 ) Γ Sr+«1Γ(2, ί,
«-><» Γ(l — α) J

= B&) -

We will make separate estimates of H(z, t, R) for Bt(t) and for B2(t).
First, in the interval of integration involving B^t), 0 ^ z ^ 1/t.

(6.5) _ P" f*

= fli + J3"2

Using the fact that λ is entire,

Cl/t

= O(ί»+2)(|- - z)1'" .

We estimate iϊ2 by employing (5.11)

H2 =\* (u- z)-« -f^χ(ut)du
hit dum+*

= (" (u - z)-"tm+20(ut)-r-1/2du
Ji/ί
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/ 1 \~a/ 1 \

)(\-z) (j)

Returning to (6.5),

H(z, t, R) =

and

— a) O

I)

as ί-»0.
It remains to be shown that B2(t) —̂  0. In the interval of in-

tegration for B2, 1/ί <; 3 <£ i?, and

jff(«, t,R)=[*(u- zYa dm+[ X(ut)du
I* dum+2

J
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We change variables in the interval for Hb by letting x = ut.

J z

[ t B ( x z
Jtz V t S

ΓtR

= r+ 1 + α\ (x
Jtz + Γ

2 ώ m + 2

d ^ w + 2
f(x) d x

w t
)dx

Recall that 1/t ^ z, so in the interval of integration for Hh, x > tz ^ 1.

Thus, by (5.11)

and

= tm+1+a0(tz)-r-1/2\tZ+\x - tz)-adx
Jtz

= tm+1+a0(tz)~r-l/2.

We estimate if" by integrating by parts.

S tR
(x - tz)-aΎim+2)(x)dx

tz + l

tR

= tm+1+a(x - tz)-aΎ)m+1)(x)

+aa[ (x - tz)~a-Ύm+1)(x)dx
JtZ + l

(a - tz)-«-ιdx
tz + l

tm+1+"(tR - tz)-"Ύlm+ί)(tR) - i"+ 1 +*y

cc

= tm+1+a(tR - -r-1/2 + tm+1+a0(tz)-r-1/2

Hence, in the interval of integration for B2,

Ht(z, t, R) = H'b + HI'



= lim

= r2\

— t o

Γ(l

(—
Γ(l

-a)

l)m

-a)

oo

l / ί
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and

H(z, t, R) = Ha + Hb

- ί-Ό(z-m-*-3) + tm+1+a0(tz)~r~1/2.

So,

[ i r \B S7+«H(z, t, R)dz

-«-3) + tu+ί+*O(tz)-r-χ/*}dz

l / ί

l / ί

(Note that the hypothesis a < 1/2 is necessary here to insure that
the last integral converge.) This completes the proof of Theorem 2.
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